Download citation
Download citation
link to html
The title compounds, Na4[NpO4(OH)2]OH·2H2O and Na4[PuO4(OH)2]OH·2H2O, are isostructural and isomorphous, and contain complex [AnO4(OH)2]3- anions (Ac is an actinide) in the form of distorted tetra­gonal bipyramids, Na+ cations, crystallization water mol­ecules and outer-sphere OH groups. The complex [AnO4(OH)2]3- anions occupy general positions and the coordinated OH groups deviate significantly from a centrosymmetric relative orientation. The [AnO4(OH)2]3- anions exhibit anisotropic actinide contraction; the shortening of the An-O(hydroxide) bonds on going from Np to Pu is greater than that of the AnO4 groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109044394/fa3208sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109044394/fa3208Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109044394/fa3208IIsup3.hkl
Contains datablock II

Comment top

The majority of structural studies of AnVII compounds have been carried out on compounds containing [NpO4(OH)2]3- anions and alkali cations (Tomilin et al., 1981a,b,c, 1983; Grigor'ev et al., 1993; Charushnikova et al., 2007; Grigoriev & Krot, 2007b, 2008). Recently, there has been two structure determinations of PuVII compounds: K3[PuO4(OH)2].2H2O (Charushnikova et al., 2007) and Cs3[PuO4(OH)2].3H2O (Grigoriev & Krot, 2007a). In all of these compounds, except for Na3[NpO4(OH)2], the [AnO4(OH)2]3- anions are centrosymmetric. In Na3[NpO4(OH)2], the [NpO4(OH)2]3- anion occupies a special position on a twofold axis (Tomilin et al., 1981b; Grigoriev & Krot, 2007b).

The title compounds of NpVII, (I), Na4[NpO4(OH)2](OH).2H2O, and PuVII, (II), Na4[PuO4(OH)2](OH).2H2O, are isostructural and isomorphous and contain the complex anions [AnO4(OH)2]3-, which are distorted tetragonal bipyramids, Na+ cations, crystallization water molecules and outer-sphere OH groups (Fig. 1). The main bond lengths and angles in the anions are given in Tables 1 and 3. In contrast to the previously mentioned AnVII compounds, the complex anions [AnO4(OH)2]3- in (I) and (II) occupy general positions. The torsion angles H5—O5···O6—H6 are 149 (4) and 139 (3)° in (I) and (II), respectively, showing that the orientation of OH groups in [AnO4(OH)2]3- anions is far from centrosymmetric.

The Na cations have different structural roles. All have coordination number 6, but differ in the nature of their oxygen environments. It is possible to find in the structures electroneutral layers {Na3[AnO4(OH)2]}n, parallel to the (010) plane and formed by [AnO4(OH)2]3- anions and Na1, Na2 and Na3 cations. The environment of Na1 is formed only by O atoms of three complex anions of the same layer. The coordination polyhedra of Na1 (distorted octahedra) share edges to form zigzag chains in the [100] direction. The interlayer space is filled by Na4 cations, crystallization water molecules and outer-sphere OH groups. The environments of Na2 and Na3 are formed by O atoms of one layer and interlayer crystallization water molecules. Na4 atoms are also coordinated by bridging OH groups. The hydrogen bonds, in which the proton donors are OH groups of [AnO4(OH)2]3- anions, crystallization water molecules and outer-sphere OH groups, link neighbouring layers (Tables 2, 4; Fig. 2).

The isomorphism of (I) and (II) once more demonstrates the chemical analogy between NpVII and PuVII and permits a comparison of bond lengths in isostructural NpVII and PuVII compounds. The average An—O distances are 1.894 and 1.889 Å in AnO4 groups and 2.338 and 2.317 Å to OH groups for Np and Pu, respectively. The shortening of the An—O(OH) bonds on changing from Np to Pu (0.021 Å) is greater than that for the AnO4 groups (0.005 Å). Taking into account that the s.u.s of individual An—O distances in these structures are not greater than 0.002 Å, we can conclude that actinide contraction in the compounds under investigation is anisotropic. A similar behaviour was found for other isomorphous pairs of NpVII and PuVII compounds (Charushnikova et al., 2007; Grigoriev & Krot, 2007a).

Related literature top

For related literature, see: Charushnikova et al. (2007); Grigor'ev, Baturin, Tananaev & Krot (1993); Grigoriev & Krot (2007a, 2007b, 2008); Tomilin et al. (1981a, 1981b, 1981c, 1983).

Experimental top

The starting solutions for the syntheses of (I) and (II) were 0.075 M 237NpVII in 2.5 M LiOH and 0.06 M 239PuVII in 2.5 M LiOH. The preparation of such solutions is described by Charushnikova et al. (2007).

For the synthesis of (I), 0.1 ml of the solution was put into a plastic container, then 0.2 ml of 16.7 M NaOH was added and the container was placed in a desiccator with granulated KOH (to absorb CO2 and water vapour). After 3 d of evaporation at room temperature, crystalline hydroxides had been formed with inclusions of black crystals of (I).

For the synthesis of (II), 0.05 ml of the corresponding initial solution was put into a plastic container, then 0.2 ml of 16.7 M NaOH was added and the container was placed in a desiccator with granulated KOH. After 1 d, a mixture of black, plate crystals of (II) and small grey crystals of PuVI hydroxide compounds was found.

All attempts at the synthesis have given twinned crystals, both for Np and Pu.

Refinement top

Both structures were solved with twinned crystals [the second domains are rotated from the first by 180° about the reciprocal axis (001)]. The refined BASF parameters for the second domains are 0.4946 (4) and 0.4908 (2) for (I) and (II), respectively.

The H atoms of the OH groups and crystallization water molecules were located in difference Fourier maps and refined with O–H distances restrained to 0.82 (2) and 0.85 (2) Å, respectively. The displacement parameters of these H atoms were constrained to 1.2 and 1.5 times the Uiso of their parent atoms.

The largest electron-density peak on the final difference Fourier synthesis for (I) is 2.158 e Å-3 (0.68 Å from Np1), the deepest hole is -1.824 e Å-3 (0.62 Å from Np1). The largest electron-density peak on the final difference Fourier synthesis for (II) is 2.543 e Å-3 (0.69 Å from Pu1), the deepest hole is -1.986 e Å-3 (0.42 Å from Pu1).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. A view of (I) showing the layer structure with interlayer hydrogen bonds. Thin lines (solid and dashed) delineate the distorted octahedra surrounding Na1 and its congeners.
(I) Tetrasodium dihydroxidotetraoxidoneptunate(VII) hydroxide dihydrate top
Crystal data top
Na4[NpO4(OH)2](OH)·2H2OZ = 2
Mr = 480.02F(000) = 432
Triclinic, P1Dx = 3.382 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9632 (2) ÅCell parameters from 8013 reflections
b = 8.1157 (2) Åθ = 2.0–35.0°
c = 10.9434 (3) ŵ = 7.33 mm1
α = 105.007 (2)°T = 293 K
β = 101.213 (2)°Fragment, black
γ = 105.935 (2)°0.12 × 0.06 × 0.06 mm
V = 471.36 (2) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4029 independent reflections
Radiation source: fine-focus sealed tube3812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω– and ϕ–scansθmax = 35.0°, θmin = 2.0°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2002)
h = 99
Tmin = 0.451, Tmax = 0.625k = 1312
22639 measured reflectionsl = 017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.054All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.1404P]
where P = (Fo2 + 2Fc2)/3
4029 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 2.16 e Å3
9 restraintsΔρmin = 1.82 e Å3
Crystal data top
Na4[NpO4(OH)2](OH)·2H2Oγ = 105.935 (2)°
Mr = 480.02V = 471.36 (2) Å3
Triclinic, P1Z = 2
a = 5.9632 (2) ÅMo Kα radiation
b = 8.1157 (2) ŵ = 7.33 mm1
c = 10.9434 (3) ÅT = 293 K
α = 105.007 (2)°0.12 × 0.06 × 0.06 mm
β = 101.213 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4029 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2002)
3812 reflections with I > 2σ(I)
Tmin = 0.451, Tmax = 0.625Rint = 0.038
22639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0229 restraints
wR(F2) = 0.054All H-atom parameters refined
S = 1.10Δρmax = 2.16 e Å3
4029 reflectionsΔρmin = 1.82 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Np10.63709 (2)0.414646 (15)0.247923 (11)0.00968 (3)
Na10.2127 (2)0.46725 (19)0.41560 (13)0.0193 (3)
Na21.0543 (2)0.3396 (2)0.07342 (14)0.0211 (3)
Na30.5236 (3)0.72145 (19)0.09527 (14)0.0211 (3)
Na40.6165 (3)0.8535 (2)0.42625 (15)0.0253 (3)
O10.8539 (4)0.2829 (3)0.2395 (3)0.0178 (4)
O20.3952 (4)0.2286 (3)0.1023 (2)0.0172 (4)
O30.4227 (4)0.5527 (3)0.2527 (3)0.0151 (4)
O40.8743 (4)0.6025 (3)0.3929 (2)0.0180 (4)
O50.4867 (5)0.3026 (3)0.4010 (2)0.0171 (4)
H50.421 (7)0.193 (3)0.373 (5)0.021*
O60.7915 (4)0.5368 (3)0.0952 (2)0.0155 (4)
H60.907 (5)0.624 (4)0.138 (4)0.019*
O70.2470 (5)0.0813 (3)0.3625 (3)0.0218 (5)
H70.186 (8)0.155 (5)0.392 (5)0.026*
O80.2420 (5)0.1323 (4)0.1170 (3)0.0249 (5)
H8A0.244 (9)0.113 (6)0.197 (2)0.037*
H8B0.279 (9)0.027 (4)0.110 (5)0.037*
O90.8145 (5)0.9542 (4)0.2823 (3)0.0251 (5)
H9A0.835 (7)1.059 (4)0.276 (5)0.038*
H9B0.952 (5)0.958 (6)0.320 (5)0.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Np10.00930 (4)0.01039 (5)0.00943 (4)0.00323 (3)0.00268 (3)0.00356 (4)
Na10.0147 (6)0.0262 (7)0.0145 (6)0.0062 (6)0.0024 (5)0.0049 (5)
Na20.0151 (6)0.0311 (7)0.0173 (6)0.0084 (6)0.0048 (5)0.0079 (6)
Na30.0261 (7)0.0240 (7)0.0175 (6)0.0136 (6)0.0069 (6)0.0084 (5)
Na40.0293 (8)0.0222 (7)0.0203 (7)0.0057 (6)0.0078 (6)0.0030 (6)
O10.0160 (10)0.0186 (10)0.0222 (11)0.0087 (9)0.0053 (9)0.0094 (10)
O20.0161 (10)0.0154 (10)0.0166 (11)0.0026 (9)0.0032 (8)0.0036 (8)
O30.0156 (9)0.0153 (9)0.0166 (10)0.0079 (8)0.0059 (8)0.0051 (8)
O40.0152 (10)0.0188 (11)0.0144 (10)0.0002 (9)0.0015 (8)0.0042 (9)
O50.0204 (11)0.0156 (10)0.0158 (11)0.0029 (9)0.0089 (9)0.0066 (9)
O60.0151 (10)0.0164 (10)0.0148 (11)0.0038 (9)0.0047 (8)0.0063 (9)
O70.0220 (12)0.0185 (11)0.0212 (12)0.0030 (10)0.0047 (10)0.0059 (9)
O80.0270 (13)0.0197 (12)0.0236 (13)0.0077 (11)0.0038 (11)0.0026 (10)
O90.0204 (12)0.0205 (12)0.0371 (16)0.0070 (10)0.0083 (11)0.0142 (11)
Geometric parameters (Å, º) top
Np1—O11.891 (2)Na2—O3iv2.479 (3)
Np1—O21.888 (2)Na2—O6v2.524 (3)
Np1—O31.917 (2)Na2—O62.529 (3)
Np1—O41.880 (2)Na3—O8vi2.321 (3)
Np1—O52.315 (2)Na3—O92.363 (3)
Np1—O62.362 (2)Na3—O2vii2.413 (3)
Na1—O5i2.356 (3)Na3—O62.472 (3)
Na1—O52.381 (3)Na3—O6vii2.514 (3)
Na1—O1ii2.382 (3)Na3—O32.526 (3)
Na1—O4i2.420 (3)Na4—O92.325 (3)
Na1—O32.501 (3)Na4—O7i2.377 (3)
Na1—O4ii2.550 (3)Na4—O7vi2.420 (3)
Na2—O8iii2.327 (3)Na4—O32.469 (3)
Na2—O12.433 (3)Na4—O5i2.613 (3)
Na2—O2iv2.439 (3)Na4—O42.864 (3)
O1—Np1—O291.52 (10)O2iv—Na2—O6v88.01 (9)
O1—Np1—O3177.96 (10)O3iv—Na2—O6v91.40 (9)
O1—Np1—O489.53 (10)O8iii—Na2—O689.56 (9)
O1—Np1—O593.62 (9)O1—Na2—O673.19 (8)
O1—Np1—O687.44 (9)O2iv—Na2—O6163.23 (10)
O2—Np1—O388.67 (10)O3iv—Na2—O697.81 (9)
O2—Np1—O4178.95 (9)O6v—Na2—O691.36 (8)
O2—Np1—O593.47 (10)O8vi—Na3—O990.37 (10)
O2—Np1—O687.60 (9)O8vi—Na3—O2vii99.31 (10)
O3—Np1—O490.28 (10)O9—Na3—O2vii109.28 (11)
O3—Np1—O588.40 (9)O8vi—Na3—O6170.16 (12)
O3—Np1—O690.54 (9)O9—Na3—O690.16 (9)
O4—Np1—O586.58 (10)O2vii—Na3—O689.78 (9)
O4—Np1—O692.33 (9)O8vi—Na3—O6vii90.08 (10)
O5—Np1—O6178.47 (8)O9—Na3—O6vii176.70 (11)
O5i—Na1—O588.77 (9)O2vii—Na3—O6vii73.86 (9)
O5i—Na1—O1ii166.05 (10)O6—Na3—O6vii88.84 (9)
O5—Na1—O1ii105.19 (10)O8vi—Na3—O394.84 (10)
O5i—Na1—O4i74.58 (9)O9—Na3—O386.15 (10)
O5—Na1—O4i93.43 (9)O2vii—Na3—O3158.84 (10)
O1ii—Na1—O4i104.25 (9)O6—Na3—O375.39 (8)
O5i—Na1—O393.78 (9)O6vii—Na3—O390.56 (9)
O5—Na1—O374.72 (8)O9—Na4—O7i110.87 (11)
O1ii—Na1—O389.78 (9)O9—Na4—O7vi99.20 (10)
O4i—Na1—O3163.76 (9)O7i—Na4—O7vi93.10 (10)
O5i—Na1—O4ii101.00 (9)O9—Na4—O388.29 (10)
O5—Na1—O4ii170.10 (10)O7i—Na4—O3160.11 (11)
O1ii—Na1—O4ii65.05 (8)O7vi—Na4—O388.85 (9)
O4i—Na1—O4ii90.80 (9)O9—Na4—O5i160.69 (11)
O3—Na1—O4ii102.70 (9)O7i—Na4—O5i71.66 (9)
O8iii—Na2—O1100.12 (11)O7vi—Na4—O5i99.76 (10)
O8iii—Na2—O2iv106.87 (10)O3—Na4—O5i88.50 (9)
O1—Na2—O2iv106.27 (9)O9—Na4—O482.73 (9)
O8iii—Na2—O3iv169.56 (11)O7i—Na4—O4115.40 (10)
O1—Na2—O3iv89.14 (9)O7vi—Na4—O4148.90 (10)
O2iv—Na2—O3iv65.46 (8)O3—Na4—O460.09 (8)
O8iii—Na2—O6v80.99 (10)O5i—Na4—O479.18 (8)
O1—Na2—O6v164.46 (9)
H5—O5—O6—H6149 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y, z; (v) x+2, y+1, z; (vi) x, y+1, z; (vii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O70.81 (2)2.14 (2)2.927 (3)162 (5)
O6—H6···O8viii0.79 (2)2.49 (3)3.154 (4)142 (4)
O7—H7···O4ix0.79 (2)2.31 (3)3.039 (4)154 (5)
O8—H8A···O70.85 (2)1.76 (2)2.603 (4)178 (4)
O8—H8B···O20.85 (2)2.03 (2)2.876 (4)175 (5)
O9—H9A···O1vi0.85 (2)1.94 (2)2.781 (3)173 (5)
O9—H9B···O7viii0.83 (2)1.87 (2)2.676 (4)165 (5)
Symmetry codes: (vi) x, y+1, z; (viii) x+1, y+1, z; (ix) x1, y1, z.
(II) Tetrasodium dihydroxidotetraoxidoplutonate(VII) hydroxide dihydrate top
Crystal data top
Na4[PuO4(OH)2](OH)·2H2OZ = 2
Mr = 482.02F(000) = 434
Triclinic, P1Dx = 3.461 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9177 (2) ÅCell parameters from 7446 reflections
b = 8.0736 (2) Åθ = 2.0–40.0°
c = 10.8696 (3) ŵ = 7.79 mm1
α = 105.007 (2)°T = 100 K
β = 101.224 (2)°Fragment, black
γ = 105.760 (2)°0.16 × 0.06 × 0.04 mm
V = 462.72 (2) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5736 independent reflections
Radiation source: fine-focus sealed tube4796 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω– and ϕ–scansθmax = 40.0°, θmin = 2.0°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2002)
h = 1010
Tmin = 0.515, Tmax = 0.758k = 1414
31123 measured reflectionsl = 019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.039All H-atom parameters refined
S = 0.86 w = 1/[σ2(Fo2) + (0.0086P)2]
where P = (Fo2 + 2Fc2)/3
5736 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 2.54 e Å3
9 restraintsΔρmin = 1.99 e Å3
Crystal data top
Na4[PuO4(OH)2](OH)·2H2Oγ = 105.760 (2)°
Mr = 482.02V = 462.72 (2) Å3
Triclinic, P1Z = 2
a = 5.9177 (2) ÅMo Kα radiation
b = 8.0736 (2) ŵ = 7.79 mm1
c = 10.8696 (3) ÅT = 100 K
α = 105.007 (2)°0.16 × 0.06 × 0.04 mm
β = 101.224 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5736 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2002)
4796 reflections with I > 2σ(I)
Tmin = 0.515, Tmax = 0.758Rint = 0.049
31123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0289 restraints
wR(F2) = 0.039All H-atom parameters refined
S = 0.86Δρmax = 2.54 e Å3
5736 reflectionsΔρmin = 1.99 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pu10.636080 (17)0.414739 (13)0.247926 (10)0.00471 (2)
Na10.21183 (19)0.46774 (15)0.41582 (10)0.0100 (2)
Na21.05366 (18)0.34046 (15)0.07393 (11)0.0099 (2)
Na30.52187 (18)0.71929 (14)0.09431 (10)0.0100 (2)
Na40.61628 (18)0.85254 (14)0.42687 (10)0.0119 (2)
O10.8529 (3)0.2821 (2)0.24009 (18)0.0091 (3)
O20.3938 (3)0.2289 (2)0.10200 (18)0.0092 (3)
O30.4207 (3)0.5534 (2)0.25272 (18)0.0086 (3)
O40.8756 (3)0.6042 (2)0.39297 (19)0.0093 (4)
O50.4857 (3)0.3035 (3)0.40065 (19)0.0093 (4)
H50.449 (5)0.200 (2)0.386 (3)0.011*
O60.7897 (3)0.5351 (3)0.0951 (2)0.0080 (4)
H60.891 (4)0.620 (3)0.145 (3)0.010*
O70.2480 (3)0.0810 (2)0.36329 (18)0.0105 (3)
H70.174 (5)0.162 (3)0.376 (3)0.013*
O80.2410 (4)0.1325 (3)0.1161 (2)0.0124 (4)
H8A0.229 (5)0.122 (4)0.193 (2)0.019*
H8B0.290 (5)0.035 (3)0.109 (3)0.019*
O90.8122 (3)0.9519 (2)0.28120 (18)0.0121 (3)
H9A0.832 (5)1.056 (3)0.275 (3)0.018*
H9B0.962 (3)0.956 (4)0.308 (3)0.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pu10.00480 (3)0.00532 (3)0.00417 (3)0.00187 (2)0.00115 (3)0.00178 (3)
Na10.0083 (5)0.0139 (5)0.0069 (5)0.0031 (4)0.0015 (4)0.0032 (4)
Na20.0081 (5)0.0133 (5)0.0083 (5)0.0046 (4)0.0022 (4)0.0029 (4)
Na30.0120 (5)0.0111 (5)0.0079 (5)0.0058 (4)0.0027 (4)0.0030 (4)
Na40.0138 (5)0.0104 (5)0.0104 (5)0.0033 (4)0.0040 (4)0.0022 (4)
O10.0090 (8)0.0095 (8)0.0098 (9)0.0042 (6)0.0024 (7)0.0041 (7)
O20.0094 (8)0.0098 (9)0.0083 (9)0.0036 (7)0.0015 (7)0.0030 (7)
O30.0102 (8)0.0086 (8)0.0085 (8)0.0042 (6)0.0039 (7)0.0033 (7)
O40.0085 (8)0.0095 (9)0.0079 (9)0.0008 (7)0.0018 (7)0.0026 (7)
O50.0118 (9)0.0063 (9)0.0086 (9)0.0023 (7)0.0029 (8)0.0017 (8)
O60.0077 (8)0.0080 (9)0.0069 (9)0.0015 (7)0.0010 (7)0.0024 (7)
O70.0105 (8)0.0093 (8)0.0111 (8)0.0018 (7)0.0024 (7)0.0046 (7)
O80.0143 (9)0.0103 (9)0.0115 (9)0.0039 (8)0.0025 (8)0.0030 (8)
O90.0109 (8)0.0100 (8)0.0165 (10)0.0046 (7)0.0034 (7)0.0057 (7)
Geometric parameters (Å, º) top
Pu1—O11.8824 (15)Na2—O3iv2.459 (2)
Pu1—O21.8805 (18)Na2—O62.5002 (19)
Pu1—O31.9109 (15)Na2—O6v2.522 (2)
Pu1—O41.8811 (19)Na3—O8vi2.310 (2)
Pu1—O52.2952 (19)Na3—O92.349 (2)
Pu1—O62.339 (2)Na3—O2vii2.396 (2)
Na1—O5i2.345 (2)Na3—O62.4501 (19)
Na1—O52.360 (2)Na3—O6vii2.477 (2)
Na1—O1ii2.370 (2)Na3—O32.505 (2)
Na1—O4i2.410 (2)Na4—O92.316 (2)
Na1—O32.484 (2)Na4—O7i2.357 (2)
Na1—O4ii2.5247 (19)Na4—O7vi2.3992 (19)
Na2—O8iii2.310 (2)Na4—O32.453 (2)
Na2—O2iv2.4174 (18)Na4—O5i2.592 (2)
Na2—O12.422 (2)Na4—O42.8319 (19)
O1—Pu1—O291.50 (7)O1—Na2—O673.37 (6)
O1—Pu1—O3178.24 (8)O3iv—Na2—O697.86 (7)
O1—Pu1—O489.58 (7)O8iii—Na2—O6v81.32 (8)
O1—Pu1—O593.39 (7)O2iv—Na2—O6v87.78 (7)
O1—Pu1—O687.62 (7)O1—Na2—O6v164.86 (7)
O2—Pu1—O388.68 (7)O3iv—Na2—O6v91.08 (7)
O2—Pu1—O4178.79 (8)O6—Na2—O6v91.60 (7)
O2—Pu1—O593.42 (7)O8vi—Na3—O990.06 (7)
O2—Pu1—O687.49 (8)O8vi—Na3—O2vii99.22 (7)
O3—Pu1—O490.23 (7)O9—Na3—O2vii108.73 (7)
O3—Pu1—O588.35 (7)O8vi—Na3—O6170.25 (9)
O3—Pu1—O690.63 (7)O9—Na3—O690.17 (7)
O4—Pu1—O587.07 (8)O2vii—Na3—O689.94 (7)
O4—Pu1—O692.01 (7)O8vi—Na3—O6vii90.27 (7)
O5—Pu1—O6178.62 (7)O9—Na3—O6vii177.04 (8)
O5i—Na1—O588.49 (7)O2vii—Na3—O6vii74.11 (7)
O5i—Na1—O1ii166.70 (7)O6—Na3—O6vii89.02 (7)
O5—Na1—O1ii104.81 (7)O8vi—Na3—O394.71 (7)
O5i—Na1—O4i74.91 (7)O9—Na3—O385.98 (7)
O5—Na1—O4i93.27 (7)O2vii—Na3—O3159.59 (7)
O1ii—Na1—O4i103.77 (7)O6—Na3—O375.58 (6)
O5i—Na1—O393.69 (7)O6vii—Na3—O391.07 (7)
O5—Na1—O374.79 (6)O9—Na4—O7i110.84 (8)
O1ii—Na1—O389.93 (7)O9—Na4—O7vi98.80 (7)
O4i—Na1—O3163.89 (7)O7i—Na4—O7vi92.77 (7)
O5i—Na1—O4ii101.20 (7)O9—Na4—O387.94 (7)
O5—Na1—O4ii170.09 (8)O7i—Na4—O3160.69 (8)
O1ii—Na1—O4ii65.51 (6)O7vi—Na4—O388.57 (7)
O4i—Na1—O4ii91.29 (7)O9—Na4—O5i160.74 (7)
O3—Na1—O4ii102.23 (7)O7i—Na4—O5i72.19 (7)
O8iii—Na2—O2iv106.36 (7)O7vi—Na4—O5i100.05 (7)
O8iii—Na2—O199.93 (8)O3—Na4—O5i88.61 (7)
O2iv—Na2—O1106.13 (7)O9—Na4—O482.43 (6)
O8iii—Na2—O3iv169.47 (8)O7i—Na4—O4115.77 (7)
O2iv—Na2—O3iv65.82 (6)O7vi—Na4—O4149.16 (7)
O1—Na2—O3iv89.32 (7)O3—Na4—O460.61 (6)
O8iii—Na2—O689.68 (7)O5i—Na4—O479.37 (6)
O2iv—Na2—O6163.64 (8)
H5—O5—O6—H6139 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y, z; (v) x+2, y+1, z; (vi) x, y+1, z; (vii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O70.77 (2)2.18 (2)2.921 (3)163 (3)
O6—H6···O8viii0.76 (2)2.59 (3)3.152 (3)132 (3)
O7—H7···O4ix0.75 (2)2.28 (2)3.013 (2)167 (3)
O8—H8A···O70.84 (2)1.77 (2)2.600 (3)172 (3)
O8—H8B···O20.79 (2)2.08 (2)2.865 (3)174 (3)
O9—H9A···O1vi0.84 (2)1.94 (2)2.770 (2)174 (3)
O9—H9B···O7viii0.87 (2)1.81 (2)2.667 (2)169 (3)
Symmetry codes: (vi) x, y+1, z; (viii) x+1, y+1, z; (ix) x1, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaNa4[NpO4(OH)2](OH)·2H2ONa4[PuO4(OH)2](OH)·2H2O
Mr480.02482.02
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293100
a, b, c (Å)5.9632 (2), 8.1157 (2), 10.9434 (3)5.9177 (2), 8.0736 (2), 10.8696 (3)
α, β, γ (°)105.007 (2), 101.213 (2), 105.935 (2)105.007 (2), 101.224 (2), 105.760 (2)
V3)471.36 (2)462.72 (2)
Z22
Radiation typeMo KαMo Kα
µ (mm1)7.337.79
Crystal size (mm)0.12 × 0.06 × 0.060.16 × 0.06 × 0.04
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Bruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(TWINABS; Sheldrick, 2002)
Multi-scan
(TWINABS; Sheldrick, 2002)
Tmin, Tmax0.451, 0.6250.515, 0.758
No. of measured, independent and
observed [I > 2σ(I)] reflections
22639, 4029, 3812 31123, 5736, 4796
Rint0.0380.049
(sin θ/λ)max1)0.8070.904
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.054, 1.10 0.028, 0.039, 0.86
No. of reflections40295736
No. of parameters149149
No. of restraints99
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)2.16, 1.822.54, 1.99

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL97 (Sheldrick, 2008).

Selected bond lengths (Å) for (I) top
Np1—O11.891 (2)Np1—O41.880 (2)
Np1—O21.888 (2)Np1—O52.315 (2)
Np1—O31.917 (2)Np1—O62.362 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O70.813 (19)2.14 (2)2.927 (3)162 (5)
O6—H6···O8i0.794 (19)2.49 (3)3.154 (4)142 (4)
O7—H7···O4ii0.788 (19)2.31 (3)3.039 (4)154 (5)
O8—H8A···O70.849 (18)1.755 (19)2.603 (4)178 (4)
O8—H8B···O20.847 (18)2.03 (2)2.876 (4)175 (5)
O9—H9A···O1iii0.849 (18)1.937 (19)2.781 (3)173 (5)
O9—H9B···O7i0.828 (18)1.87 (2)2.676 (4)165 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y1, z; (iii) x, y+1, z.
Selected bond lengths (Å) for (II) top
Pu1—O11.8824 (15)Pu1—O41.8811 (19)
Pu1—O21.8805 (18)Pu1—O52.2952 (19)
Pu1—O31.9109 (15)Pu1—O62.339 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O70.770 (16)2.177 (18)2.921 (3)163 (3)
O6—H6···O8i0.760 (17)2.59 (3)3.152 (3)132 (3)
O7—H7···O4ii0.745 (17)2.281 (18)3.013 (2)167 (3)
O8—H8A···O70.836 (16)1.770 (17)2.600 (3)172 (3)
O8—H8B···O20.793 (16)2.076 (17)2.865 (3)174 (3)
O9—H9A···O1iii0.836 (16)1.938 (16)2.770 (2)174 (3)
O9—H9B···O7i0.866 (16)1.812 (16)2.667 (2)169 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y1, z; (iii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds