Download citation
Download citation
link to html
Trirubidium diyttrium triborate contains zigzag chains of corner-sharing [Y2O10] dimers. The chains are reinforced by one independent BO3 group and crosslinked by the other two types of BO3 groups to form a three-dimensional framework. Channels along the [100] direction accommodate the Rb+ cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107054078/fa3116sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107054078/fa3116Isup2.hkl
Contains datablock I

Comment top

Though there are several Li- and Na-containing rare earth borate compounds, including Li6Y(BO3)3 (Tu et al., 1989), LiGd6O5(BO3)3 (Chaminade et al., 1999), Li3Nd2(BO3)3 (Abdullaev & Mamedov, 1977), Li2Yb5O4(BO3)3 (Jubera et al., 2001), Na3Nd(BO3)2 (Mascetti et al.,1981), Na3La2(BO3)3 (Zhang et al., 2001), Na2Gd2O(BO3)2 (Corbel & Leblanc, 1999) and Na3La9O3(BO3)8 (Gravereau et al., 2002), relatively few compounds with late alkali metal elements have been reported. Recently, we have discovered two K-containing rare earth borates, K3Y3(BO3)4 (Gao & Li, 2007a) and K3Y(BO3)2 (Gao & Li, 2007b) in the K2O—Y2O3—B2O3 system. We report here the structure of the title compound, which, to our knowledge, is the first rubidium rare earth borate.

In the structure of Rb3Y2(BO3)3 (Fig. 1), atom Y1 adopts an octahedral coordination with six Y—O bonds in the range 2.169 (6)–2.336 (6) Å (Table 1) and a bond valence sum (BVS) of 3.07 (Brown & Altermatt, 1985). Atom Y2 is coordinated by seven O atoms in a distorted pentagonal bipyramid with five shorter Y—O bonds [ranging from 2.204 (6) to 2.362 (6) Å] and two slightly longer Y—O bonds [2.431 (6) and 2.507 (5) Å], and with a BVS value of 3.12. As shown in Fig. 2(a), the basic structural unit of Rb3Y2(BO3)3 is a [Y2O10] dimer formed by face-sharing of the Y1O6–Y2O7 polyhedra. Such a face-sharing unit can also be found in Na2Gd2O(BO3)2 and K3Y3(BO3)4. The dimers share corners, forming a zigzag chain along the a direction, and the chain is reinforced by the B2O3 group, which uses all its three bonds to join neighbouring dimers (Fig. 2a). Along the b and c directions, these chains are connected to each other via the B1O3 and B3O3 groups, respectively, thereby constructing a three-dimensional framework. Atoms Rb1 and Rb2 are located in the larger channels and the Rb3 atom sits in the smaller channels along the a direction (Fig. 2b). The three Rb atoms are found to coordinate to seven, four and six O atoms (with BVS values of 1.00, 0.67 and 1.19, respectively), if the Rb—O contacts longer than those of Rb to B [Rb···B = 3.114 (9)–3.191 (11) Å] are neglected.

The mean O—B—O bond angles for the BO3 groups are all equal to 120°. The B3O3 group, which connects two Y1O6 octahedra and one Y2O7 pentagonal bipyramid from three different dimers, has a more regular triangular coordination, with a mean B3—O bond length of 1.371 Å [range 1.370 (10)–1.374 (11) Å], whereas the other two BO3 groups both contain two O atoms from single Y2O7 polyhedra and show a more distorted triangular coordination, with B—O bond lengths ranging from 1.354 (12) to 1.408 (12) Å.

Both Li3Nd2(BO3)3 and Na3La2(BO3)3 are closely related to the title compound in stoichiometry, but they differ in structure. They crystallize in the monoclinic space group P21/n and orthorhombic space group Amm2, respectively. In those structures, because of their larger ionic sizes, Nd and La atoms adopt nine-coordinated REO9 (RE is the rare earth element) polyhedra, which are different from those of the title compound. Similar coordination environments for the Y atoms can be found in K3Y3(BO3)4 and K3Y(BO3)2 reported recently by us. In K3Y3(BO3)4, the Y atoms coordinate to seven or eight O atoms and the seven-coordinate YO7 polyhedron, a pentagonal bipyramid, is similar to Y2O7 in Rb3Y2(BO3)3. In K3Y(BO3)2, the Y atoms are coordinated by six O atoms in an octahedron, which is also similar to the Y1O6 polyhedron in Rb3Y2(BO3)3. Considering the Y—O coordination only, it seems that the title compound is in a transition stage between K3Y(BO3)2 and K3Y3(BO3)4, which is also inferred by the ratios of alkali metal to rare earth elements in the chemical formula. This observation reiterates our early findings that the rare earth element tends to possess a more compact (with less oxygen) coordination with smaller size of the rare earth element and higher alkali metal content.

Although the title compound has a noncentrosymmetric structure, second harmonic generation (SHG) tests performed on crushed crystals using Kurtz methods (Kurtz & Perry, 1968) with a 1064 nm laser source failed to show an observable second-harmonic signal at 532 nm. Theoretical calculations based on a group approximation (Chen et al., 1989, 1990) show that the SHG coefficients are d31 = -0.08 pm V-1, d32 = -0.17 pm V-1 and d33 = 0.25 pm V-1, and only the B3O3 group makes a significant contribution (95% to d33 and 58% to d32). Both B1O3 and B2O3 are arranged in such a way that their contributions to the SHG coefficients are cancelled out by equivalent groups oriented in the opposite directions.

Related literature top

For related literature, see: Abdullaev & Mamedov (1977); Brown & Altermatt (1985); Chaminade et al. (1999); Chen et al. (1989, 1990); Gao & Li (2007a, 2007b); Gravereau et al. (2002); Jubera et al. (2001); Kurtz & Perry (1968); Mascetti et al. (1981); Sheldrick (1997); Spek (2003); Tu et al. (1989); Zhang et al. (2001).

Experimental top

A mixture of analytically pure Rb2CO3 (3.80 g, 0.0165 mol), Y2O3 (0.60 g, 0.00266 mol) and H3BO3 (1.20 g, 0.01941 mol) was transferred to an Au crucible. The sample was melted at 1200 K for one day, cooled to 950 K at a rate of 5 K h-1, and then cooled to room temperature in the furnace with power off. Colorless crystals were recovered by washing the content of the crucible with hot water.

Refinement top

Direct phase determination showed the positions of five heavy atoms, which were assigned to three Y and two Rb atoms. Subsequent difference Fourier syntheses revealed the positions of the O atoms. Judging from the distances of heavy atoms to oxygen, the heavy atoms were then assigned as three Rb and two Y atoms. The final difference electron-density map shows a high peak located 0.14 Å from atom Rb3 and a deepest hole located 0.78 Å from atom Y2. The final result was tested using PLATON (Spek, 2003), and no additional symmetry was found. The centrosymmetric space group Pnma was also proposed by XPREP (Sheldrick, 1997); however, structure solution could not proceed further after the Y and Rb atoms were found.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Balls & Sticks (Sung & Ozawa, 2004); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of Rb3Y2(BO3)3. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. (a) A polyhedral representation of the zigzag-like chains of Rb3Y2(BO3)3. (b) A polyhedral representation of the structure of Rb3Y2(BO3)3 along the a direction.
Trirubidium diyttrium triborate top
Crystal data top
Rb3Y2(BO3)3F(000) = 1104
Mr = 610.66Dx = 4.008 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2c -2nCell parameters from 2576 reflections
a = 8.6811 (4) Åθ = 2.1–28.7°
b = 9.5627 (4) ŵ = 25.77 mm1
c = 12.1914 (6) ÅT = 113 K
V = 1012.07 (8) Å3Prism, colorless
Z = 40.24 × 0.21 × 0.20 mm
Data collection top
Rigaku Saturn
diffractometer
2602 independent reflections
Radiation source: rotating anode2338 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.113
Detector resolution: 7.31 pixels mm-1θmax = 28.7°, θmin = 2.7°
ω scansh = 1111
Absorption correction: numerical
(NUMABS; Rigaku, 2005)
k = 1212
Tmin = 0.063, Tmax = 0.079l = 1616
12567 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.013P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max < 0.001
S = 1.00Δρmax = 1.47 e Å3
2602 reflectionsΔρmin = 1.14 e Å3
155 parametersAbsolute structure: Flack (1983), 1238 Friedel pairs
7 restraintsAbsolute structure parameter: 0.013 (15)
Crystal data top
Rb3Y2(BO3)3V = 1012.07 (8) Å3
Mr = 610.66Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.6811 (4) ŵ = 25.77 mm1
b = 9.5627 (4) ÅT = 113 K
c = 12.1914 (6) Å0.24 × 0.21 × 0.20 mm
Data collection top
Rigaku Saturn
diffractometer
2602 independent reflections
Absorption correction: numerical
(NUMABS; Rigaku, 2005)
2338 reflections with I > 2σ(I)
Tmin = 0.063, Tmax = 0.079Rint = 0.113
12567 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0487 restraints
wR(F2) = 0.079Δρmax = 1.47 e Å3
S = 1.00Δρmin = 1.14 e Å3
2602 reflectionsAbsolute structure: Flack (1983), 1238 Friedel pairs
155 parametersAbsolute structure parameter: 0.013 (15)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.09493 (9)0.69553 (8)0.59244 (8)0.0145 (2)
Rb20.29558 (9)0.46888 (8)0.57953 (9)0.0174 (2)
Rb30.35348 (11)0.35789 (9)0.74228 (8)0.0137 (2)
Y10.00906 (12)0.50802 (10)0.33006 (9)0.0117 (2)
Y20.35696 (10)0.38659 (9)0.39782 (7)0.0115 (2)
O10.3796 (7)0.8201 (6)0.4106 (5)0.0126 (14)
O20.4540 (6)0.5876 (6)0.4675 (5)0.0148 (14)
O30.2511 (7)0.6105 (6)0.3409 (5)0.0150 (14)
O40.1737 (7)0.3367 (6)0.2601 (5)0.0118 (14)
O50.0374 (7)0.1205 (6)0.2707 (5)0.0144 (15)
O60.3036 (7)0.1420 (5)0.3343 (5)0.0126 (13)
O70.1200 (6)0.4176 (6)0.4852 (5)0.0128 (14)
O80.0371 (6)0.2269 (5)0.5377 (4)0.0127 (13)
O90.0244 (6)0.4039 (6)0.6678 (5)0.0124 (13)
B10.3637 (12)0.6741 (11)0.4076 (10)0.014 (2)
B20.1695 (13)0.1962 (11)0.2872 (9)0.014 (2)
B30.0371 (10)0.3487 (10)0.5645 (9)0.013 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0192 (5)0.0133 (4)0.0111 (4)0.0009 (3)0.0020 (4)0.0005 (4)
Rb20.0166 (4)0.0150 (4)0.0206 (5)0.0011 (3)0.0042 (5)0.0009 (5)
Rb30.0161 (5)0.0127 (4)0.0123 (5)0.0004 (4)0.0013 (4)0.0003 (4)
Y10.0148 (4)0.0114 (4)0.0088 (4)0.0001 (3)0.0000 (3)0.0001 (3)
Y20.0142 (5)0.0117 (4)0.0085 (4)0.0001 (3)0.0000 (4)0.0003 (4)
O10.018 (4)0.011 (3)0.008 (3)0.001 (3)0.002 (3)0.000 (3)
O20.020 (4)0.009 (3)0.016 (3)0.002 (3)0.011 (3)0.000 (3)
O30.020 (4)0.013 (3)0.012 (4)0.002 (3)0.001 (3)0.001 (3)
O40.019 (4)0.012 (3)0.004 (3)0.003 (3)0.001 (3)0.002 (2)
O50.019 (4)0.011 (3)0.014 (3)0.001 (3)0.007 (3)0.002 (3)
O60.014 (3)0.011 (3)0.012 (3)0.001 (3)0.000 (3)0.000 (3)
O70.015 (3)0.013 (3)0.010 (3)0.004 (3)0.000 (3)0.003 (3)
O80.012 (3)0.018 (3)0.009 (3)0.005 (3)0.004 (2)0.006 (3)
O90.014 (3)0.015 (3)0.009 (3)0.004 (3)0.002 (3)0.001 (3)
B10.012 (6)0.015 (5)0.015 (6)0.000 (4)0.002 (5)0.004 (5)
B20.015 (4)0.019 (4)0.008 (4)0.001 (3)0.007 (3)0.003 (3)
B30.010 (5)0.012 (5)0.017 (6)0.000 (4)0.001 (5)0.001 (4)
Geometric parameters (Å, º) top
Rb1—O2i2.849 (5)Rb3—O6iii3.240 (5)
Rb1—O1i2.904 (6)Rb3—O2viii3.257 (6)
Rb1—O72.970 (6)Y1—O9ix2.169 (6)
Rb1—O92.999 (6)Y1—O1i2.220 (6)
Rb1—O5ii3.023 (6)Y1—O6v2.290 (6)
Rb1—O4ii3.116 (6)Y1—O72.292 (6)
Rb1—O6iii3.119 (7)Y1—O32.323 (6)
Rb1—B2iii3.134 (11)Y1—O42.336 (6)
Rb1—O4iii3.167 (6)Y2—O5vi2.204 (6)
Rb2—O2iv2.807 (5)Y2—O8vi2.221 (5)
Rb2—O8v2.857 (5)Y2—O22.264 (5)
Rb2—O93.043 (6)Y2—O72.335 (5)
Rb2—O4ii3.069 (6)Y2—O42.362 (6)
Rb2—B33.114 (9)Y2—O32.431 (6)
Rb2—O1i3.260 (6)Y2—O62.507 (5)
Rb2—O83.263 (5)O1—B11.404 (12)
Rb2—O6v3.287 (7)O2—B11.354 (12)
Rb2—O3ii3.299 (6)O3—B11.408 (12)
Rb3—O5iii2.706 (6)O4—B21.384 (12)
Rb3—O8vi2.790 (5)O5—B21.371 (12)
Rb3—O3vii2.805 (6)O6—B21.397 (12)
Rb3—O1vii2.904 (6)O7—B31.374 (11)
Rb3—O93.030 (6)O8—B31.370 (10)
Rb3—O9vi3.048 (6)O9—B31.370 (12)
Rb3—B1viii3.191 (11)
O2i—Rb1—O1i49.68 (16)O5iii—Rb3—O8vi105.38 (17)
O2i—Rb1—O7116.58 (16)O5iii—Rb3—O3vii147.24 (18)
O1i—Rb1—O770.42 (16)O8vi—Rb3—O3vii104.39 (16)
O2i—Rb1—O9138.84 (15)O5iii—Rb3—O1vii105.59 (18)
O1i—Rb1—O993.13 (17)O8vi—Rb3—O1vii146.38 (16)
O7—Rb1—O946.99 (15)O3vii—Rb3—O1vii50.70 (16)
O2i—Rb1—O5ii78.31 (18)O5iii—Rb3—O9103.52 (17)
O1i—Rb1—O5ii109.53 (15)O8vi—Rb3—O995.47 (16)
O7—Rb1—O5ii149.90 (16)O3vii—Rb3—O986.88 (16)
O9—Rb1—O5ii104.08 (16)O1vii—Rb3—O964.71 (17)
O2i—Rb1—O4ii95.79 (17)O5iii—Rb3—O9vi129.04 (17)
O1i—Rb1—O4ii90.79 (14)O8vi—Rb3—O9vi47.88 (15)
O7—Rb1—O4ii104.78 (16)O3vii—Rb3—O9vi65.96 (16)
O9—Rb1—O4ii63.54 (16)O1vii—Rb3—O9vi116.57 (16)
O5ii—Rb1—O4ii45.70 (16)O9—Rb3—O9vi119.27 (16)
O2i—Rb1—O6iii138.23 (16)O5iii—Rb3—O6iii47.53 (17)
O1i—Rb1—O6iii153.51 (16)O8vi—Rb3—O6iii134.15 (16)
O7—Rb1—O6iii104.40 (15)O3vii—Rb3—O6iii115.00 (18)
O9—Rb1—O6iii67.40 (15)O1vii—Rb3—O6iii64.32 (15)
O5ii—Rb1—O6iii61.52 (15)O9—Rb3—O6iii65.49 (16)
O4ii—Rb1—O6iii64.87 (15)O9vi—Rb3—O6iii175.21 (16)
O2i—Rb1—B2iii133.1 (2)B1viii—Rb3—O6iii100.7 (2)
O1i—Rb1—B2iii177.1 (2)O5iii—Rb3—O2viii64.14 (15)
O7—Rb1—B2iii106.7 (2)O8vi—Rb3—O2viii128.74 (14)
O9—Rb1—B2iii84.4 (2)O3vii—Rb3—O2viii86.54 (16)
O5ii—Rb1—B2iii72.7 (2)O1vii—Rb3—O2viii77.39 (15)
O4ii—Rb1—B2iii89.5 (2)O9—Rb3—O2viii135.51 (15)
O6iii—Rb1—B2iii25.8 (2)O9vi—Rb3—O2viii97.63 (15)
O2i—Rb1—O4iii107.88 (16)B1viii—Rb3—O2viii24.2 (2)
O1i—Rb1—O4iii157.34 (18)O6iii—Rb3—O2viii77.87 (15)
O7—Rb1—O4iii128.24 (15)O9ix—Y1—O1i92.7 (2)
O9—Rb1—O4iii109.15 (16)O9ix—Y1—O6v99.2 (2)
O5ii—Rb1—O4iii61.90 (15)O1i—Y1—O6v93.4 (2)
O4ii—Rb1—O4iii95.37 (17)O9ix—Y1—O7162.78 (19)
O6iii—Rb1—O4iii44.02 (15)O1i—Y1—O797.3 (2)
O2iv—Rb2—O8v67.03 (15)O6v—Y1—O794.1 (2)
O2iv—Rb2—O9164.07 (17)O9ix—Y1—O390.5 (2)
O8v—Rb2—O9126.81 (16)O1i—Y1—O396.9 (2)
O2iv—Rb2—O4ii111.76 (16)O6v—Y1—O3165.5 (2)
O8v—Rb2—O4ii141.08 (15)O7—Y1—O374.5 (2)
O9—Rb2—O4ii63.61 (16)O9ix—Y1—O491.2 (2)
O2iv—Rb2—O1i78.68 (17)O1i—Y1—O4172.2 (2)
O8v—Rb2—O1i129.43 (16)O6v—Y1—O492.6 (2)
O9—Rb2—O1i85.65 (15)O7—Y1—O477.3 (2)
O4ii—Rb2—O1i85.26 (14)O3—Y1—O476.3 (2)
B3—Rb2—O1i76.0 (2)O5vi—Y2—O8vi103.3 (2)
O2iv—Rb2—O8138.01 (16)O5vi—Y2—O291.5 (2)
O8v—Rb2—O890.69 (4)O8vi—Y2—O288.4 (2)
O9—Rb2—O844.18 (14)O5vi—Y2—O7161.9 (2)
O4ii—Rb2—O8107.74 (15)O8vi—Y2—O794.40 (19)
B3—Rb2—O824.67 (18)O2—Y2—O792.8 (2)
O1i—Rb2—O891.11 (14)O5vi—Y2—O488.4 (2)
O2iv—Rb2—O6v83.74 (16)O8vi—Y2—O4136.6 (2)
O8v—Rb2—O6v79.53 (14)O2—Y2—O4133.6 (2)
O9—Rb2—O6v90.97 (15)O7—Y2—O475.9 (2)
O4ii—Rb2—O6v139.25 (14)O5vi—Y2—O395.5 (2)
B3—Rb2—O6v65.5 (2)O8vi—Y2—O3143.7 (2)
O1i—Rb2—O6v60.19 (14)O2—Y2—O360.0 (2)
O8—Rb2—O6v56.56 (13)O7—Y2—O371.7 (2)
O2iv—Rb2—O3ii130.81 (17)O4—Y2—O373.8 (2)
O8v—Rb2—O3ii96.17 (15)O5vi—Y2—O683.4 (2)
O9—Rb2—O3ii60.30 (15)O8vi—Y2—O681.8 (2)
O4ii—Rb2—O3ii53.58 (15)O2—Y2—O6167.63 (19)
B3—Rb2—O3ii82.1 (2)O7—Y2—O695.5 (2)
O1i—Rb2—O3ii134.30 (15)O4—Y2—O657.8 (2)
O8—Rb2—O3ii84.69 (14)O3—Y2—O6131.6 (2)
O6v—Rb2—O3ii140.70 (14)O2—B1—O1122.5 (9)
O2iv—Rb2—O5x71.81 (16)O2—B1—O3116.7 (8)
O8v—Rb2—O5x87.11 (14)O1—B1—O3120.8 (9)
O9—Rb2—O5x113.67 (15)O5—B2—O4120.0 (9)
O4ii—Rb2—O5x58.09 (15)O5—B2—O6124.1 (9)
B3—Rb2—O5x139.3 (2)O4—B2—O6115.8 (9)
O1i—Rb2—O5x116.74 (14)O8—B3—O9120.6 (8)
O8—Rb2—O5x145.15 (14)O8—B3—O7119.1 (9)
O6v—Rb2—O5x155.23 (14)O9—B3—O7120.3 (8)
O3ii—Rb2—O5x61.05 (14)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1, y, z; (v) x1/2, y+1/2, z; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y1/2, z+1/2; (viii) x+1, y+1, z+1/2; (ix) x, y+1, z1/2; (x) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaRb3Y2(BO3)3
Mr610.66
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)113
a, b, c (Å)8.6811 (4), 9.5627 (4), 12.1914 (6)
V3)1012.07 (8)
Z4
Radiation typeMo Kα
µ (mm1)25.77
Crystal size (mm)0.24 × 0.21 × 0.20
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionNumerical
(NUMABS; Rigaku, 2005)
Tmin, Tmax0.063, 0.079
No. of measured, independent and
observed [I > 2σ(I)] reflections
12567, 2602, 2338
Rint0.113
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.079, 1.00
No. of reflections2602
No. of parameters155
No. of restraints7
Δρmax, Δρmin (e Å3)1.47, 1.14
Absolute structureFlack (1983), 1238 Friedel pairs
Absolute structure parameter0.013 (15)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and Balls & Sticks (Sung & Ozawa, 2004), publCIF (Westrip, 2007).

Selected geometric parameters (Å, º) top
Rb1—O2i2.849 (5)Y1—O72.292 (6)
Rb1—O1i2.904 (6)Y1—O32.323 (6)
Rb1—O72.970 (6)Y1—O42.336 (6)
Rb1—O92.999 (6)Y2—O5vi2.204 (6)
Rb1—O5ii3.023 (6)Y2—O8vi2.221 (5)
Rb1—O4ii3.116 (6)Y2—O22.264 (5)
Rb1—O6iii3.119 (7)Y2—O72.335 (5)
Rb2—O2iv2.807 (5)Y2—O42.362 (6)
Rb2—O8v2.857 (5)Y2—O32.431 (6)
Rb2—O93.043 (6)Y2—O62.507 (5)
Rb2—O4ii3.069 (6)O1—B11.404 (12)
Rb3—O5iii2.706 (6)O2—B11.354 (12)
Rb3—O8vi2.790 (5)O3—B11.408 (12)
Rb3—O3vii2.805 (6)O4—B21.384 (12)
Rb3—O1vii2.904 (6)O5—B21.371 (12)
Rb3—O93.030 (6)O6—B21.397 (12)
Rb3—O9vi3.048 (6)O7—B31.374 (11)
Y1—O9viii2.169 (6)O8—B31.370 (10)
Y1—O1i2.220 (6)O9—B31.370 (12)
Y1—O6v2.290 (6)
O2—B1—O1122.5 (9)O4—B2—O6115.8 (9)
O2—B1—O3116.7 (8)O8—B3—O9120.6 (8)
O1—B1—O3120.8 (9)O8—B3—O7119.1 (9)
O5—B2—O4120.0 (9)O9—B3—O7120.3 (8)
O5—B2—O6124.1 (9)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1, y, z; (v) x1/2, y+1/2, z; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y1/2, z+1/2; (viii) x, y+1, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds