Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
(3Z)-3-{1-[(5-Phenyl-1H-pyrazol-3-yl)amino]ethyl­idene}-4,5-dihydro­furan-2(3H)-one, C15H15N3O2, (I), and the stoichiometric adduct (3Z)-3-{1-[(5-methyl-1H-pyrazol-3-yl)­amino]ethyl­idene}-4,5-dihydro­furan-2(3H)-one–6-(2-hydroxy­ethyl)-2,5-dimethyl­pyrazolo[1,5-a]pyrimidin-7(4H)-one (1/1), C10H13N3O2·C10H13N3O2, (II), in which the two components have the same composition but different constitutions, are formed in the reactions of 2-acetyl-4-butyrolactone with 5-amino-3-phenyl-1H-pyrazole and 5-amino-3-methyl-1H-pyra­zole, respectively. In each compound, the furan­one component contains an intra­molecular N—H...O hydrogen bond. The mol­ecules of (I) are linked into a chain by a single inter­molecular N—H...O hydrogen bond, while in (II), a combination of one O—H...N hydrogen bond, within the selected asymmetric unit, and two N—H...O hydrogen bonds link the mol­ecular components into a ribbon containing alternating centrosymmetric R44(20) and R66(22) rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109052846/fa3210sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109052846/fa3210Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109052846/fa3210IIsup3.hkl
Contains datablock II

CCDC references: 765471; 765472

Comment top

The condensation reactions between substituted aminopyrazoles and dicarbonyl compounds provide a potentially very versatile route for the synthesis of new fused heterocyclic compounds with precisely defined regiochemistry (Portilla et al., 2008), and fused pyrazole derivatives are potentially valuable for drug and pesticide applications (Elguero, 1984,1996). Here, we report the structures of the two title compounds, (I) and (II) (Figs. 1 and 2), which result from the condensation reactions between 2-acetyl-4-butyrolactone and two 5-amino-1H-pyrazoles carrying different hydrocarbyl substituents at position 3 (see reaction scheme).

The reaction between equimolar quantities of the lactone and 5-amino-3-phenyl-1H-pyrazole provides (3Z)-3-{1-[(5-phenyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one, (I), which apparently results from a simple condensation involving only the 2-acetyl substituent in the lactone reagent, to form a product in which the lactone ring survives intact (see reaction scheme). By contrast, the corresponding reaction between the same lactone reagent and 5-amino-3-methyl-1H-pyrazole proceeds along two different reaction pathways. One of these pathways is entirely analogous to that which forms compound (I), leading to the product denoted (A) in the reaction scheme. The second pathway involves both carbonyl functions in the lactone component, which itself undergoes ring opening, so that this pathway is indeed a cyclocondensation reaction giving a fused heterocyclic system in the product denoted (B) in the reaction scheme. The product (II) which crystallizes from the reaction between 5-amino-3-methyl-1H-pyrazole and the lactone is a 1:1 hydrogen-bonded adduct formed by the primary products (A) and (B), which are, in fact, isomeric with one another despite their very different constitutions.

Within the molecule of compound (I), the C2—O2 and C3—C6 bonds (Table 1) are both long for their types [mean values (Allen et al., 1987) 1.201 and 1.340 Å, respectively, upper quartile values 1.206 and 1.348 Å, respectively] and the C2—C3 bond is short for its type (mean value 1.464 Å, lower quartile value 1.453 Å), while the N7—C6 bond is significantly shorter than the N7—C13 bond. These values provide evidence for electronic polarization in the vinylogous amide fragment of (I), indicating that the form (Ia) is a significant contributor to the overall electronic structure. A similar pattern of distances is found in component (A) of compound (II) (Table 3), but the deviations from the expected values are all somewhat smaller in (II), indicative of a lesser degree of electronic polarization in this component. A similar pattern is found also in the vinylogous amide fragment in component (B) of (II), indicating a contribution from the form (IIa). Consistent with this observation concerning component (B) of (II), the C12—C13 and C13—C13A bonds in (II) differ in length by almost 0.04 Å, while the corresponding differences in (I) and in component (A) of (II) are no more than half of this value. In addition, the C13A—N17A bond in (II) is rather longer than the corresponding bonds in the unfused pyrazole rings of both (I) and (II), indicating stronger bond fixation in the fused pyrazole ring than in either of the unfused pyrazole rings.

The molecules of (I) contain an intramolecular N—H···O hydrogen bond (Table 2, Fig. 1) forming an S(6) motif (Bernstein et al., 1995), and molecules related by the 21 screw axis along (1/2, y, 3/4) are linked into chains by a second N—H···O hydrogen bond to form an S(6)C(9)C12(7) chain of rings running parallel to the [010] direction (Fig. 3). Two chains of this type, related to one another by inversion, pass through each unit cell, but there are no direction-specific interactions between adjacent chains. In particular, there are neither C—H···π(arene) hydrogen bonds nor aromatic ππ stacking interactions in the structure of (I).

Within the selected asymmetric unit of (II) (Fig. 2), the two components are linked by a fairly short and almost linear O—H···N hydrogen bond (Table 4), and there is also an intramolecular N—H···O hydrogen bond, analogous to that in (I). Two further N—H···O hydrogen bonds then link the bimolecular aggregates into a ribbon containing two types of centrosymmetric ring and running parallel to the [100] direction. Within the ribbon, R44(20) rings centred at (n + 1/2, 1/2, 1/2), where n represents an integer, alternate with R66(22) rings centred at (n, 1/2, 1/2) where n again represents an integer (Fig. 4).

Experimental top

For the synthesis of compound (I), a mixture of 2-acetyl-4-butyrolactone (1 mmol), 5-amino-3-phenyl-1H-pyrazole (1 mmol) and 4-toluenesulfonic acid (0.01 mmol) in ethanol (15 ml) was heated under reflux with magnetic stirring for 18 h. The mixture was cooled to ambient temperature and the solvent was removed under reduced pressure. The resulting solid product was recrystallized from dimethylformamide to yield (I) as colourless crystals (yield 63%, m.p. 595–596 K). Analysis: MS (70 eV) m/z (%) 269 (5, M+), 251 (35), 104 (25), 18 (100).

For the synthesis of compound (II), a mixture of 2-acetyl-4-butyrolactone (1 mmol), 5-amino-3-methyl-1H-pyrazole (1 mmol) and 4-toluenesulfonic acid (0.01 mmol) in ethanol (15 ml) was heated under reflux with magnetic stirring for 23 h. The reaction mixture was cooled to ambient temperature and the solvent was removed under reduced pressure. The resulting solid product was recrystallized from dimethylformamide to yield (II) as colourless crystals (yield 48%, m.p. 493–494 K). Analysis: MS (70 eV) m/z (%) 207 (6, M+), 189 (23), 152 (8), 86 (41), 43 (100).

Refinement top

All H atoms were located in difference maps. H atoms bonded to C or N atoms were then treated as riding in geometrically idealized positions, with C—H = 0.95 (aromatic or pyrazole), 0.98 (CH3) or 0.99 Å (CH2) and N—H = 0.88 Å, and with Uiso(H) = kUeq(carrier), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C or N atoms. The H atom bonded to an O atom in compound (II) was permitted to ride at the position deduced from the difference maps, with Uiso(H) = 1.5Ueq(O), giving an O—H distance of 0.86 Å.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-labelling scheme and the intramolecular hydrogen bond (dashed line). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The independent molecular components of compound (II), showing the atom-labelling scheme and the hydrogen bonds within the asymmetric unit (dashed line). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain of rings running parallel to [010]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Dashed lines indicate hydrogen bonds. Atoms marked with an asterisk (*), a dollar sign ($) or an ampersand (&) are at the symmetry positions (1 - x, -1/2 + y, 3/2 - z), (1 - x, 1/2 + y, 3/2 - z) and (x, -1 + y, z), respectively.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (II), showing the formation of a hydrogen-bonded ribbon parallel to [100]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Dashed lines indicate hydrogen bonds.
(I) (3Z)-3-{1-[(5-phenyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5- dihydrofuran-2(3H)-one top
Crystal data top
C15H15N3O2F(000) = 568
Mr = 269.30Dx = 1.385 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2536 reflections
a = 10.4969 (17) Åθ = 3.3–26.1°
b = 9.8550 (9) ŵ = 0.10 mm1
c = 12.6739 (16) ÅT = 120 K
β = 99.883 (9)°Block, colourless
V = 1291.6 (3) Å30.39 × 0.25 × 0.14 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2536 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 9.091 pixels mm-1θmax = 26.1°, θmin = 3.3°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1112
Tmin = 0.964, Tmax = 0.987l = 1515
19109 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.7664P]
where P = (Fo2 + 2Fc2)/3
2536 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H15N3O2V = 1291.6 (3) Å3
Mr = 269.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4969 (17) ŵ = 0.10 mm1
b = 9.8550 (9) ÅT = 120 K
c = 12.6739 (16) Å0.39 × 0.25 × 0.14 mm
β = 99.883 (9)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2536 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1704 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.987Rint = 0.056
19109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
2536 reflectionsΔρmin = 0.26 e Å3
182 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24565 (15)0.99120 (16)0.48162 (13)0.0398 (4)
C20.3290 (2)0.8906 (2)0.51543 (18)0.0321 (5)
C30.40566 (19)0.8586 (2)0.43747 (16)0.0269 (5)
C40.3659 (2)0.9450 (2)0.34120 (18)0.0363 (6)
H4A0.33420.88940.27700.044*
H4B0.43821.00290.32690.044*
C50.2574 (2)1.0299 (2)0.37378 (19)0.0377 (6)
H5A0.27801.12770.37100.045*
H5B0.17511.01260.32440.045*
O20.33004 (15)0.84051 (17)0.60463 (12)0.0397 (4)
C60.50234 (19)0.7638 (2)0.45348 (16)0.0260 (5)
C610.5851 (2)0.7370 (2)0.37190 (17)0.0320 (5)
H61A0.67530.75800.40200.048*
H61B0.55680.79410.30890.048*
H61C0.57780.64120.35090.048*
N70.52487 (16)0.69449 (18)0.54559 (14)0.0298 (4)
H70.47370.71670.59100.036*
N110.69552 (16)0.45224 (18)0.69836 (13)0.0291 (4)
H110.70920.40290.75710.035*
N120.59966 (17)0.54334 (18)0.67646 (14)0.0305 (4)
C130.61353 (19)0.5946 (2)0.58251 (16)0.0267 (5)
C140.71760 (19)0.5361 (2)0.54421 (16)0.0275 (5)
H140.74700.55550.47900.033*
C150.76826 (19)0.4442 (2)0.62139 (16)0.0257 (5)
C510.87557 (19)0.3499 (2)0.62863 (16)0.0267 (5)
C520.9272 (2)0.3170 (2)0.53853 (18)0.0344 (6)
H520.89470.35970.47220.041*
C531.0251 (2)0.2229 (2)0.54399 (19)0.0392 (6)
H531.05860.20040.48120.047*
C541.0744 (2)0.1618 (2)0.63896 (19)0.0366 (6)
H541.14170.09660.64230.044*
C551.0261 (2)0.1953 (2)0.72947 (18)0.0375 (6)
H551.06060.15400.79600.045*
C560.9278 (2)0.2888 (2)0.72418 (17)0.0343 (5)
H560.89530.31160.78740.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0343 (9)0.0378 (9)0.0484 (10)0.0083 (8)0.0103 (7)0.0040 (8)
C20.0293 (12)0.0279 (12)0.0387 (14)0.0009 (10)0.0046 (10)0.0060 (10)
C30.0265 (11)0.0250 (11)0.0298 (12)0.0024 (9)0.0064 (9)0.0035 (9)
C40.0338 (12)0.0352 (13)0.0406 (13)0.0022 (11)0.0080 (10)0.0015 (11)
C50.0306 (12)0.0302 (13)0.0513 (15)0.0017 (10)0.0037 (10)0.0027 (12)
O20.0406 (9)0.0484 (10)0.0325 (9)0.0030 (8)0.0133 (7)0.0049 (8)
C60.0259 (11)0.0249 (11)0.0275 (11)0.0052 (9)0.0055 (8)0.0035 (9)
C610.0309 (11)0.0339 (13)0.0330 (12)0.0033 (10)0.0109 (9)0.0033 (10)
N70.0311 (10)0.0312 (10)0.0287 (10)0.0043 (8)0.0100 (8)0.0024 (8)
N110.0326 (10)0.0284 (10)0.0269 (9)0.0006 (8)0.0071 (8)0.0012 (8)
N120.0338 (10)0.0301 (10)0.0288 (10)0.0004 (9)0.0087 (8)0.0023 (8)
C130.0270 (11)0.0260 (11)0.0274 (11)0.0041 (9)0.0052 (9)0.0037 (9)
C140.0264 (11)0.0310 (12)0.0256 (11)0.0005 (10)0.0059 (9)0.0004 (9)
C150.0268 (11)0.0252 (11)0.0247 (11)0.0057 (9)0.0038 (9)0.0030 (9)
C510.0250 (10)0.0244 (11)0.0303 (12)0.0032 (9)0.0037 (9)0.0005 (9)
C520.0312 (12)0.0398 (14)0.0324 (13)0.0055 (11)0.0060 (9)0.0056 (10)
C530.0330 (12)0.0467 (15)0.0402 (13)0.0070 (11)0.0127 (10)0.0025 (12)
C540.0267 (11)0.0349 (13)0.0474 (15)0.0040 (10)0.0042 (10)0.0034 (11)
C550.0372 (13)0.0360 (14)0.0363 (13)0.0039 (11)0.0021 (10)0.0064 (11)
C560.0370 (12)0.0358 (13)0.0294 (12)0.0011 (11)0.0034 (10)0.0001 (10)
Geometric parameters (Å, º) top
O1—C21.343 (3)N11—H110.8800
O1—C51.444 (3)N12—C131.324 (3)
C2—O21.232 (3)C13—C141.394 (3)
C2—C31.413 (3)C14—C151.371 (3)
C3—C61.369 (3)C15—N111.340 (2)
C3—C41.488 (3)C14—H140.9500
C4—C51.527 (3)C15—C511.451 (3)
C4—H4A0.9900C51—C561.379 (3)
C4—H4B0.9900C51—C521.384 (3)
C5—H5A0.9900C52—C531.377 (3)
C5—H5B0.9900C52—H520.9500
C6—N71.338 (3)C53—C541.366 (3)
C6—C611.484 (3)C53—H530.9500
C61—H61A0.9800C54—C551.372 (3)
C61—H61B0.9800C54—H540.9500
C61—H61C0.9800C55—C561.376 (3)
N7—C131.380 (3)C55—H550.9500
N7—H70.8800C56—H560.9500
N11—N121.341 (2)
C2—O1—C5109.89 (17)C15—N11—N12112.93 (17)
O2—C2—O1119.42 (19)C15—N11—H11123.5
O2—C2—C3129.5 (2)N12—N11—H11123.5
O1—C2—C3111.1 (2)C13—N12—N11104.32 (16)
C6—C3—C2123.1 (2)N12—C13—N7113.91 (18)
C6—C3—C4127.50 (18)N12—C13—C14111.62 (19)
C2—C3—C4109.43 (18)N7—C13—C14134.45 (19)
C3—C4—C5102.06 (18)C15—C14—C13104.84 (18)
C3—C4—H4A111.4C15—C14—H14127.6
C5—C4—H4A111.4C13—C14—H14127.6
C3—C4—H4B111.4N11—C15—C14106.29 (18)
C5—C4—H4B111.4N11—C15—C51121.66 (18)
H4A—C4—H4B109.2C14—C15—C51132.04 (19)
O1—C5—C4107.46 (18)C56—C51—C52118.0 (2)
O1—C5—H5A110.2C56—C51—C15121.50 (19)
C4—C5—H5A110.2C52—C51—C15120.51 (19)
O1—C5—H5B110.2C53—C52—C51120.7 (2)
C4—C5—H5B110.2C53—C52—H52119.6
H5A—C5—H5B108.5C51—C52—H52119.6
N7—C6—C3119.55 (18)C54—C53—C52120.5 (2)
N7—C6—C61118.72 (18)C54—C53—H53119.7
C3—C6—C61121.72 (19)C52—C53—H53119.7
C6—C61—H61A109.5C53—C54—C55119.4 (2)
C6—C61—H61B109.5C53—C54—H54120.3
H61A—C61—H61B109.5C55—C54—H54120.3
C6—C61—H61C109.5C54—C55—C56120.2 (2)
H61A—C61—H61C109.5C54—C55—H55119.9
H61B—C61—H61C109.5C56—C55—H55119.9
C6—N7—C13131.88 (17)C55—C56—C51121.1 (2)
C6—N7—H7114.1C55—C56—H56119.4
C13—N7—H7114.1C51—C56—H56119.4
C5—O1—C2—O2177.4 (2)C6—N7—C13—C146.1 (4)
C5—O1—C2—C32.7 (2)N12—C13—C14—C150.1 (2)
O2—C2—C3—C62.8 (4)N7—C13—C14—C15178.4 (2)
O1—C2—C3—C6177.02 (19)N12—N11—C15—C140.3 (2)
O2—C2—C3—C4178.5 (2)N12—N11—C15—C51178.84 (17)
O1—C2—C3—C41.6 (2)C13—C14—C15—N110.1 (2)
C6—C3—C4—C5178.6 (2)C13—C14—C15—C51178.9 (2)
C2—C3—C4—C50.1 (2)N11—C15—C51—C5616.1 (3)
C2—O1—C5—C42.7 (2)C14—C15—C51—C56165.1 (2)
C3—C4—C5—O11.6 (2)N11—C15—C51—C52162.8 (2)
C2—C3—C6—N71.8 (3)C14—C15—C51—C5216.1 (3)
C4—C3—C6—N7179.9 (2)C56—C51—C52—C531.9 (3)
C2—C3—C6—C61177.1 (2)C15—C51—C52—C53177.0 (2)
C4—C3—C6—C611.2 (3)C51—C52—C53—C541.0 (4)
C3—C6—N7—C13179.6 (2)C52—C53—C54—C550.4 (4)
C61—C6—N7—C131.5 (3)C53—C54—C55—C560.7 (4)
C15—N11—N12—C130.3 (2)C54—C55—C56—C510.3 (3)
N11—N12—C13—N7178.57 (16)C52—C51—C56—C551.6 (3)
N11—N12—C13—C140.3 (2)C15—C51—C56—C55177.4 (2)
C6—N7—C13—N12175.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O20.881.972.709 (2)141
N11—H11···O2i0.881.972.784 (2)154
Symmetry code: (i) x+1, y1/2, z+3/2.
(II) (3Z)-3-{1-[(5-methyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5- dihydrofuran-2(3H)-one–6-(2-hydroxyethyl)-2,5- dimethylpyrazolo[1,5-a]pyrimidin-7(4H)-one (1/1) top
Crystal data top
C10H13N3O2·C10H13N3O2Z = 2
Mr = 414.46F(000) = 440
Triclinic, P1Dx = 1.401 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0402 (11) ÅCell parameters from 3857 reflections
b = 8.2025 (17) Åθ = 2.7–26.1°
c = 15.348 (3) ŵ = 0.10 mm1
α = 91.999 (14)°T = 120 K
β = 99.785 (12)°Block, colourless
γ = 99.172 (15)°0.38 × 0.23 × 0.16 mm
V = 982.7 (3) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3857 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9.091 pixels mm-1θmax = 26.1°, θmin = 2.7°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.963, Tmax = 0.984l = 1818
21688 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.4084P]
where P = (Fo2 + 2Fc2)/3
3857 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C10H13N3O2·C10H13N3O2γ = 99.172 (15)°
Mr = 414.46V = 982.7 (3) Å3
Triclinic, P1Z = 2
a = 8.0402 (11) ÅMo Kα radiation
b = 8.2025 (17) ŵ = 0.10 mm1
c = 15.348 (3) ÅT = 120 K
α = 91.999 (14)°0.38 × 0.23 × 0.16 mm
β = 99.785 (12)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3857 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2739 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.984Rint = 0.044
21688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.07Δρmax = 0.23 e Å3
3857 reflectionsΔρmin = 0.33 e Å3
275 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.9005 (2)0.1184 (2)0.36250 (10)0.0249 (4)
C121.0571 (3)0.0890 (2)0.36009 (13)0.0244 (4)
C131.1747 (3)0.1491 (2)0.43683 (13)0.0249 (4)
H131.29290.14140.44990.030*
C13A1.0813 (2)0.2210 (2)0.48849 (12)0.0217 (4)
N141.1170 (2)0.30378 (19)0.56890 (10)0.0231 (4)
H141.22250.31270.59820.028*
C150.9955 (2)0.3690 (2)0.60250 (12)0.0223 (4)
C160.8319 (2)0.3509 (2)0.55720 (13)0.0237 (4)
C170.7841 (2)0.2612 (2)0.47338 (13)0.0236 (4)
N17A0.9174 (2)0.20143 (19)0.44295 (10)0.0217 (4)
C1211.0913 (3)0.0033 (3)0.28026 (13)0.0310 (5)
H12A0.98330.03410.23930.046*
H12B1.14550.09240.29740.046*
H12C1.16790.07960.25120.046*
C1511.0544 (3)0.4591 (3)0.69134 (13)0.0275 (5)
H15A1.17530.45280.71200.041*
H15B0.98590.40850.73340.041*
H15C1.04070.57530.68690.041*
C1610.6935 (2)0.4238 (3)0.59071 (13)0.0256 (5)
H16A0.61820.46130.54010.031*
H16B0.74600.52180.63130.031*
C1620.5871 (2)0.3018 (3)0.63883 (14)0.0258 (5)
H16C0.54560.19860.60070.031*
H16D0.65970.27420.69330.031*
O160.44467 (16)0.36457 (17)0.66201 (9)0.0270 (3)
H160.47970.45360.69570.041*
O170.64014 (17)0.23687 (19)0.42772 (9)0.0319 (4)
O210.92873 (18)0.16357 (17)0.97582 (9)0.0295 (3)
C220.8563 (2)0.2870 (2)0.93740 (14)0.0243 (4)
C230.8047 (2)0.3886 (2)1.00196 (13)0.0235 (4)
C240.8599 (3)0.3285 (3)1.09152 (13)0.0264 (5)
H24A0.76410.31091.12490.032*
H24B0.95630.40701.12660.032*
C250.9152 (3)0.1659 (3)1.06832 (14)0.0311 (5)
H25A1.02690.15771.10510.037*
H25B0.82960.07141.07930.037*
O220.84505 (18)0.29913 (17)0.85764 (9)0.0285 (3)
C260.7314 (2)0.5236 (2)0.98163 (13)0.0233 (4)
C2610.6909 (3)0.6317 (3)1.05154 (13)0.0282 (5)
H26A0.68960.57241.10580.042*
H26B0.57830.66251.03180.042*
H26C0.77800.73181.06330.042*
N270.6965 (2)0.5611 (2)0.89575 (11)0.0253 (4)
H270.73400.49870.85820.030*
N310.4713 (2)0.7896 (2)0.75191 (11)0.0263 (4)
H310.41450.80300.69910.032*
N320.5371 (2)0.6517 (2)0.77339 (11)0.0266 (4)
C330.6110 (2)0.6823 (2)0.85791 (13)0.0236 (4)
C340.5931 (2)0.8381 (2)0.88960 (13)0.0248 (4)
H340.63510.88870.94750.030*
C350.5016 (2)0.9032 (2)0.81927 (13)0.0247 (4)
C3510.4410 (3)1.0634 (3)0.81029 (15)0.0313 (5)
H35A0.36771.06300.75230.047*
H35B0.53951.15280.81550.047*
H35C0.37541.08080.85710.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0298 (9)0.0260 (9)0.0201 (9)0.0066 (7)0.0064 (7)0.0006 (7)
C120.0301 (11)0.0209 (10)0.0251 (11)0.0079 (9)0.0088 (9)0.0058 (8)
C130.0239 (10)0.0260 (11)0.0264 (11)0.0074 (9)0.0056 (8)0.0033 (9)
C13A0.0234 (10)0.0214 (10)0.0210 (10)0.0045 (8)0.0044 (8)0.0040 (8)
N140.0208 (8)0.0261 (9)0.0230 (9)0.0065 (7)0.0034 (7)0.0021 (7)
C150.0270 (10)0.0193 (10)0.0216 (10)0.0037 (8)0.0065 (8)0.0049 (8)
C160.0272 (10)0.0242 (10)0.0216 (10)0.0060 (9)0.0076 (8)0.0047 (8)
C170.0235 (10)0.0273 (11)0.0220 (10)0.0075 (9)0.0060 (8)0.0064 (8)
N17A0.0244 (9)0.0236 (9)0.0184 (8)0.0063 (7)0.0051 (7)0.0008 (7)
C1210.0378 (12)0.0337 (12)0.0251 (11)0.0129 (10)0.0096 (9)0.0006 (9)
C1510.0283 (11)0.0294 (11)0.0249 (11)0.0037 (9)0.0067 (9)0.0010 (9)
C1610.0261 (10)0.0275 (11)0.0254 (11)0.0098 (9)0.0056 (8)0.0025 (9)
C1620.0223 (10)0.0280 (11)0.0297 (11)0.0090 (9)0.0078 (8)0.0019 (9)
O160.0202 (7)0.0296 (8)0.0314 (8)0.0057 (6)0.0055 (6)0.0070 (6)
O170.0239 (8)0.0478 (10)0.0245 (8)0.0100 (7)0.0021 (6)0.0005 (7)
O210.0348 (8)0.0268 (8)0.0284 (8)0.0089 (6)0.0062 (6)0.0028 (6)
C220.0195 (10)0.0227 (11)0.0292 (11)0.0003 (8)0.0029 (8)0.0019 (9)
C230.0202 (10)0.0255 (11)0.0232 (10)0.0003 (8)0.0027 (8)0.0006 (8)
C240.0248 (10)0.0297 (11)0.0238 (11)0.0016 (9)0.0041 (8)0.0035 (9)
C250.0344 (12)0.0301 (12)0.0275 (11)0.0012 (9)0.0049 (9)0.0055 (9)
O220.0341 (8)0.0291 (8)0.0228 (8)0.0063 (6)0.0059 (6)0.0011 (6)
C260.0169 (9)0.0276 (11)0.0237 (10)0.0009 (8)0.0034 (8)0.0010 (8)
C2610.0277 (11)0.0315 (12)0.0258 (11)0.0075 (9)0.0040 (9)0.0002 (9)
N270.0275 (9)0.0269 (9)0.0227 (9)0.0077 (7)0.0052 (7)0.0001 (7)
N310.0276 (9)0.0271 (9)0.0237 (9)0.0071 (8)0.0010 (7)0.0014 (7)
N320.0283 (9)0.0268 (9)0.0249 (9)0.0083 (8)0.0026 (7)0.0002 (7)
C330.0193 (10)0.0275 (11)0.0238 (10)0.0023 (8)0.0046 (8)0.0018 (8)
C340.0236 (10)0.0252 (11)0.0239 (11)0.0009 (8)0.0035 (8)0.0023 (8)
C350.0222 (10)0.0240 (11)0.0278 (11)0.0006 (8)0.0088 (8)0.0009 (8)
C3510.0322 (12)0.0261 (11)0.0360 (12)0.0032 (9)0.0088 (10)0.0024 (9)
Geometric parameters (Å, º) top
N11—C121.325 (2)O21—C221.351 (2)
C12—C131.399 (3)O21—C251.442 (2)
C12—C1211.479 (3)C22—O221.221 (2)
C13—C13A1.361 (3)C22—C231.429 (3)
C13—H130.9500C23—C261.356 (3)
C13A—N141.351 (2)C23—C241.496 (3)
N14—C151.351 (2)C24—C251.521 (3)
N14—H140.8800C24—H24A0.9900
C15—C161.362 (3)C24—H24B0.9900
C15—C1511.493 (3)C25—H25A0.9900
C16—C171.422 (3)C25—H25B0.9900
C16—C1611.499 (3)C26—N271.357 (2)
C17—N17A1.389 (2)C26—C2611.479 (3)
N17A—N111.364 (2)C261—H26A0.9800
C13A—N17A1.365 (2)C261—H26B0.9800
C17—O171.229 (2)C261—H26C0.9800
C121—H12A0.9800N27—C331.386 (2)
C121—H12B0.9800N27—H270.8800
C121—H12C0.9800N31—N321.351 (2)
C151—H15A0.9800N31—H310.8800
C151—H15B0.9800N32—C331.329 (3)
C151—H15C0.9800C33—C341.389 (3)
C161—C1621.508 (3)C34—C351.374 (3)
C161—H16A0.9900C35—N311.331 (3)
C161—H16B0.9900C34—H340.9500
C162—O161.420 (2)C35—C3511.476 (3)
C162—H16C0.9900C351—H35A0.9800
C162—H16D0.9900C351—H35B0.9800
O16—H160.8600C351—H35C0.9800
C12—N11—N17A103.52 (16)C22—O21—C25109.65 (15)
N11—C12—C13113.19 (17)O22—C22—O21119.58 (18)
N11—C12—C121119.53 (18)O22—C22—C23129.65 (18)
C13—C12—C121127.27 (18)O21—C22—C23110.76 (17)
C13A—C13—C12104.29 (17)C26—C23—C22123.07 (18)
C13A—C13—H13127.9C26—C23—C24128.30 (18)
C12—C13—H13127.9C22—C23—C24108.40 (17)
N14—C13A—C13134.67 (18)C23—C24—C25102.06 (16)
N14—C13A—N17A118.01 (16)C23—C24—H24A111.4
C13—C13A—N17A107.31 (17)C25—C24—H24A111.4
C13A—N14—C15121.18 (16)C23—C24—H24B111.4
C13A—N14—H14117.0C25—C24—H24B111.4
C15—N14—H14121.8H24A—C24—H24B109.2
N14—C15—C16121.14 (18)O21—C25—C24107.28 (16)
N14—C15—C151115.15 (17)O21—C25—H25A110.3
C16—C15—C151123.71 (18)C24—C25—H25A110.3
C15—C16—C17120.70 (18)O21—C25—H25B110.3
C15—C16—C161123.19 (18)C24—C25—H25B110.3
C17—C16—C161116.11 (17)H25A—C25—H25B108.5
O17—C17—N17A119.91 (18)C23—C26—N27119.41 (18)
O17—C17—C16125.70 (18)C23—C26—C261121.15 (18)
N17A—C17—C16114.38 (17)N27—C26—C261119.43 (17)
N11—N17A—C13A111.70 (15)C26—C261—H26A109.5
N11—N17A—C17123.74 (16)C26—C261—H26B109.5
C13A—N17A—C17124.54 (16)H26A—C261—H26B109.5
C12—C121—H12A109.5C26—C261—H26C109.5
C12—C121—H12B109.5H26A—C261—H26C109.5
H12A—C121—H12B109.5H26B—C261—H26C109.5
C12—C121—H12C109.5C26—N27—C33130.19 (17)
H12A—C121—H12C109.5C26—N27—H27114.9
H12B—C121—H12C109.5C33—N27—H27114.9
C15—C151—H15A109.5C35—N31—N32112.72 (16)
C15—C151—H15B109.5C35—N31—H31123.6
H15A—C151—H15B109.5N32—N31—H31123.6
C15—C151—H15C109.5C33—N32—N31104.27 (16)
H15A—C151—H15C109.5N32—C33—N27116.05 (18)
H15B—C151—H15C109.5N32—C33—C34111.33 (18)
C16—C161—C162112.21 (16)N27—C33—C34132.52 (18)
C16—C161—H16A109.2C35—C34—C33105.15 (18)
C162—C161—H16A109.2C35—C34—H34127.4
C16—C161—H16B109.2C33—C34—H34127.4
C162—C161—H16B109.2N31—C35—C34106.53 (17)
H16A—C161—H16B107.9N31—C35—C351121.70 (18)
O16—C162—C161112.20 (16)C34—C35—C351131.77 (19)
O16—C162—H16C109.2C35—C351—H35A109.5
C161—C162—H16C109.2C35—C351—H35B109.5
O16—C162—H16D109.2H35A—C351—H35B109.5
C161—C162—H16D109.2C35—C351—H35C109.5
H16C—C162—H16D107.9H35A—C351—H35C109.5
C162—O16—H16109.8H35B—C351—H35C109.5
N17A—N11—C12—C130.5 (2)C17—C16—C161—C16285.3 (2)
N17A—N11—C12—C121178.29 (17)C16—C161—C162—O16173.50 (16)
N11—C12—C13—C13A0.6 (2)C25—O21—C22—O22175.33 (18)
C121—C12—C13—C13A178.13 (19)C25—O21—C22—C235.5 (2)
C12—C13—C13A—N14178.4 (2)O22—C22—C23—C260.5 (3)
C12—C13—C13A—N17A0.3 (2)O21—C22—C23—C26178.64 (18)
C13—C13A—N14—C15177.0 (2)O22—C22—C23—C24175.4 (2)
N17A—C13A—N14—C151.7 (3)O21—C22—C23—C243.7 (2)
C13A—N14—C15—C161.3 (3)C26—C23—C24—C25174.9 (2)
C13A—N14—C15—C151179.10 (17)C22—C23—C24—C2510.4 (2)
N14—C15—C16—C170.6 (3)C22—O21—C25—C2412.2 (2)
C151—C15—C16—C17178.99 (18)C23—C24—C25—O2113.5 (2)
N14—C15—C16—C161178.69 (17)C22—C23—C26—N273.5 (3)
C151—C15—C16—C1611.7 (3)C24—C23—C26—N27177.42 (18)
C15—C16—C17—O17179.45 (19)C22—C23—C26—C261175.78 (18)
C161—C16—C17—O171.2 (3)C24—C23—C26—C2611.8 (3)
C15—C16—C17—N17A1.9 (3)C23—C26—N27—C33174.17 (19)
C161—C16—C17—N17A177.45 (16)C261—C26—N27—C336.5 (3)
C12—N11—N17A—C13A0.3 (2)C35—N31—N32—C330.1 (2)
C12—N11—N17A—C17178.48 (17)N31—N32—C33—N27177.14 (16)
N14—C13A—N17A—N11178.95 (16)N31—N32—C33—C340.3 (2)
C13—C13A—N17A—N110.1 (2)C26—N27—C33—N32154.14 (19)
N14—C13A—N17A—C170.2 (3)C26—N27—C33—C3429.9 (3)
C13—C13A—N17A—C17178.79 (17)N32—C33—C34—C350.4 (2)
O17—C17—N17A—N111.7 (3)N27—C33—C34—C35176.6 (2)
C16—C17—N17A—N11177.07 (16)N32—N31—C35—C340.2 (2)
O17—C17—N17A—C13A179.74 (18)N32—N31—C35—C351179.95 (17)
C16—C17—N17A—C13A1.5 (3)C33—C34—C35—N310.3 (2)
C15—C16—C161—C16295.4 (2)C33—C34—C35—C351179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16···N320.861.932.784 (2)175
N27—H27···O220.881.992.712 (2)139
N14—H14···O16i0.881.862.736 (2)172
N31—H31···O17ii0.881.932.740 (2)153
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC15H15N3O2C10H13N3O2·C10H13N3O2
Mr269.30414.46
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)120120
a, b, c (Å)10.4969 (17), 9.8550 (9), 12.6739 (16)8.0402 (11), 8.2025 (17), 15.348 (3)
α, β, γ (°)90, 99.883 (9), 9091.999 (14), 99.785 (12), 99.172 (15)
V3)1291.6 (3)982.7 (3)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.39 × 0.25 × 0.140.38 × 0.23 × 0.16
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.964, 0.9870.963, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
19109, 2536, 1704 21688, 3857, 2739
Rint0.0560.044
(sin θ/λ)max1)0.6180.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.07 0.046, 0.123, 1.07
No. of reflections25363857
No. of parameters182275
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.260.23, 0.33

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) for (I) top
C2—O21.232 (3)N11—N121.341 (2)
C2—C31.413 (3)N12—C131.324 (3)
C3—C61.369 (3)C13—C141.394 (3)
C6—N71.338 (3)C14—C151.371 (3)
N7—C131.380 (3)C15—N111.340 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O20.881.972.709 (2)141
N11—H11···O2i0.881.972.784 (2)154
Symmetry code: (i) x+1, y1/2, z+3/2.
Selected bond lengths (Å) for (II) top
N11—C121.325 (2)C22—O221.221 (2)
C12—C131.399 (3)C22—C231.429 (3)
C13—C13A1.361 (3)C23—C261.356 (3)
C13A—N141.351 (2)C26—N271.357 (2)
N14—C151.351 (2)N27—C331.386 (2)
C15—C161.362 (3)N31—N321.351 (2)
C16—C171.422 (3)N32—C331.329 (3)
C17—N17A1.389 (2)C33—C341.389 (3)
N17A—N111.364 (2)C34—C351.374 (3)
C13A—N17A1.365 (2)C35—N311.331 (3)
C17—O171.229 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O16—H16···N320.861.932.784 (2)175
N27—H27···O220.881.992.712 (2)139
N14—H14···O16i0.881.862.736 (2)172
N31—H31···O17ii0.881.932.740 (2)153
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds