Download citation
Download citation
link to html
Single-crystal X-ray diffraction and specific heat studies establish that strontium hexavanadium undeca­oxide, SrV6O11, undergoes a P63/mmc to inversion twinned P63mc structural transition as the temperature is lowered through 322 K. The P63/mmc and P63mc structures have been determined at 353 K and at room temperature, respectively. For the room-temperature structure, seven of the ten unique atoms lie on special positions, and for the 353 K structure all of the seven unique atoms sit on special positions. The P63/mmc to P63mc structural phase transition, accompanied by a magnetic transition, is a common characteristic of AV6O11 compounds, independent of the identity of the A cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110046299/fa3226sup1.cif
Contains datablocks I_353K, I_RT, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110046299/fa3226I_353Ksup2.hkl
Contains datablock I_353K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110046299/fa3226I_RTsup3.hkl
Contains datablock I_RT

Comment top

A series of AV6O11 compounds (A = Na, K, Sr, Ba, Pb; de Roy et al., 1987; Kanke, 1999; Kanke et al., 1991; Friese et al., 2006; Mentre et al., 1996) have generated interest because of their structural phase transitions, magnetic and transport properties (Kanke et al., 1990, 1994; Uchida et al., 1991, 2001; Mentre et al., 2001). Their crystal structures consist of hexagonal close-packed layers of the A and O atoms, and three types of V atoms (Fig. 1). The V1O6 octahedra form a Kagomé lattice by edge sharing. The V2O6 octahedra form face-sharing dimers between the layers of the Kagomé lattice. The coordination of V3O5 is a trigonal bipyramid.

While the AV6O11 compounds show common characteristics in their paramagnetic states, they exhibit individual ones for their magnetically ordered states. In the paramagnetic states, each AV6O11 shows one phase transition at a characteristic temperature, Tt. Above Tt, the compounds crystallize in the centrosymmetric hexagonal group P63/mmc, and show Curie–Weiss paramagnetism. Below Tt, the compounds lose the centre of symmetry and show second-order transitions to hexagonal P63mc (Kanke et al., 1994). The V1O6 octahedron forms a regular Kagomé lattice above Tt. It distorts to form a V1O6 trimer with a regular triangular shape below Tt. Two V2O6 octahedra forming a face-sharing dimer are crystallographically equivalent above Tt. Below Tt, they become inequivalent. V3 is no longer at the centre of the V3O5 polyhedron below Tt. In the P63mc form of AV6O11, V1 exhibits a spin gap behaviour with a spin-singlet ground state, while V2 and V3 possess magnetic moments (Uchida et al., 2001). Tt values for KV6O11 (Kanke, 1999), BaV6O11 (Friese et al., 2006) and PbV6O11 (Kato et al., 2001) are 190, 250 and 560 K, respectively.

As first reported, the room-temperature structure of SrV6O11 was assigned to P63/mmc with a relatively high R factor (Kanke et al., 1992). The Tt = 320 K of SrV6O11 exceeds room temperature, which suggests an incorrect assignment of the space group. We have pointed out briefly the existence of the P63/mmcP63mc transition at 320 K (Hata et al., 1999). Kato et al. studied the transition by X-ray powder diffraction. They refined the structures at 100 K in P63mc and at 623 K in P63/mmc (Kato et al., 2001). However, we considered a single-crystal diffraction study to be indispensable for an accurate structural characterization of the acentric phase. In the present study, the crystal structure of SrV6O11 was determined in detail both above Tt (353 K) and below Tt (room temperature) by single-crystal X-ray diffraction. The transition temperature was determined precisely by a specific heat study.

At both room temperature and 353 K, diffraction data showed hexagonal symmetry and an extinction rule, l2n absent for hhl, indicating possible space groups P63/mmc, P62c and P63mc. P63/mmc is centrosymmetric and gives a unique structural model. But the other two are acentric, and each gives a pair of single domain models, (x, y, z) and (-x, -y, -z), and one twin model, [(x, y, z) + (-x, -y, -z)].

To examine the possible models, reflections with h 0, k 0, l 0, |h| |k|, 2θ < 90°, and those with h 0, k 0, l -1, |h| |k|, 2θ 90° were collected at both temperatures using a four-circle diffractometer (Enraf–Nonius CAD-4) with Mo Kα radiation. As the diffractometer is equipped with a scintillation counter, too weak reflections were regarded as unobserved. Thus, 185 of a total of 1284 reflections for room temperature, and 349 of 1290 reflections for 353 K were assigned as unobserved. The refinements did not use the unobserved data. The data, however, are of high resolution, 0.5 Å, and have what we consider sufficient completeness; for 2θ < 50°, the completeness is 97.4% for room temperature and 92.9% for 353 K, even without the unobserved data. As a result, the model examinations give clear results as follows.

The models for room temperature were examined using 1093 Friedel-unaveraged reflections with I > 1.5σ (I), applying the common weighting scheme of 1/σ(I). As shown in Table 1, the twin P63mc model gave trouble-free convergence and low enough R factors (R1 = 0.0231, wR2 = 0.0515, 44 parameters). However, all of the remaining models resulted in non-positive definite temperature factor(s) and significantly higher R factors. Consequently, the twinned P63mc model was selected. This clear differentiation of the results for the different models also indicates high enough quality of the specimen and high enough resolution of the diffraction data.

The models for 353 K were examined using 919 unaveraged reflections with I > 1.5σ (I), applying the common weighting scheme of 1/σ (I). All seven models gave trouble-free convergence and low enough R factors (R1 = 0.0236–0.0242, wR2 = 0.0511–0.0526, 26–44 parameters). Consequently, there is no reason to choose any of the acentric space groups, and the P63/mmc model, with the highest symmetry, is selected.

The room-temperature structure of SrV6O11 had earlier been described by Kanke et al. (1992) using P63/mmc. They compared the P63/mmc model, two single-domain models of P62c and two single-domain models of P63mc, using 2031 unaveraged intensities. The P63/mmc model, the better P62c model and the better P63mc model gave R = 0.070 with 24 parameters, R = 0.069 with 24 parameters and R = 0.064 with 35 parameters, respectively. The difference in the R factors was concluded to be insignificant, considering the numbers of parameters. Consequently, they chose the P63/mmc model with the highest symmetry. However, the study did not examine the twin models for the two acentric space groups. None of the models was free from negative temperature factors, and anisotropic thermal parameters were not applied to O2 even in the final refinement. In the present study, in fact only the P63mc model with twinning is free of non-positive definite displacement parameters, and this model clearly gives the best result among the seven models tested. We thus correct the previous report with this determination that SrV6O11 crystallizes in P63mc with twinning at room temperature.

Between the two temperatures, room temperature and 353 K, the specific heat of SrV6O11 shows only one anomaly, at 322 K. Consequently, we conclude that the structural phase transition takes place at 322 K and coincides with the magnetic transition.

The structural refinements of the P63mc forms of NaV6O11 (Kanke et al., 1994) and PbV6O11 (Mentre et al., 1996) converged promptly without applying twinning. Kanke (1999) suggested that this may be due to the small anomalous dispersion term for Na for Mo Kα in NaV6O11 or may suggest that the volume fraction ratio (x, y, z) / (x, y, -z) is far from 1.0 in PbV6O11 and/or in NaV6O11.

The P63mc and P63/mmc forms of SrV6O11 are illustrated in Figs. 1 and 2, respectively. In both forms, the V1 ellipsoid is elongated towards the centre of the V1 trimer. V2 is nearly isotropic in the P63/mmc form. In the P63mc form, though, V21 is oblate, compressed into (001) and V22 is prolate along [001]. V3 shows extended displacement along [001] in the P63/mmc form, but is rather isotropic in the P63mc form.

For the P63mc form, seven of the ten unique atoms lie on special positions, and for the P63/mmc form all of the seven unique atoms sit on special positions. In the centric structure, the V1O6 octahedra form a regular Kagomé lattice with a uniform V1···V1 distance of 2.8887 (1) Å (Table 2). In the P63mc phase, though, the Kagomé lattice distorts, with the V1O6 octahedra forming a trimer with a regular triangular shape; and the V1···V1 distance separates into two types, inter-trimer [2.9736 (6) Å] and intra-trimer [2.7966 (6) Å] (Table 3). It is noteworthy that SrV6O11 shows a much smaller change in the V2···V2 distance with the phase transition, as compared to the other AV6O11 compounds. In both the P63/mmc and P63mc forms, analogous V1—O distances show similar values, independent of the nature of A. On the other hand, in both forms the V2—O and the V3—O2 distances tend to be longer for divalent A cations and shorter for monovalent A.

The P63/mmcP63mc structural phase transition, accompanied by a magnetic transition, is a common characteristic of AV6O11 compounds, independent of the A cations. The acentric form of SrV6O11 shows features in common with the corresponding P63mc forms of AV6O11 (A = Na, K, Sr, Ba, Pb). Below Tt, the V1O6 octahedron no longer forms a regular Kagomé lattice, but distorts to form a V1O6 trimer with a regular triangular shape. A pair of the V2O6 octahedra forming a face-sharing dimer at higher temperatures become inequivalent. V3 moves away from the centre of the V3O5 polyhedron. The V1 trimer formation accompanying the structural transition is considered to be the factor that suppresses the paramagnetism below Tt.

Related literature top

For related literature, see: Friese & Kanke (2006); Hata et al. (1999); Kanke (1999); Kanke et al. (1990, 1991, 1992, 1994); Kato et al. (2001); Mentre & Abraham (1996); Mentre et al. (2001); de Roy et al. (1987); Sheldrick (2008); Uchida & Kanke (2001); Uchida et al. (1991).

Experimental top

Sr2V2O7 and V2O3 were mixed in a 1:5 molar ratio. The mixture was sealed in a platinum capsule and heated at 1073 K for 1 d and 1473 K for 2 weeks, successively. Crystals of SrV6O11 were hexagonal plates with principal faces {001}. Sizes were typically 0.2 mm across the plate and 0.1 mm in thickness.

Data collection at 353 K was achieved by blowing hot nitrogen gas onto the specimen. The temperature was calibrated by an chromel-alumel thermocouple with a water-ice standard. The specific heat of single-crystal SrV6O11 was measured using a Quantum Design Physical Property Measurement System (PPMS). The temperature range of the measurements was from 2.4 to 350 K.

Refinement top

Structural parameters including one single-domain model or two twin models, scale factors and one free parameter for extinction correction were refined with SHELXL97 (Sheldrick, 2008).

Computing details top

For both compounds, data collection: CAD-4 (Enraf–Nonius, 1981); cell refinement: CAD-4 (Enraf–Nonius, 1981); data reduction: SDP (Frenz, B. A. & Associates, Inc., 1985); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: VESTA (K. Momma et al., 2008) for I_353K; ATOMS (Dowty, 2003) for I_RT. For both compounds, software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of SrV6O11 at room temperature, with 99% probability ellipsoids.
[Figure 2] Fig. 2. Crystal structure of SrV6O11 at 353 K, with 99% probability ellipsoids.
(I_353K) strontium haxavanadium undecaoxide top
Crystal data top
SrV6O11Dx = 5.016 Mg m3
Mr = 569.26Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 22 reflections
Hall symbol: -P6c2cθ = 43.0–44.5°
a = 5.7773 (1) ŵ = 14.15 mm1
c = 13.0852 (3) ÅT = 353 K
V = 378.23 (1) Å3Plate, black
Z = 20.31 × 0.14 × 0.08 mm
F(000) = 528
Data collection top
Enraf–Nonius CAD-4
diffractometer
447 reflections with I > 1.5σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 45.0°, θmin = 3.1°
ω/2θ–scanh = 55
Absorption correction: gaussian
(SDP; Frenz, B. A. & Associates, Inc., 1985)
k = 99
Tmin = 0.413, Tmax = 0.532l = 2626
1290 measured reflections3 standard reflections every 240 min
645 independent reflections intensity decay: 0.7%
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0218P)2 + 0.2463P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max < 0.001
S = 1.37Δρmax = 0.84 e Å3
447 reflectionsΔρmin = 0.81 e Å3
26 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.061 (3)
Crystal data top
SrV6O11Z = 2
Mr = 569.26Mo Kα radiation
Hexagonal, P63/mmcµ = 14.15 mm1
a = 5.7773 (1) ÅT = 353 K
c = 13.0852 (3) Å0.31 × 0.14 × 0.08 mm
V = 378.23 (1) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
447 reflections with I > 1.5σ(I)
Absorption correction: gaussian
(SDP; Frenz, B. A. & Associates, Inc., 1985)
Rint = 0.016
Tmin = 0.413, Tmax = 0.5323 standard reflections every 240 min
1290 measured reflections intensity decay: 0.7%
645 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02126 parameters
wR(F2) = 0.0540 restraints
S = 1.37Δρmax = 0.84 e Å3
447 reflectionsΔρmin = 0.81 e Å3
Special details top

Experimental. Data collection was carried out at 353 K by blowing hot nitrogen gas onto the specimen. The temperature was calibrated by an chromel - alumel thermocouple with a water-ice standard.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.33330.66670.25000.01058 (13)
V10.50000.50000.50000.00609 (9)
V20.00000.00000.35381 (4)0.00490 (9)
V30.33330.66670.75000.00656 (13)
O10.17350 (14)0.3470 (3)0.41844 (9)0.0069 (2)
O20.3048 (4)0.1524 (2)0.25000.0083 (3)
O30.33330.66670.59029 (16)0.0061 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01041 (16)0.01041 (16)0.0109 (2)0.00521 (8)0.0000.000
V10.00578 (12)0.00919 (16)0.00444 (13)0.00459 (8)0.00005 (9)0.00011 (18)
V20.00495 (11)0.00495 (11)0.00479 (15)0.00247 (6)0.0000.000
V30.00402 (19)0.00402 (19)0.0117 (3)0.00201 (9)0.0000.000
O10.0065 (4)0.0066 (5)0.0078 (4)0.0033 (2)0.00099 (19)0.0020 (4)
O20.0120 (7)0.0053 (8)0.0055 (6)0.0026 (4)0.0000.000
O30.0060 (5)0.0060 (5)0.0062 (8)0.0030 (3)0.0000.000
Geometric parameters (Å, º) top
Sr1—O12.7232 (13)V2—O22.0423 (16)
Sr1—O22.892 (2)V3—O2i1.810 (2)
V1—O11.9522 (9)V3—O32.090 (2)
V1—O32.0438 (12)V1—V1ii2.8887 (1)
V2—O11.9312 (14)V2—V2iii2.7166 (9)
O1—V1—O1iv90.39 (8)O2i—V3—O390
O1—V1—O1v89.61 (8)V1—O1—V1ii95.44 (6)
O1—V1—O3v92.68 (4)V1—O3—V1ii89.93 (7)
O1—V1—O387.32 (4)V2—O2—V2iii83.38 (8)
O1—V2—O1vi102.26 (5)V1—O1—V2126.29 (4)
O1—V2—O287.46 (4)V1—O3—V3125.31 (5)
O2—V2—O2vi80.59 (6)V2—O2—V3viii138.31 (4)
O2i—V3—O2vii120
Symmetry codes: (i) xy, x, z+1/2; (ii) x+y, x+1, z; (iii) x, y, z+1/2; (iv) y+1, xy+1, z; (v) y, x+y, z+1; (vi) x+y, x, z; (vii) y, x+y+1, z+1/2; (viii) y, x+y, z1/2.
(I_RT) strontium haxavanadium undecaoxide top
Crystal data top
SrV6O11Dx = 5.013 Mg m3
Mr = 569.26Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63mcCell parameters from 22 reflections
Hall symbol: P6c-2cθ = 43.0–44.5°
a = 5.7702 (1) ŵ = 14.19 mm1
c = 13.0784 (3) ÅT = 295 K
V = 377.11 (1) Å3Plate, black
Z = 20.31 × 0.14 × 0.08 mm
F(000) = 528
Data collection top
Enraf–Nonius CAD-4
diffractometer
1065 reflections with I > 1.5σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 45.0°, θmin = 3.1°
ω/2θ–scanh = 55
Absorption correction: gaussian
(SDP; Frenz, B. A. & Associates, Inc., 1985)
k = 88
Tmin = 0.382, Tmax = 0.529l = 2525
1284 measured reflections3 standard reflections every 240 min
1247 independent reflections intensity decay: 0.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0294P)2 + 0.2563P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max < 0.001
wR(F2) = 0.055Δρmax = 0.97 e Å3
S = 1.21Δρmin = 1.27 e Å3
1065 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
44 parametersExtinction coefficient: 0.052 (2)
0 restraintsAbsolute structure: refinement of absolute structure parameter (Flack, 1983)
Primary atom site location: isomorphous structure methodsAbsolute structure parameter: 0.434 (7)
Crystal data top
SrV6O11Z = 2
Mr = 569.26Mo Kα radiation
Hexagonal, P63mcµ = 14.19 mm1
a = 5.7702 (1) ÅT = 295 K
c = 13.0784 (3) Å0.31 × 0.14 × 0.08 mm
V = 377.11 (1) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1065 reflections with I > 1.5σ(I)
Absorption correction: gaussian
(SDP; Frenz, B. A. & Associates, Inc., 1985)
Rint = 0.016
Tmin = 0.382, Tmax = 0.5293 standard reflections every 240 min
1284 measured reflections intensity decay: 0.4%
1247 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.055Δρmax = 0.97 e Å3
S = 1.21Δρmin = 1.27 e Å3
1065 reflectionsAbsolute structure: refinement of absolute structure parameter (Flack, 1983)
44 parametersAbsolute structure parameter: 0.434 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The specimen was twinned about (001). The refinement was carried out on the basis of the twin model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.33330.66670.25372 (12)0.00913 (12)
V10.50511 (3)0.49489 (3)0.50.00503 (6)
V210.00000.00000.14466 (15)0.0053 (3)
V220.00000.00000.35226 (14)0.0031 (2)
V30.33330.66670.74409 (12)0.00449 (14)
O110.17369 (16)0.3474 (3)0.0836 (2)0.0064 (2)
O120.17370 (17)0.3474 (3)0.4203 (2)0.0057 (2)
O20.3057 (3)0.15287 (15)0.2507 (2)0.0076 (2)
O310.33330.66670.5882 (3)0.0062 (4)
O320.66670.33330.4074 (3)0.0057 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.00883 (11)0.00883 (11)0.0097 (3)0.00441 (5)0.0000.000
V10.00483 (8)0.00483 (8)0.00376 (9)0.00115 (7)0.00005 (10)0.00005 (10)
V210.0073 (4)0.0073 (4)0.0012 (4)0.00366 (19)0.0000.000
V220.0015 (3)0.0015 (3)0.0064 (6)0.00074 (14)0.0000.000
V30.00384 (13)0.00384 (13)0.0058 (4)0.00192 (7)0.0000.000
O110.0066 (4)0.0066 (4)0.0061 (4)0.0036 (5)0.0008 (2)0.0008 (2)
O120.0054 (4)0.0054 (4)0.0059 (5)0.0025 (5)0.0007 (2)0.0007 (2)
O20.0113 (4)0.0113 (4)0.0046 (4)0.0091 (5)0.0002 (3)0.0002 (3)
O310.0060 (6)0.0060 (6)0.0064 (8)0.0030 (3)0.0000.000
O320.0038 (6)0.0038 (6)0.0096 (10)0.0019 (3)0.0000.000
Geometric parameters (Å, º) top
Sr1—O112.738 (2)V22—O121.951 (2)
Sr1—O122.700 (2)V22—O22.025 (3)
Sr1—O22.8887 (9)V3—O2ii1.8057 (15)
V1—O11i1.9422 (18)V3—O312.038 (4)
V1—O121.9598 (16)V3—O32ii2.136 (3)
V1—O312.069 (2)V1—V1iii2.7966 (6)
V1—O322.018 (2)V1—V1iv2.9736 (6)
V21—O111.911 (2)V21—V222.7151 (8)
V21—O22.063 (3)
O11i—V1—O11v90.71 (13)O2ii—V3—O3192.74 (9)
O12—V1—O12vi89.66 (12)O2ii—V3—O32ii87.26 (9)
O11i—V1—O1289.72 (6)V1ix—O11—V1x92.10 (11)
O11i—V1—O3192.01 (10)V1—O12—V1iv98.69 (11)
O12—V1—O3293.21 (10)V1—O31—V1iv91.91 (12)
O11i—V1—O3290.07 (6)V1—O32—V1iii87.71 (13)
O12—V1—O3184.69 (5)V21—O2—V2283.23 (6)
O11—V21—O11vii103.77 (13)V1ix—O11—V21127.16 (7)
O11—V21—O286.82 (6)V1—O12—V22125.26 (5)
O2—V21—O2vii79.77 (13)V1—O31—V3123.91 (8)
O12—V22—O12vii100.84 (11)V1—O32—V3xi126.87 (9)
O12—V22—O287.90 (4)V21—O2—V3xi135.03 (16)
O2—V22—O2vii81.62 (11)V22—O2—V3xi141.73 (15)
O2ii—V3—O2viii119.774 (16)
Symmetry codes: (i) y, x+y, z+1/2; (ii) xy, x, z+1/2; (iii) y+1, xy, z; (iv) x+y, x+1, z; (v) x+1, y+1, z+1/2; (vi) y+1, xy+1, z; (vii) y, xy, z; (viii) y, x+y+1, z+1/2; (ix) xy, x, z1/2; (x) x+1, y+1, z1/2; (xi) y, x+y, z1/2.

Experimental details

(I_353K)(I_RT)
Crystal data
Chemical formulaSrV6O11SrV6O11
Mr569.26569.26
Crystal system, space groupHexagonal, P63/mmcHexagonal, P63mc
Temperature (K)353295
a, c (Å)5.7773 (1), 13.0852 (3)5.7702 (1), 13.0784 (3)
V3)378.23 (1)377.11 (1)
Z22
Radiation typeMo KαMo Kα
µ (mm1)14.1514.19
Crystal size (mm)0.31 × 0.14 × 0.080.31 × 0.14 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Enraf–Nonius CAD-4
diffractometer
Absorption correctionGaussian
(SDP; Frenz, B. A. & Associates, Inc., 1985)
Gaussian
(SDP; Frenz, B. A. & Associates, Inc., 1985)
Tmin, Tmax0.413, 0.5320.382, 0.529
No. of measured, independent and
observed [I > 1.5σ(I)] reflections
1290, 645, 447 1284, 1247, 1065
Rint0.0160.016
(sin θ/λ)max1)0.9950.995
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.37 0.022, 0.055, 1.21
No. of reflections4471065
No. of parameters2644
Δρmax, Δρmin (e Å3)0.84, 0.810.97, 1.27
Absolute structure?Refinement of absolute structure parameter (Flack, 1983)
Absolute structure parameter?0.434 (7)

Computer programs: CAD-4 (Enraf–Nonius, 1981), SDP (Frenz, B. A. & Associates, Inc., 1985), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), VESTA (K. Momma et al., 2008), ATOMS (Dowty, 2003).

Selected bond lengths (Å) for (I_353K) top
Sr1—O12.7232 (13)V2—O22.0423 (16)
Sr1—O22.892 (2)V3—O2i1.810 (2)
V1—O11.9522 (9)V3—O32.090 (2)
V1—O32.0438 (12)V1—V1ii2.8887 (1)
V2—O11.9312 (14)V2—V2iii2.7166 (9)
Symmetry codes: (i) xy, x, z+1/2; (ii) x+y, x+1, z; (iii) x, y, z+1/2.
Selected bond lengths (Å) for (I_RT) top
Sr1—O112.738 (2)V22—O121.951 (2)
Sr1—O122.700 (2)V22—O22.025 (3)
Sr1—O22.8887 (9)V3—O2ii1.8057 (15)
V1—O11i1.9422 (18)V3—O312.038 (4)
V1—O121.9598 (16)V3—O32ii2.136 (3)
V1—O312.069 (2)V1—V1iii2.7966 (6)
V1—O322.018 (2)V1—V1iv2.9736 (6)
V21—O111.911 (2)V21—V222.7151 (8)
V21—O22.063 (3)
Symmetry codes: (i) y, x+y, z+1/2; (ii) xy, x, z+1/2; (iii) y+1, xy, z; (iv) x+y, x+1, z.
Table 1. Results for refinement of different models for SrV6O11 at room temperature. top
Space GroupModelNrNPR1wR2
P63/mmcUniquea1093260.05740.1111
P63mc(x, y, z)b1093430.04590.1002
P63mc(-x, -y, -z)b1093430.03900.0832
P63mc(x, y, z)+(-x, -y, -z)c1093440.02310.0515
P62c(x, y, z)d1093320.05710.1110
P62c(-x, -y, -z)d1093320.05710.1110
P62c(x, y, z)+(-x, -y, -z)e,f1093330.05580.1100
Notes: (a) displacement parameters of V1 are negative; (b) displacement parameters of O2 are negative; (c) the volume fraction (x, y, z):(-x, -y, -z) = 0.428:0.572 (8); (d) displacement parameters of V1 and O2 are negative; (e) displacement parameters of V1, O1 and O2 are negative; (f) the volume fraction (x, y, z):(-x, -y, -z) = 0.519:0.481 (72).
Table 2. Selected bond lengths (Å) for SrV6O11 at 353 K. top
Sr1—O12.7232 (13)V2—-O22.0423 (16)
Sr1—O22.892 (2)V3—-O2i1.810 (2)
V1—-O11.9522 (9)V3—-O32.090 (2)
V1—-O32.0438 (12)V1—-V1ii2.88870 (10)
V2—-O11.9312 (14)V2—-V2iii2.7166 (9)
Symmetry codes: (i) x-y, x, z+1/2; (ii) -x+y, 1-x, z; (iii) x, y, -z+1/2.
Table 3. Selected bond lengths (Å) for SrV6O11 at room temperature. top
Sr1—O112.738 (2)V22—O121.951 (2)
Sr1—O122.700 (2)V22—O22.025 (3)
Sr1—O22.8887 (9)V3—O2ii1.8057 (15)
V1—O11i1.9422 (18)V3—O312.038 (4)
V1—O121.9598 (16)V3—O32ii2.136 (3)
V1—O312.069 (2)V1—V1iii2.7966 (6)
V1—O322.018 (2)V1—V1iv2.9736 (6)
V21—O111.911 (2)V21—V222.7151 (8)
V21—O22.063 (3)
Symmetry codes: (i) y, -x+y, 1/2+z; (ii) x-y, x, 1/2+z; (iii) 1-y, 1+x-y, z; (iv) 1-x+y, 1-x, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds