Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the chiral polymeric title compound, poly[aqua­(4,4′-bipyridine)[μ3-S-carboxyl­ato­methyl-N-(p-tos­yl)-L-cysteinato]­manganese(II)], [Mn(C12H13NO6S2)(C10H8N2)(H2O)]n, the MnII ion is coordinated in a distorted octa­hedral geometry by one water mol­ecule, three carboxyl­ate O atoms from three S-carboxyato­methyl-N-(p-tos­yl)-L-cysteinate (Ts-cmc) ligands and two N atoms from two 4,4′-bipyridine mol­ecules. Each Ts-cmc ligand behaves as a chiral μ3-linker connecting three MnII ions. The two-dimensional frameworks thus formed are further connected by 4,4′-bipyridine ligands into a three-dimensional homochiral metal–organic framework. This is a rare case of a homochiral metal–organic framework with a flexible chiral ligand as linker, and this result demonstrates the important role of noncovalent inter­actions in stabilizing such assemblies.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108042637/fa3174sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108042637/fa3174Isup2.hkl
Contains datablock I

CCDC reference: 724180

Comment top

Homochiral metal–organic frameworks (MOFs) have attracted much attention owing to their interesting topological structures and their potential applications, such as chiral separation and asymmetric heterogeneous catalysis (Seo et al., 2000; Bradshaw et al., 2004; Kesanli & Lin 2003; Wu et al., 2005; Wu & Lin, 2007). However, the control of chirality in MOFs is still a great challenge. One strategy for the preparation of homochiral MOFs is to select appropriate enantiopure ligands as the chiral linkers. The most often used chiral organic linkers are rigid organic ligands such as rigid dicarboxylates (Cui et al., 2002; Tanaka et al., 2008). However, the use of flexible chiral ligands as linkers is rare, since the structures formed by this kind of flexible ligand are not easy to predesign and control (Gordon & Harrison, 2004). In this work we attempted to investigate the structures of chiral MOFs constructed from a flexible chiral linker, S-carboxymethyl-N-(p-tosyl)-L-cysteine (Ts-cmc) together with an achiral linker, 4,4'-bipyridine (4,4'-bipy). We report here the structure of [Mn(Ts-cmc)(4,4'-bipy)(H2O)]n, (I), which presents a homochiral three-dimensional metal–organic framework.

Complex (I) crystallizes in the chiral space group P21. The MnII ion is six-coordinated in a distorted octahedral geometry by one water molecule, two carboxylate O atoms from the carboxymethyl groups of two Ts-cmc ligands, another carboxylate O atom from the L-cysteine unit of another Ts-cmc ligand and two N atoms from two 4,4'-bipyridine molecules (Fig. 1). The Mn—O and Mn—N bond lengths (Table 1) are comparable to the corresponding distances reported for MnII compounds bearing N-tosyl-amino acid ligands (Chen et al., 2005; Liang et al., 2004; Brückner et al., 1993). The bond angles in Table 1 reveal some degree of distortion in the octahedral coordination geometry.

The carboxymethyl carboxylate groups of Ts-cmc adopt a synanti µ2-bridging mode to connect the adjacent MnII ions into one-dimensional chains along the a axis, with an Mn1···Mn1iv [symmetry code: (iv) x - 1, y, z] distance of 5.382 (4) Å within the chain. The carboxylate groups from the L-cysteine fragments of Ts-cmc in each chain coordinate to the MnII ions from adjacent chains in a monodentate mode, forming a two-dimensional sheet parallel to the ab plane with an interchain Mn1···Mn1v [symmetry code: (v) -x + 2, y + 1/2, -z + 1] distance of 10.230 (7) Å (Fig. 2). Therefore the two carboxylate groups of the Ts-cmc ligand exhibit different coordination modes – synanti µ2-bridging and mondentate modes. Each Ts-cmc ligand in (I) thus acts as a µ3,η3-bridge connecting three MnII ions. This is very different from the reported connecting modes of S-carboxymethyl-L-cysteine (Wang et al., 2005). Notably, the amino group of Ts-cmc forms a hydrogen bond with the sulfur atom in the same ligand (N3—H3···S1; Table 2 and Fig. 2), giving a hydrogen-bonded ring motif with graph-set notation S(5) (Bernstein et al., 1995). In addition to another three classical hydrogen bonds [O7—H7A···O2, O7—H7A···O3vi and O7—H7B···O4ii; symmetry codes: (ii) -x + 2, y - 1/2, -z + 1; (vi) -x + 1, y - 1/2, -z + 1], a nonclassical hydrogen bond is also present (C14—H14···O4iv; Table 2 and Fig. 2). The propagation of the O7—H7A···O3vi, O7—H7B···O4ii and C14—H14···O4iv hydrogen bonds affords a complex fused-ring hydorgen-bonding system (Fig. 2), further stabilizing the two-dimensional sheet.

Neighboring two-dimensional sheets are bridged by coordinated 4,4'-bipy ligands, which bind to MnII centers from the adjacent sheets, forming a homochiral three-dimensional metal–organic framework as depicted in Fig. 3. It has a grid size of 13.127 (7) × 17.617 (10) Å defined by the diagonal Mn1···Mn1vii and Mn1···Mn1viii [symmetry codes: (vii) -x + 2, y + 1/2, -z + 2; (viii) -x + 2, y + 1/2, -z] distances. From a topological viewpoint, the Ts-cmc ligands act as 3-connecting nodes linking three MnII ions, and the MnII ions act as 5-connecting nodes linking three Ts-cmc ligands and two 4,4'-bipy ligands. The overall 3,5-connected three-dimensional network is shown in Fig. 4 and has the Schläfli symbol (63)(68.8.10) (Dolomanov et al., 2003). The p-tosyl group, a part of the Ts-cmc ligand, interacts with the three-dimensional framework further via the formation of C—H···π interactions and hydrogen bonds (Fig. 3). Sulfonyl atom O6 participates in two hydrogen bonds with H atoms from the 4,4'-bipy ligand in the same asymmetric unit (C4—H4···O6 and C10—H10···O6; Table 2). This gives a hydrogen-bonded ring motif with graph-set notation R12(7) (Bernstein, et al., 1995). The methyl group of the tosyl fragment forms a C—H···π interaction with the pyridyl ring C1–C5/N1 (symmetry operation: -x, 1/2 + y, -z), with an H22B···Cg distance of 2.735 (2) Å, a C22···Cg distance of 3.678 (2) Å and a C22—H22B···Cg angle of 167°, where Cg denotes the centroid of the ring. All of the noncovalent interactions involved in this structure play a vital role in the stabilization of the three-dimensional framework – a construct known to be difficult to stabilize when the linker is flexible as in this case.

Related literature top

For related literature, see: Bernstein et al. (1995); Brückner et al. (1993); Bradshaw et al. (2004); Chen et al. (2005, 2008); Cui et al. (2002); Gordon & Harrison (2004); Kesanli & Lin (2003); Liang et al. (2004); Seo et al. (2000); Tanaka et al. (2008); Wang et al. (2005); Wu & Lin (2007); Wu et al. (2005).

Experimental top

A mixture of N-p-tosyl-S-carboxymethyl-l-cysteine (0.0667 g, 0.2 mmol) prepared according to a literatural method (Chen et al., 2008), 4,4'-bipyridine (0.0312 g, 0.2 mmol), Mn(CH3COO)2.4H2O (0.0490 g, 0.2 mmol) and water (8 ml) was sealed in a 23 ml Teflon-lined autoclave, heated at 353 K for 6 d and cooled over a period of 48 h. Yellow crystals of (I) were collected in a yield of 63% (0.0706 g). Found: C 46.85, H 4.02, N 7.28, S 11.12%; C22H23MnN3O7S2 requires C, 47.14; H, 4.14; N, 7.50; S, 11.44%.

Refinement top

H atoms of amine groups and water molecules were located in a difference Fourier map and allowed for as riding on their parent atoms [Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N)]. Other H atoms were placed at calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) values of 1.2Ueq(C) [1.5Ueq(C) for methyl H atoms]. The highest difference peak is at 1.08 Å from atom Mn1.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Compound (I), showing the atom-labeling scheme and 30% probability displacement ellipsoids. H atoms and p-tosyl groups have been omitted for clarity. [Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, y - 1/2, -z + 1; (iii) x, y, z + 1; (iv) x - 1, y, z; (v) -x + 2, y + 1/2, -z + 1.] [Not in agreement with tables]
[Figure 2] Fig. 2. The two-dimensional network in (I), with p-tosyl groups and H atoms not involved in hydrogen bonds omitted for clarity. [Symmetry codes: (ii) -x + 2, y - 1/2, -z + 1; (iv) x - 1, y, z; (v) -x + 2, y 1/2, -z + 1; (vi) -x + 1, y - 1/2, -z + 1.]
[Figure 3] Fig. 3. The three-dimensional metal–organic framework in (I). [Symmetry codes: (vii) -x +2, y + 1/2, -z + 2; (viii) -x + 2, y + 1/2, -z.]
[Figure 4] Fig. 4. A schematic representation the three-dimensional 3,5-connected topology of (I). (In the electronic version of the pape, teal-colored spheres represent the Mn nodes, red spheres represent the Ts-cmc ligands and blue lines represent the 4,4'-bipy ligands.)
poly[aqua(4,4'-bipyridine)[µ3-S-carboxylatomethyl-N- (p-tosyl)-L-cysteinato]manganese(II)] top
Crystal data top
[Mn(C12H13NO6S2)(C10H8N2)(H2O)]F(000) = 578
Mr = 560.49Dx = 1.538 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2042 reflections
a = 5.382 (4) Åθ = 2.7–25.3°
b = 19.375 (14) ŵ = 0.77 mm1
c = 11.691 (9) ÅT = 298 K
β = 96.771 (9)°Block, yellow
V = 1210.6 (15) Å30.30 × 0.12 × 0.09 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3179 independent reflections
Radiation source: fine-focus sealed tube2615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 66
Tmin = 0.803, Tmax = 0.934k = 1622
6227 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0957P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3179 reflectionsΔρmax = 1.15 e Å3
317 parametersΔρmin = 0.51 e Å3
1 restraintAbsolute structure: Flack (1983), 983 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
[Mn(C12H13NO6S2)(C10H8N2)(H2O)]V = 1210.6 (15) Å3
Mr = 560.49Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.382 (4) ŵ = 0.77 mm1
b = 19.375 (14) ÅT = 298 K
c = 11.691 (9) Å0.30 × 0.12 × 0.09 mm
β = 96.771 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3179 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2615 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.934Rint = 0.053
6227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.163Δρmax = 1.15 e Å3
S = 1.05Δρmin = 0.51 e Å3
3179 reflectionsAbsolute structure: Flack (1983), 983 Friedel pairs
317 parametersAbsolute structure parameter: 0.02 (4)
1 restraint
Special details top

Experimental. IR spectrum: ν~max ~(KBr pellet) / cm^-1^ 3437vs, 1606 s, 1558m, 1407m, 1374m, 1337m, 1161 s, 1093m, 1069m, 1010w, 813m.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.13529 (17)0.09925 (5)0.63363 (7)0.0241 (3)
N11.1530 (10)0.0976 (4)0.4377 (4)0.0316 (13)
C11.3236 (17)0.0647 (6)0.3871 (7)0.060 (3)
H11.44920.04180.43380.072*
C21.3295 (18)0.0617 (7)0.2701 (7)0.059 (3)
H21.45490.03670.24050.071*
C31.1520 (13)0.0952 (5)0.1966 (5)0.0328 (16)
C40.9731 (17)0.1321 (5)0.2500 (6)0.050 (2)
H40.84790.15660.20570.059*
C50.9838 (17)0.1319 (5)0.3664 (6)0.050 (2)
H50.86460.15770.39920.060*
C61.1487 (13)0.0965 (5)0.0689 (5)0.0305 (15)
C71.3289 (16)0.0647 (6)0.0153 (7)0.051 (2)
H71.45720.04080.05860.061*
C81.3220 (16)0.0678 (6)0.1027 (6)0.048 (2)
H81.44850.04560.13620.057*
C90.9771 (17)0.1333 (6)0.1195 (7)0.061 (3)
H90.85380.15760.16530.073*
C100.9717 (17)0.1339 (6)0.0008 (7)0.057 (3)
H100.85040.15910.03130.068*
N21.1485 (11)0.1000 (4)0.1709 (4)0.0325 (12)
O10.8696 (9)0.1854 (3)0.6120 (4)0.0305 (12)
O20.5057 (9)0.1443 (3)0.6531 (4)0.0313 (12)
C110.6370 (12)0.1873 (4)0.6057 (5)0.0231 (14)
C120.4954 (16)0.2423 (5)0.5354 (9)0.048 (2)
H12A0.35790.25770.57570.058*
H12B0.42430.22250.46270.058*
S10.6801 (4)0.31564 (12)0.5065 (2)0.0497 (6)
C130.4417 (15)0.3645 (4)0.4182 (7)0.042 (2)
H13A0.28990.33710.40720.050*
H13B0.40510.40590.45980.050*
C140.5110 (13)0.3855 (4)0.3003 (6)0.0291 (16)
H140.36210.40540.25630.035*
C150.7164 (13)0.4409 (4)0.3127 (6)0.0274 (15)
O30.6580 (8)0.4988 (3)0.3487 (4)0.0292 (11)
O40.9226 (10)0.4253 (3)0.2840 (6)0.0573 (18)
N30.5916 (12)0.3272 (4)0.2355 (6)0.0409 (17)
H30.66310.29660.28720.049*
S20.3959 (4)0.28487 (11)0.1480 (2)0.0421 (5)
O50.1632 (10)0.2831 (3)0.1948 (6)0.0497 (15)
O60.5193 (13)0.2216 (3)0.1228 (6)0.0559 (17)
C160.3424 (15)0.3313 (5)0.0190 (8)0.048 (2)
C170.492 (2)0.3194 (9)0.0701 (11)0.091 (4)
H170.62820.28980.05840.109*
C180.434 (3)0.3516 (10)0.1740 (11)0.108 (6)
H180.53470.34290.23200.130*
C190.241 (2)0.3951 (6)0.1965 (9)0.063 (3)
C200.108 (2)0.4119 (7)0.1056 (10)0.077 (4)
H200.01550.44580.11530.093*
C210.157 (2)0.3781 (7)0.0003 (9)0.069 (3)
H210.06010.38820.05890.083*
C220.176 (3)0.4296 (8)0.3132 (9)0.088 (4)
H22A0.32670.43750.34790.132*
H22B0.09460.47280.30320.132*
H22C0.06640.40020.36220.132*
O70.8256 (10)0.0282 (3)0.6048 (5)0.0416 (15)
H7A0.69720.04350.63290.062*
H7B0.87110.01100.63430.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0255 (5)0.0222 (5)0.0252 (5)0.0007 (5)0.0058 (3)0.0021 (5)
N10.035 (3)0.031 (3)0.030 (3)0.001 (3)0.008 (2)0.006 (3)
C10.047 (5)0.100 (9)0.034 (5)0.035 (5)0.005 (4)0.002 (5)
C20.050 (5)0.097 (9)0.032 (4)0.036 (5)0.010 (4)0.004 (5)
C30.045 (4)0.028 (4)0.026 (3)0.001 (4)0.005 (3)0.002 (4)
C40.058 (5)0.066 (7)0.024 (4)0.027 (5)0.005 (4)0.005 (4)
C50.053 (5)0.067 (7)0.031 (4)0.032 (5)0.013 (4)0.001 (4)
C60.038 (4)0.030 (4)0.024 (3)0.001 (4)0.006 (3)0.001 (4)
C70.049 (5)0.067 (7)0.035 (4)0.024 (5)0.003 (4)0.001 (4)
C80.047 (5)0.068 (7)0.029 (4)0.020 (4)0.008 (3)0.005 (4)
C90.050 (5)0.103 (9)0.030 (4)0.039 (5)0.010 (4)0.008 (5)
C100.045 (5)0.096 (9)0.030 (4)0.039 (5)0.009 (4)0.005 (4)
N20.041 (3)0.028 (3)0.029 (3)0.003 (4)0.007 (2)0.001 (3)
O10.029 (3)0.026 (3)0.037 (3)0.003 (2)0.005 (2)0.006 (2)
O20.022 (2)0.036 (3)0.035 (3)0.004 (2)0.003 (2)0.007 (2)
C110.028 (4)0.012 (4)0.029 (3)0.000 (3)0.004 (3)0.000 (3)
C120.039 (5)0.030 (5)0.075 (6)0.003 (4)0.004 (4)0.023 (4)
S10.0353 (11)0.0365 (13)0.0743 (15)0.0071 (9)0.0056 (10)0.0229 (11)
C130.039 (5)0.025 (5)0.063 (5)0.003 (3)0.014 (4)0.019 (4)
C140.033 (4)0.016 (4)0.039 (4)0.003 (3)0.003 (3)0.003 (3)
C150.031 (4)0.015 (4)0.036 (4)0.003 (3)0.004 (3)0.004 (3)
O30.028 (3)0.017 (3)0.044 (3)0.001 (2)0.011 (2)0.004 (2)
O40.028 (3)0.031 (4)0.118 (5)0.000 (3)0.029 (3)0.019 (3)
N30.035 (4)0.022 (4)0.064 (5)0.005 (3)0.002 (3)0.016 (3)
S20.0377 (11)0.0209 (11)0.0668 (14)0.0009 (8)0.0025 (9)0.0126 (9)
O50.038 (3)0.025 (3)0.086 (5)0.003 (3)0.006 (3)0.001 (3)
O60.063 (4)0.016 (3)0.087 (5)0.002 (3)0.001 (3)0.019 (3)
C160.035 (4)0.052 (6)0.057 (5)0.002 (4)0.001 (4)0.014 (4)
C170.066 (7)0.131 (13)0.078 (8)0.034 (8)0.027 (6)0.003 (8)
C180.139 (13)0.126 (15)0.068 (9)0.042 (12)0.048 (9)0.011 (8)
C190.071 (7)0.054 (7)0.063 (6)0.010 (6)0.004 (5)0.008 (5)
C200.078 (8)0.080 (10)0.075 (8)0.024 (6)0.013 (6)0.003 (6)
C210.066 (7)0.084 (9)0.060 (6)0.023 (6)0.015 (5)0.008 (6)
C220.130 (12)0.075 (10)0.057 (6)0.023 (8)0.002 (6)0.011 (6)
O70.025 (3)0.033 (4)0.068 (4)0.001 (2)0.009 (3)0.003 (3)
Geometric parameters (Å, º) top
Mn1—O72.157 (6)C12—H12A0.9700
Mn1—O2i2.164 (5)C12—H12B0.9700
Mn1—O12.193 (5)S1—C131.815 (8)
Mn1—O3ii2.239 (5)C13—C141.525 (11)
Mn1—N2iii2.278 (5)C13—H13A0.9700
Mn1—N12.304 (5)C13—H13B0.9700
N1—C11.315 (10)C14—N31.454 (10)
N1—C51.337 (10)C14—C151.536 (10)
C1—C21.372 (11)C14—H140.9800
C1—H10.9300C15—O41.234 (9)
C2—C31.371 (11)C15—O31.251 (9)
C2—H20.9300O3—Mn1vi2.239 (5)
C3—C41.403 (11)N3—S21.604 (7)
C3—C61.492 (8)N3—H30.9000
C4—C51.356 (11)S2—O51.425 (6)
C4—H40.9300S2—O61.441 (6)
C5—H50.9300S2—C161.750 (10)
C6—C71.363 (10)C16—C211.348 (14)
C6—C101.384 (11)C16—C171.407 (13)
C7—C81.376 (11)C17—C181.369 (19)
C7—H70.9300C17—H170.9300
C8—N21.313 (10)C18—C191.342 (18)
C8—H80.9300C18—H180.9300
C9—N21.326 (10)C19—C201.389 (16)
C9—C101.392 (11)C19—C221.522 (16)
C9—H90.9300C20—C211.398 (16)
C10—H100.9300C20—H200.9300
N2—Mn1iv2.278 (5)C21—H210.9300
O1—C111.246 (8)C22—H22A0.9600
O2—C111.262 (8)C22—H22B0.9600
O2—Mn1v2.164 (5)C22—H22C0.9600
C11—C121.498 (10)O7—H7A0.8530
C12—S11.788 (9)O7—H7B0.8584
O7—Mn1—O2i163.6 (2)S1—C12—H12A108.7
O7—Mn1—O189.2 (2)C11—C12—H12B108.7
O2i—Mn1—O1106.6 (2)S1—C12—H12B108.7
O7—Mn1—O3ii80.0 (2)H12A—C12—H12B107.6
O2i—Mn1—O3ii84.2 (2)C12—S1—C1398.6 (4)
O1—Mn1—O3ii169.21 (19)C14—C13—S1114.9 (5)
O7—Mn1—N2iii95.3 (2)C14—C13—H13A108.5
O2i—Mn1—N2iii88.4 (2)S1—C13—H13A108.5
O1—Mn1—N2iii93.0 (2)C14—C13—H13B108.5
O3ii—Mn1—N2iii87.5 (2)S1—C13—H13B108.5
O7—Mn1—N187.6 (2)H13A—C13—H13B107.5
O2i—Mn1—N188.0 (2)N3—C14—C13112.6 (7)
O1—Mn1—N189.9 (2)N3—C14—C15109.7 (6)
O3ii—Mn1—N190.1 (2)C13—C14—C15110.6 (6)
N2iii—Mn1—N1175.8 (2)N3—C14—H14108.0
C1—N1—C5114.9 (6)C13—C14—H14108.0
C1—N1—Mn1124.6 (5)C15—C14—H14108.0
C5—N1—Mn1120.5 (5)O4—C15—O3125.6 (7)
N1—C1—C2124.6 (8)O4—C15—C14117.5 (7)
N1—C1—H1117.7O3—C15—C14116.9 (6)
C2—C1—H1117.7C15—O3—Mn1vi131.9 (4)
C3—C2—C1120.5 (8)C14—N3—S2121.0 (5)
C3—C2—H2119.7C14—N3—H3106.9
C1—C2—H2119.7S2—N3—H3106.7
C2—C3—C4115.3 (6)O5—S2—O6120.3 (4)
C2—C3—C6124.1 (7)O5—S2—N3107.9 (4)
C4—C3—C6120.6 (7)O6—S2—N3106.4 (4)
C5—C4—C3119.6 (8)O5—S2—C16106.3 (4)
C5—C4—H4120.2O6—S2—C16107.1 (4)
C3—C4—H4120.2N3—S2—C16108.4 (4)
N1—C5—C4124.9 (7)C21—C16—C17117.8 (10)
N1—C5—H5117.5C21—C16—S2122.0 (7)
C4—C5—H5117.5C17—C16—S2120.2 (8)
C7—C6—C10116.3 (6)C18—C17—C16119.7 (12)
C7—C6—C3121.9 (7)C18—C17—H17120.2
C10—C6—C3121.6 (7)C16—C17—H17120.2
C6—C7—C8120.3 (8)C19—C18—C17123.2 (12)
C6—C7—H7119.8C19—C18—H18118.4
C8—C7—H7119.8C17—C18—H18118.4
N2—C8—C7124.3 (7)C18—C19—C20117.2 (11)
N2—C8—H8117.9C18—C19—C22122.8 (11)
C7—C8—H8117.9C20—C19—C22119.9 (12)
N2—C9—C10123.6 (8)C19—C20—C21120.4 (11)
N2—C9—H9118.2C19—C20—H20119.8
C10—C9—H9118.2C21—C20—H20119.8
C6—C10—C9119.3 (7)C16—C21—C20121.3 (10)
C6—C10—H10120.3C16—C21—H21119.3
C9—C10—H10120.3C20—C21—H21119.3
C8—N2—C9116.0 (6)C19—C22—H22A109.5
C8—N2—Mn1iv122.8 (5)C19—C22—H22B109.5
C9—N2—Mn1iv121.1 (5)H22A—C22—H22B109.5
C11—O1—Mn1131.7 (5)C19—C22—H22C109.5
C11—O2—Mn1v140.9 (4)H22A—C22—H22C109.5
O1—C11—O2124.4 (6)H22B—C22—H22C109.5
O1—C11—C12119.7 (6)Mn1—O7—H7A111.4
O2—C11—C12115.9 (6)Mn1—O7—H7B108.9
C11—C12—S1114.3 (6)H7A—O7—H7B111.1
C11—C12—H12A108.7
O7—Mn1—N1—C1104.9 (9)Mn1—O1—C11—O229.0 (10)
O2i—Mn1—N1—C159.3 (9)Mn1—O1—C11—C12149.3 (6)
O1—Mn1—N1—C1165.8 (9)Mn1v—O2—C11—O1152.9 (6)
O3ii—Mn1—N1—C125.0 (9)Mn1v—O2—C11—C1225.6 (11)
O7—Mn1—N1—C575.6 (8)O1—C11—C12—S119.5 (10)
O2i—Mn1—N1—C5120.2 (8)O2—C11—C12—S1162.0 (6)
O1—Mn1—N1—C513.7 (8)C11—C12—S1—C13177.9 (7)
O3ii—Mn1—N1—C5155.5 (8)C12—S1—C13—C14125.4 (7)
C5—N1—C1—C22.8 (17)S1—C13—C14—N353.0 (8)
Mn1—N1—C1—C2177.7 (9)S1—C13—C14—C1570.1 (8)
N1—C1—C2—C31.0 (19)N3—C14—C15—O410.5 (9)
C1—C2—C3—C40.8 (16)C13—C14—C15—O4114.2 (8)
C1—C2—C3—C6178.1 (10)N3—C14—C15—O3168.0 (6)
C2—C3—C4—C50.7 (15)C13—C14—C15—O367.3 (8)
C6—C3—C4—C5178.1 (9)O4—C15—O3—Mn1vi5.2 (11)
C1—N1—C5—C42.9 (16)C14—C15—O3—Mn1vi173.1 (4)
Mn1—N1—C5—C4177.5 (8)C13—C14—N3—S292.2 (8)
C3—C4—C5—N11.2 (17)C15—C14—N3—S2144.3 (6)
C2—C3—C6—C71.3 (14)C14—N3—S2—O534.7 (8)
C4—C3—C6—C7175.8 (11)C14—N3—S2—O6165.1 (6)
C2—C3—C6—C10176.9 (11)C14—N3—S2—C1680.0 (7)
C4—C3—C6—C100.3 (13)O5—S2—C16—C2125.1 (10)
C10—C6—C7—C83.2 (15)O6—S2—C16—C21154.9 (9)
C3—C6—C7—C8179.0 (9)N3—S2—C16—C2190.7 (10)
C6—C7—C8—N20.2 (16)O5—S2—C16—C17153.6 (10)
C7—C6—C10—C94.1 (15)O6—S2—C16—C1723.8 (10)
C3—C6—C10—C9179.9 (9)N3—S2—C16—C1790.6 (10)
N2—C9—C10—C61.9 (18)C21—C16—C17—C184 (2)
C7—C8—N2—C92.5 (15)S2—C16—C17—C18174.4 (13)
C7—C8—N2—Mn1iv177.0 (8)C16—C17—C18—C190 (3)
C10—C9—N2—C81.5 (16)C17—C18—C19—C206 (2)
C10—C9—N2—Mn1iv178.0 (9)C17—C18—C19—C22178.8 (15)
O7—Mn1—O1—C1110.2 (6)C18—C19—C20—C217 (2)
O2i—Mn1—O1—C11174.4 (6)C22—C19—C20—C21176.9 (11)
O3ii—Mn1—O1—C117.7 (14)C17—C16—C21—C202.5 (18)
N2iii—Mn1—O1—C1185.1 (6)S2—C16—C21—C20176.3 (10)
N1—Mn1—O1—C1197.8 (6)C19—C20—C21—C163 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+1; (iii) x, y, z+1; (iv) x, y, z1; (v) x1, y, z; (vi) x+2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O4v0.982.463.243 (9)137
C4—H4···O60.932.293.213 (11)171
C10—H10···O60.932.503.426 (11)177
N3—H3···S10.902.583.156 (8)122
O7—H7A···O20.852.232.928 (8)139
O7—H7B···O4ii0.861.852.662 (9)158
O7—H7A···O3vii0.852.132.780 (7)132
Symmetry codes: (ii) x+2, y1/2, z+1; (v) x1, y, z; (vii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C12H13NO6S2)(C10H8N2)(H2O)]
Mr560.49
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)5.382 (4), 19.375 (14), 11.691 (9)
β (°) 96.771 (9)
V3)1210.6 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.30 × 0.12 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.803, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
6227, 3179, 2615
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.163, 1.05
No. of reflections3179
No. of parameters317
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 0.51
Absolute structureFlack (1983), 983 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998) and SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O72.157 (6)Mn1—O3ii2.239 (5)
Mn1—O2i2.164 (5)Mn1—N2iii2.278 (5)
Mn1—O12.193 (5)Mn1—N12.304 (5)
O7—Mn1—O2i163.6 (2)O1—Mn1—N2iii93.0 (2)
O7—Mn1—O189.2 (2)O3ii—Mn1—N2iii87.5 (2)
O2i—Mn1—O1106.6 (2)O7—Mn1—N187.6 (2)
O7—Mn1—O3ii80.0 (2)O2i—Mn1—N188.0 (2)
O2i—Mn1—O3ii84.2 (2)O1—Mn1—N189.9 (2)
O1—Mn1—O3ii169.21 (19)O3ii—Mn1—N190.1 (2)
O7—Mn1—N2iii95.3 (2)N2iii—Mn1—N1175.8 (2)
O2i—Mn1—N2iii88.4 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O4iv0.982.463.243 (9)137.2
C4—H4···O60.932.293.213 (11)171.2
C10—H10···O60.932.503.426 (11)177.1
N3—H3···S10.902.583.156 (8)122.4
O7—H7A···O20.852.232.928 (8)138.6
O7—H7B···O4ii0.861.852.662 (9)157.5
O7—H7A···O3v0.852.132.780 (7)132.4
Symmetry codes: (ii) x+2, y1/2, z+1; (iv) x1, y, z; (v) x+1, y1/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds