Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two polymorphic forms of a mixed zinc/copper biquinoline dihydrogenphosphate are presented, showing almost identical monomeric units, viz. (2,2′-biquinoline-κ2N,N′)bis­(di­hydrogen­phos­phato-κO)copper(II)/zinc(II), formulated as [ZnxCu1−x(H2PO4)2(C18H12N2)], with x = 0.88 (1) and 0.90 (2). The cation is tetra­hedrally coordinated to a chelating biquinoline system and two diprotonated phosphate anions. The structures differ mainly in their inter­molecular hydrogen-bonding inter­actions, leading to different packing schemes. No significant evidence of stress due to the Zn/Cu solid solution formation was detected.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107020033/fa3081sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107020033/fa3081Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107020033/fa3081IIsup3.hkl
Contains datablock II

CCDC references: 652490; 652491

Comment top

The synthesis of hybrid organic–inorganic open-framework materials has been a subject of intense research owing to their interesting structural chemistry and potential applications in such different areas as ion exchange, adsorption and catalysis, the search for new physical properties etc. (Hagrman et al., 1999; Férey, 2001; Eddaoudi et al., 2001; Davis, 2002). A particular and effective method to obtain these compounds is hydrothermal synthesis, as the generation of a product by a chemical reaction in a sealed, heated solution above ambient pressure is usually referred to. The mechanisms involved are not fully understood yet, but the ability of the process to generate novel products unattainable otherwise is well known, and the products can possess peculiar characteristics regarding, for instance, binding affinity (Feng & Xu, 2001; Moghimi et al., 2003; Walton, 2002). The present report on two polymorphic forms of a mononuclear biquinoline dihydrogenphosphate obtained from a reaction between zinc, copper, phosphate and biquinoline might serve as an example of such capability. A search in the January 2007 release of the Cambridge Structural Database (CSD; Allen, 2002) revealed that the few reported zinc or copper phosphates that include chelating dinitrogenated bases in their structures are poly-, oligo- or at least dimeric entities; no mononuclear zinc or copper phosphate including bipyridine, phenathroline, biquinoline etc. seems to have been structurally characterized, and the present compound [zinc/copper biquinoline dihydrogenphosphate, ZnxCu1 - x(biq)(H2PO4)2; biq is biquinoline] appears to be the first reported occurrence of such a structure. The title compound was obtained serendipitously as a by-product of a hydrothermal synthesis (see details in the Experimental section) in the form of two different polymorphic varieties, viz. a triclinic form (I), space group P1, x = 0.88 (1), and a monoclinic form (II), space group P21/n, x = 0.90 (2).

Fig. 1 shows that the two forms are structurally very similar, with the mixed cation chelated by a biquinoline unit through its two N atoms, and two monocoordinated dihydrogenphosphates completing the distorted tetrahedral environment. No meaningful differences regarding coordination distances and angles exist between the two polyhedra (see Tables 1 and 4 and Fig. 2 for a direct comparison), nor is there any significant evidence of structural stress due to solid solution formation, short of a minor transverse elongation of the displacement ellipsoids of the bound phosphate O atoms, which might represent a slight positional disorder.

However, and in spite of their similarities, polymorph (I) appears slightly more strained than (II), as suggested by a comparison of the dihedral angles between the N/Zn/N and the O/Zn/O coordination planes, that in (I) being significantly larger [98.7 (1) versus 91.8 (1)°]. The same applies for the angles between the lateral wings of the biquinoline ligand [8.7 (1) versus 1.2 (1)°].

The dihydrogenphosphate anions coordinate through one of their unprotonated O atoms, the remaining one being the acceptor of an intramolecular hydrogen bond linking both dihydrogenphosphate groups into a single unit. The interaction of this O atom seems to be strong enough to partially weaken its bond to the P atom. In fact, and contrary to what would be expected, the POuncoord distances are slightly longer than the P—Ocoord bonds in all four independent units, and even though these differences are rather small in terms of the individual s.u. values, the fact that all four behave in the same way seems to give this behaviour some significance. On the other hand, this fact does not appear to be unusual; a search of the CSD showed some 50 cases of singly coordinated phosphates, in half of which a similar situation arises.

The P—OH distances lie in a narrow range, as do the PO distances, and the P—OH and PO bonds have well differentiated values in both structures, with means of 1.546 (7) and 1.495 (7) Å for (I), and 1.541 (16) and 1.492 (6) Å for (II). There is a subtle difference between the polymorphs, however, which is influential because of its effects upon the otherwise very similar packing schemes; this difference is the rotation of the phosphate groups around the P1—O1 and P2—O5 axes, in opposite directions, as a result of the restraint imposed by the very strong intramolecular hydrogen bond (O3—H3P···O6) linking the two phosphate groups. This relative rotation, as measured by the differences in the relevant torsion angles (Zn1—O1—P1—O3 and Zn1—O5—P2—O6), is 52 (1) and 5 (1)° for the P1 and P2 phosphate groups, respectively, and its main consequence is the different orientation in space of the remaining three Hphosphate atoms prone to intermolecular hydreogen bonding, which in both structures determines the formation of two-dimensional structures parallel to (010). The first interactions listed in Tables 2 and 5 consist of intramolecular hydrogen bonds (see Fig. 1); the following two define chains that run along [-101], in turn connected (roughly along [101]) via the fourth interaction. Figs. 3 and 4 show a simplified view of these two-dimensional structures The diverse phosphate orientations can be seen reflected in the size of the `holes' built up around the symmetry centres at (0, 1/2, 1), (1/2, 1/2, 1/2) and (1, 1/2, 0), labelled as A and B, respectively, in Figs. 3 and 4; those in (I) are large and even, while those in (II) alternate in size along the [101] direction.

In the two-dimensional structures, the biquinoline groups (schematized in Figs. 3 and 4) protrude outwards at both sides, in such a way as to interdigitate when the planes sack along b. The interaction between adjacent planes is achieved through ππ contacts involving aromatic rings in neighbouring biquinoline groups, the main interactions being summarized in Tables 3 and 6.

Related literature top

For related literature, see: Allen (2002); Davis (2002); Eddaoudi et al. (2001); Férey (2001); Feng & Xu (2001); Hagrman et al. (1999); Moghimi et al. (2003); Walton (2002).

Experimental top

The original scope of the synthesis was to obtain a hybrid organic–inorganic compound, that is, one with an inorganic structure as a host (···-P—O—V-···) and a metal–biquinoline complex as a guest (Feng & Xu, 2001). In the process of adjusting the hydrothermal conditions the mixed zinc/copper complex reported here was obtained serendipitously. For the synthesis, a mixture of Cu(NO3)2·3H2O (0.5 mmol), V2O5 (0.25 mmol), 2,2-biquinoline (1.0 mmol), H3PO4 (5 ml, 0.0087 mmol) and Zn (0.5 mmol) was sealed in a Teflon-lined acid digestion bomb, heated at 393 K for 6 d under autogenous pressure and then cooled slowly at 20 K h-1 to room temperature. The resulting solid product consisted of a mixture of orange crystals pertaining to both polymorphs, which could be clearly distinguished because of their different crystal shapes. A combination of UV–vis spectroscopy and EDAX analysis confirmed the existence of mixed cationic sites with similar occupancies in both polymorphs [polymorph (I) Zn0.88Cu0.12 and polymorph (II) Zn0.90Cu0.10].

Refinement top

H atoms in the organic ligand were placed at calculated positions (C—H = 0.93 Å) and allowed to ride. Those in the dihydrogenphosphate groups were found in a difference Fourier synthesis and refined with restrained O—H distances of 0.82 (2) Å. All H atoms were assigned a Uiso(H) values of 1.2Ueq(host). Owing to the impossibility of differentiating Zn from Cu through refinement methods, the occupancies of the mixed cationic sites were taken as the average result coming out of the compositional analysis (UV–vis spectroscopy and EDAX), which gave x = 0.88 (5) for (I) and x = 0.90 (4) for (II), values which were kept fixed during refinement.

Computing details top

For both compounds, data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2000); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Sheldrick, 2000); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2000) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structures showing the numbering scheme used. The cation has been labelled according to the major component in the mixture. Displacement ellipsoids are shown at the 40% level. (a) Polimorph (I); (b) polymorph (II).
[Figure 2] Fig. 2. A superposition diagram of the two molecules, showing the coordination polyhedra to be almost identical. In full lines, structure (I); in broken lines, structure (II).
[Figure 3] Fig. 3. : A view of the packing of (I), showing the hydrogen-bonding pattern in one of the sheets. Non-intervening biquinoline units have been idealized by their N1—C9—C10—N2 loop.
[Figure 4] Fig. 4. : A view of the packing of (II), showing the hydrogen-bonding pattern in one of the sheets. Non-intervening biquinoline units have been idealized by their N1—C9—C10—N2 loop.
(I) (2,2'-biquinoline-κ2N,N')bis(dihydrogenphosphato-κO)copper(II)/zinc(II) (0.88/0.12) top
Crystal data top
[Zn0.88Cu0.12(H2PO4)2(C18H12N2)]Z = 2
Mr = 515.42F(000) = 523.8
Triclinic, P1Dx = 1.761 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8089 (12) ÅCell parameters from 4467 reflections
b = 10.5225 (17) Åθ = 3.7–25.1°
c = 12.3618 (19) ŵ = 1.46 mm1
α = 91.787 (2)°T = 298 K
β = 91.722 (2)°Blocks, orange
γ = 106.632 (3)°0.26 × 0.12 × 0.08 mm
V = 972.0 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4216 independent reflections
Radiation source: fine-focus sealed tube3529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 28.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 109
Tmin = 0.79, Tmax = 0.89k = 1313
7214 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.642P]
where P = (Fo2 + 2Fc2)/3
4216 reflections(Δ/σ)max = 0.009
292 parametersΔρmax = 0.68 e Å3
4 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Zn0.88Cu0.12(H2PO4)2(C18H12N2)]γ = 106.632 (3)°
Mr = 515.42V = 972.0 (3) Å3
Triclinic, P1Z = 2
a = 7.8089 (12) ÅMo Kα radiation
b = 10.5225 (17) ŵ = 1.46 mm1
c = 12.3618 (19) ÅT = 298 K
α = 91.787 (2)°0.26 × 0.12 × 0.08 mm
β = 91.722 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4216 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3529 reflections with I > 2σ(I)
Tmin = 0.79, Tmax = 0.89Rint = 0.025
7214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0574 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.68 e Å3
4216 reflectionsΔρmin = 0.38 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.46617 (5)0.77449 (3)0.27694 (3)0.03122 (10)0.88
Cu10.46617 (5)0.77449 (3)0.27694 (3)0.03122 (10)0.12
P10.14005 (11)0.52919 (8)0.35059 (7)0.02984 (19)
P20.60503 (11)0.55989 (8)0.16354 (7)0.0330 (2)
O10.2544 (4)0.6637 (3)0.3266 (3)0.0650 (9)
O20.0510 (3)0.5230 (2)0.36773 (18)0.0390 (6)
O30.1484 (3)0.4287 (2)0.2576 (2)0.0443 (7)
H3P0.240 (3)0.458 (4)0.224 (2)0.053*
O40.2181 (3)0.4792 (3)0.4517 (2)0.0571 (8)
H4P0.164 (4)0.481 (4)0.5083 (19)0.069*
O50.6316 (4)0.6855 (3)0.2305 (3)0.0671 (9)
O60.4151 (3)0.4854 (3)0.13092 (19)0.0426 (6)
O70.7153 (4)0.5987 (4)0.0621 (2)0.0735 (11)
H7P0.664 (5)0.569 (5)0.002 (2)0.088*
O80.6866 (4)0.4649 (2)0.2257 (2)0.0547 (8)
H8P0.768 (3)0.501 (4)0.271 (2)0.066*
N10.4098 (3)0.9084 (2)0.1772 (2)0.0290 (6)
N20.5996 (3)0.9419 (2)0.3623 (2)0.0279 (6)
C10.2997 (4)0.8804 (3)0.0857 (3)0.0303 (7)
C20.2188 (5)0.7476 (3)0.0512 (3)0.0389 (9)
H20.23860.67890.09060.047*
C30.1114 (5)0.7203 (4)0.0400 (3)0.0428 (9)
H30.05870.63250.06340.051*
C40.0789 (5)0.8228 (4)0.0993 (3)0.0432 (9)
H40.00470.80250.16150.052*
C50.1548 (5)0.9516 (4)0.0668 (3)0.0394 (8)
H50.13191.01870.10680.047*
C60.2676 (4)0.9844 (3)0.0267 (3)0.0332 (8)
C70.3508 (4)1.1158 (3)0.0647 (3)0.0358 (8)
H70.33101.18610.02750.043*
C80.4592 (4)1.1406 (3)0.1550 (3)0.0338 (8)
H80.51361.22740.18030.041*
C90.4887 (4)1.0328 (3)0.2101 (2)0.0268 (7)
C100.6037 (4)1.0530 (3)0.3113 (2)0.0289 (7)
C110.7073 (5)1.1776 (3)0.3504 (3)0.0342 (8)
H110.71121.25290.31190.041*
C120.8028 (4)1.1876 (3)0.4457 (3)0.0349 (8)
H120.87311.27030.47240.042*
C130.7961 (4)1.0742 (3)0.5041 (3)0.0299 (7)
C140.8882 (4)1.0785 (4)0.6058 (3)0.0387 (8)
H140.95651.15940.63700.046*
C150.8765 (5)0.9656 (4)0.6567 (3)0.0428 (9)
H150.93680.96930.72330.051*
C160.7747 (5)0.8414 (4)0.6113 (3)0.0431 (9)
H160.76890.76450.64790.052*
C170.6852 (5)0.8336 (3)0.5144 (3)0.0362 (8)
H170.61860.75150.48450.043*
C180.6931 (4)0.9498 (3)0.4592 (3)0.0306 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0376 (2)0.01878 (17)0.0348 (2)0.00407 (15)0.00184 (16)0.00067 (14)
Cu10.0376 (2)0.01878 (17)0.0348 (2)0.00407 (15)0.00184 (16)0.00067 (14)
P10.0331 (4)0.0246 (4)0.0290 (4)0.0032 (3)0.0069 (3)0.0008 (3)
P20.0344 (4)0.0294 (4)0.0362 (4)0.0114 (3)0.0005 (4)0.0020 (3)
O10.0725 (17)0.0282 (13)0.088 (2)0.0006 (13)0.0463 (16)0.0014 (13)
O20.0366 (12)0.0513 (14)0.0304 (11)0.0141 (11)0.0031 (10)0.0068 (10)
O30.0474 (14)0.0360 (13)0.0408 (13)0.0019 (11)0.0143 (11)0.0104 (11)
O40.0470 (13)0.102 (2)0.0338 (13)0.0386 (14)0.0060 (11)0.0071 (14)
O50.0533 (15)0.0484 (15)0.104 (2)0.0269 (12)0.0166 (16)0.0342 (15)
O60.0345 (12)0.0568 (15)0.0338 (12)0.0093 (11)0.0032 (10)0.0062 (11)
O70.0463 (16)0.110 (3)0.0424 (16)0.0131 (17)0.0022 (13)0.0121 (17)
O80.0660 (17)0.0316 (13)0.0625 (17)0.0108 (12)0.0282 (14)0.0007 (12)
N10.0333 (13)0.0232 (12)0.0289 (13)0.0055 (11)0.0017 (11)0.0011 (10)
N20.0320 (13)0.0222 (12)0.0293 (13)0.0075 (10)0.0022 (11)0.0006 (10)
C10.0289 (14)0.0327 (16)0.0288 (15)0.0084 (13)0.0026 (13)0.0001 (13)
C20.0475 (19)0.0272 (16)0.0371 (18)0.0030 (15)0.0003 (16)0.0029 (14)
C30.0406 (19)0.0380 (19)0.0425 (19)0.0010 (16)0.0028 (16)0.0075 (16)
C40.0379 (18)0.055 (2)0.0361 (18)0.0139 (16)0.0074 (15)0.0029 (16)
C50.0393 (17)0.0454 (19)0.0354 (18)0.0154 (15)0.0036 (15)0.0043 (15)
C60.0327 (15)0.0356 (17)0.0319 (16)0.0103 (14)0.0060 (13)0.0019 (13)
C70.0417 (17)0.0291 (15)0.0410 (18)0.0165 (14)0.0044 (15)0.0067 (14)
C80.0434 (17)0.0229 (15)0.0352 (17)0.0093 (13)0.0037 (14)0.0027 (13)
C90.0312 (14)0.0229 (14)0.0258 (14)0.0066 (12)0.0043 (12)0.0003 (11)
C100.0326 (15)0.0254 (14)0.0292 (15)0.0083 (12)0.0081 (13)0.0006 (12)
C110.0456 (18)0.0226 (15)0.0327 (16)0.0072 (14)0.0023 (14)0.0005 (12)
C120.0380 (17)0.0244 (15)0.0394 (18)0.0041 (13)0.0063 (15)0.0038 (13)
C130.0321 (15)0.0281 (15)0.0292 (15)0.0081 (13)0.0049 (13)0.0042 (12)
C140.0349 (16)0.0407 (18)0.0404 (19)0.0122 (15)0.0011 (15)0.0087 (15)
C150.0407 (17)0.055 (2)0.0377 (19)0.0230 (16)0.0042 (15)0.0005 (16)
C160.0485 (19)0.0427 (19)0.044 (2)0.0217 (16)0.0058 (17)0.0111 (16)
C170.0410 (17)0.0282 (16)0.0404 (18)0.0110 (14)0.0017 (15)0.0042 (14)
C180.0278 (14)0.0305 (16)0.0341 (16)0.0094 (13)0.0057 (13)0.0004 (13)
Geometric parameters (Å, º) top
Zn1—O11.863 (3)C4—C51.357 (5)
Zn1—O51.892 (3)C4—H40.9300
Zn1—N22.017 (2)C5—C61.404 (5)
Zn1—N12.033 (3)C5—H50.9300
P1—O11.486 (3)C6—C71.408 (5)
P1—O21.496 (2)C7—C81.352 (5)
P1—O41.546 (3)C7—H70.9300
P1—O31.553 (2)C8—C91.412 (4)
P2—O51.496 (3)C8—H80.9300
P2—O61.502 (2)C9—C101.490 (4)
P2—O71.542 (3)C10—C111.392 (4)
P2—O81.542 (3)C11—C121.360 (5)
O3—H3P0.82 (3)C11—H110.9300
O4—H4P0.83 (3)C12—C131.402 (5)
O7—H7P0.84 (3)C12—H120.9300
O8—H8P0.83 (3)C13—C181.412 (4)
N1—C91.322 (4)C13—C141.423 (5)
N1—C11.371 (4)C14—C151.344 (5)
N2—C101.339 (4)C14—H140.9300
N2—C181.372 (4)C15—C161.409 (5)
C1—C21.405 (4)C15—H150.9300
C1—C61.410 (5)C16—C171.357 (5)
C2—C31.357 (5)C16—H160.9300
C2—H20.9300C17—C181.405 (5)
C3—C41.400 (5)C17—H170.9300
C3—H30.9300
O1—Zn1—O5114.53 (13)C4—C5—C6120.6 (3)
O1—Zn1—N2120.53 (11)C4—C5—H5119.7
O5—Zn1—N2108.98 (11)C6—C5—H5119.7
O1—Zn1—N1109.71 (13)C5—C6—C7123.5 (3)
O5—Zn1—N1117.75 (13)C5—C6—C1118.4 (3)
N2—Zn1—N181.62 (10)C7—C6—C1118.2 (3)
O1—P1—O2113.76 (16)C8—C7—C6120.5 (3)
O1—P1—O4109.63 (18)C8—C7—H7119.8
O2—P1—O4109.32 (14)C6—C7—H7119.8
O1—P1—O3109.80 (15)C7—C8—C9119.0 (3)
O2—P1—O3109.34 (14)C7—C8—H8120.5
O4—P1—O3104.59 (16)C9—C8—H8120.5
O5—P2—O6116.24 (16)N1—C9—C8121.7 (3)
O5—P2—O7106.2 (2)N1—C9—C10116.5 (3)
O6—P2—O7110.10 (15)C8—C9—C10121.8 (3)
O5—P2—O8109.25 (17)N2—C10—C11122.2 (3)
O6—P2—O8107.69 (15)N2—C10—C9114.9 (3)
O7—P2—O8107.0 (2)C11—C10—C9122.9 (3)
P1—O1—Zn1150.5 (2)C12—C11—C10119.0 (3)
P1—O3—H3P110 (3)C12—C11—H11120.5
P1—O4—H4P116 (3)C10—C11—H11120.5
P2—O5—Zn1131.04 (18)C11—C12—C13120.5 (3)
P2—O7—H7P117 (3)C11—C12—H12119.7
P2—O8—H8P116 (3)C13—C12—H12119.7
C9—N1—C1120.6 (3)C12—C13—C18118.2 (3)
C9—N1—Zn1112.9 (2)C12—C13—C14123.3 (3)
C1—N1—Zn1126.5 (2)C18—C13—C14118.5 (3)
C10—N2—C18119.7 (3)C15—C14—C13119.9 (3)
C10—N2—Zn1113.5 (2)C15—C14—H14120.0
C18—N2—Zn1126.6 (2)C13—C14—H14120.0
N1—C1—C2119.7 (3)C14—C15—C16121.4 (3)
N1—C1—C6120.1 (3)C14—C15—H15119.3
C2—C1—C6120.2 (3)C16—C15—H15119.3
C3—C2—C1119.5 (3)C17—C16—C15120.3 (3)
C3—C2—H2120.2C17—C16—H16119.9
C1—C2—H2120.2C15—C16—H16119.9
C2—C3—C4120.8 (3)C16—C17—C18119.9 (3)
C2—C3—H3119.6C16—C17—H17120.0
C4—C3—H3119.6C18—C17—H17120.0
C5—C4—C3120.6 (3)N2—C18—C17119.8 (3)
C5—C4—H4119.7N2—C18—C13120.2 (3)
C3—C4—H4119.7C17—C18—C13120.0 (3)
O2—P1—O1—Zn1165.1 (4)C2—C1—C6—C7179.6 (3)
O4—P1—O1—Zn172.2 (5)C5—C6—C7—C8179.4 (3)
O3—P1—O1—Zn142.2 (5)C1—C6—C7—C80.4 (5)
O5—Zn1—O1—P10.4 (5)C6—C7—C8—C90.4 (5)
N2—Zn1—O1—P1132.8 (4)C1—N1—C9—C81.8 (5)
N1—Zn1—O1—P1135.4 (4)Zn1—N1—C9—C8176.7 (2)
O6—P2—O5—Zn13.7 (4)C1—N1—C9—C10179.2 (3)
O7—P2—O5—Zn1119.2 (3)Zn1—N1—C9—C100.6 (3)
O8—P2—O5—Zn1125.7 (3)C7—C8—C9—N11.6 (5)
O1—Zn1—O5—P243.0 (3)C7—C8—C9—C10178.8 (3)
N2—Zn1—O5—P2178.6 (3)C18—N2—C10—C113.2 (5)
N1—Zn1—O5—P288.2 (3)Zn1—N2—C10—C11171.9 (3)
O1—Zn1—N1—C9122.5 (2)C18—N2—C10—C9176.5 (3)
O5—Zn1—N1—C9104.2 (2)Zn1—N2—C10—C98.3 (3)
N2—Zn1—N1—C92.9 (2)N1—C9—C10—N26.1 (4)
O1—Zn1—N1—C156.0 (3)C8—C9—C10—N2171.3 (3)
O5—Zn1—N1—C177.4 (3)N1—C9—C10—C11174.2 (3)
N2—Zn1—N1—C1175.5 (3)C8—C9—C10—C118.5 (5)
O1—Zn1—N2—C10114.3 (2)N2—C10—C11—C122.4 (5)
O5—Zn1—N2—C10110.3 (2)C9—C10—C11—C12177.3 (3)
N1—Zn1—N2—C106.3 (2)C10—C11—C12—C130.4 (5)
O1—Zn1—N2—C1871.0 (3)C11—C12—C13—C182.3 (5)
O5—Zn1—N2—C1864.5 (3)C11—C12—C13—C14177.9 (3)
N1—Zn1—N2—C18178.9 (3)C12—C13—C14—C15179.5 (3)
C9—N1—C1—C2179.2 (3)C18—C13—C14—C150.3 (5)
Zn1—N1—C1—C22.4 (4)C13—C14—C15—C160.2 (5)
C9—N1—C1—C60.9 (5)C14—C15—C16—C170.2 (6)
Zn1—N1—C1—C6177.4 (2)C15—C16—C17—C180.3 (5)
N1—C1—C2—C3179.3 (3)C10—N2—C18—C17178.3 (3)
C6—C1—C2—C30.8 (5)Zn1—N2—C18—C177.3 (4)
C1—C2—C3—C40.7 (6)C10—N2—C18—C131.3 (4)
C2—C3—C4—C50.2 (6)Zn1—N2—C18—C13173.2 (2)
C3—C4—C5—C60.2 (6)C16—C17—C18—N2178.7 (3)
C4—C5—C6—C7179.9 (3)C16—C17—C18—C130.8 (5)
C4—C5—C6—C10.0 (5)C12—C13—C18—N21.5 (5)
N1—C1—C6—C5179.7 (3)C14—C13—C18—N2178.7 (3)
C2—C1—C6—C50.5 (5)C12—C13—C18—C17179.0 (3)
N1—C1—C6—C70.2 (5)C14—C13—C18—C170.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3P···O60.82 (3)1.78 (2)2.586 (3)166 (4)
O4—H4P···O2i0.83 (3)1.79 (2)2.616 (3)177 (5)
O7—H7P···O6ii0.84 (3)1.75 (2)2.592 (4)173 (4)
O8—H8P···O2iii0.83 (3)1.78 (2)2.580 (3)161 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z.
(II) (2,2'-biquinoline-κ2N,N')bis(dihydrogenphosphato-κO)copper(II)/zinc(II) (0.90/0.10) top
Crystal data top
[Zn0.90Cu0.10(H2PO4)2(C18H12N2)]F(000) = 1047.6
Mr = 515.46Dx = 1.746 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6270 reflections
a = 9.3801 (12) Åθ = 3.1–24.9°
b = 20.528 (3) ŵ = 1.46 mm1
c = 10.2991 (13) ÅT = 295 K
β = 98.791 (2)°Blocks, orange
V = 1959.8 (5) Å30.20 × 0.12 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4435 independent reflections
Radiation source: fine-focus sealed tube3060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
phi and ω scansθmax = 28.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1112
Tmin = 0.79, Tmax = 0.84k = 2627
16359 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0413P)2]
where P = (Fo2 + 2Fc2)/3
4435 reflections(Δ/σ)max = 0.006
292 parametersΔρmax = 0.75 e Å3
4 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Zn0.90Cu0.10(H2PO4)2(C18H12N2)]V = 1959.8 (5) Å3
Mr = 515.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3801 (12) ŵ = 1.46 mm1
b = 20.528 (3) ÅT = 295 K
c = 10.2991 (13) Å0.20 × 0.12 × 0.12 mm
β = 98.791 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4435 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3060 reflections with I > 2σ(I)
Tmin = 0.79, Tmax = 0.84Rint = 0.059
16359 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0594 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.75 e Å3
4435 reflectionsΔρmin = 0.39 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.68190 (5)0.13937 (2)0.65242 (4)0.03173 (15)0.90
Cu10.68190 (5)0.13937 (2)0.65242 (4)0.03173 (15)0.10
P10.62641 (12)0.02148 (5)0.84848 (11)0.0335 (3)
P20.78519 (11)0.03656 (5)0.47032 (10)0.0320 (3)
O10.6235 (3)0.08581 (13)0.7814 (3)0.0506 (8)
O20.4842 (3)0.01266 (14)0.8310 (3)0.0476 (8)
O30.7432 (4)0.02209 (15)0.8014 (3)0.0574 (9)
H3P0.764 (5)0.017 (2)0.727 (3)0.069*
O40.6827 (3)0.03057 (17)0.9967 (3)0.0543 (9)
H4P0.625 (4)0.027 (2)1.051 (4)0.065*
O50.7056 (4)0.09718 (14)0.4936 (3)0.0575 (9)
O60.8554 (3)0.00194 (13)0.5915 (2)0.0393 (7)
O70.6823 (4)0.01171 (16)0.3919 (3)0.0602 (9)
H7P0.637 (5)0.004 (2)0.323 (3)0.072*
O80.8967 (3)0.05749 (18)0.3825 (3)0.0663 (11)
H8P0.980 (3)0.041 (2)0.393 (5)0.080*
N10.5628 (3)0.22109 (14)0.6213 (3)0.0289 (7)
N20.8395 (3)0.20542 (15)0.7119 (3)0.0308 (7)
C10.4181 (4)0.22440 (18)0.5749 (4)0.0313 (9)
C20.3402 (4)0.1664 (2)0.5457 (4)0.0383 (10)
H2A0.38630.12630.55930.046*
C30.1970 (5)0.1692 (2)0.4973 (4)0.0460 (11)
H3A0.14490.13090.47820.055*
C40.1284 (5)0.2293 (2)0.4763 (4)0.0489 (12)
H4A0.03060.23040.44260.059*
C50.1998 (5)0.2858 (2)0.5036 (4)0.0462 (11)
H5A0.15160.32530.48840.055*
C60.3482 (4)0.28484 (19)0.5555 (4)0.0345 (10)
C70.4307 (5)0.3412 (2)0.5874 (4)0.0424 (11)
H7A0.38710.38190.57660.051*
C80.5735 (5)0.3368 (2)0.6339 (4)0.0400 (10)
H8A0.62810.37420.65530.048*
C90.6375 (4)0.27542 (18)0.6491 (4)0.0319 (9)
C100.7945 (4)0.26645 (19)0.6962 (4)0.0313 (9)
C110.8894 (5)0.3192 (2)0.7248 (4)0.0409 (11)
H11A0.85620.36170.71150.049*
C121.0289 (5)0.3075 (2)0.7717 (4)0.0465 (11)
H12A1.09260.34220.79030.056*
C131.0791 (5)0.2436 (2)0.7929 (4)0.0422 (11)
C141.2230 (5)0.2276 (3)0.8441 (4)0.0549 (13)
H14A1.28960.26080.86750.066*
C151.2653 (5)0.1651 (3)0.8596 (4)0.0591 (14)
H15A1.36100.15560.89220.071*
C161.1670 (5)0.1139 (3)0.8274 (4)0.0547 (13)
H16A1.19740.07090.83990.066*
C171.0272 (4)0.1273 (2)0.7779 (4)0.0424 (11)
H17A0.96230.09340.75570.051*
C180.9807 (4)0.1922 (2)0.7602 (4)0.0341 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0341 (3)0.0255 (3)0.0355 (3)0.0021 (2)0.0051 (2)0.0010 (2)
Cu10.0341 (3)0.0255 (3)0.0355 (3)0.0021 (2)0.0051 (2)0.0010 (2)
P10.0346 (6)0.0310 (6)0.0363 (6)0.0026 (5)0.0098 (5)0.0040 (5)
P20.0333 (6)0.0328 (6)0.0302 (6)0.0049 (5)0.0057 (5)0.0012 (5)
O10.066 (2)0.0309 (16)0.062 (2)0.0068 (15)0.0312 (17)0.0129 (14)
O20.0470 (18)0.063 (2)0.0324 (17)0.0226 (16)0.0048 (14)0.0010 (15)
O30.073 (2)0.0459 (19)0.063 (2)0.0219 (17)0.0392 (19)0.0239 (17)
O40.0433 (19)0.080 (2)0.040 (2)0.0237 (18)0.0073 (15)0.0024 (17)
O50.089 (3)0.0470 (19)0.0358 (18)0.0304 (17)0.0063 (17)0.0030 (15)
O60.0372 (16)0.0481 (18)0.0339 (16)0.0099 (14)0.0098 (13)0.0063 (13)
O70.069 (2)0.048 (2)0.055 (2)0.0094 (18)0.0162 (18)0.0059 (17)
O80.043 (2)0.093 (3)0.066 (2)0.0218 (19)0.0211 (18)0.043 (2)
N10.0303 (18)0.0261 (17)0.0310 (18)0.0018 (14)0.0070 (15)0.0001 (14)
N20.0315 (19)0.0311 (19)0.0295 (18)0.0024 (15)0.0038 (15)0.0022 (14)
C10.036 (2)0.033 (2)0.027 (2)0.0018 (19)0.0109 (18)0.0027 (17)
C20.037 (2)0.035 (2)0.044 (3)0.002 (2)0.010 (2)0.002 (2)
C30.037 (3)0.055 (3)0.046 (3)0.007 (2)0.007 (2)0.000 (2)
C40.027 (2)0.072 (4)0.046 (3)0.004 (2)0.002 (2)0.009 (3)
C50.042 (3)0.053 (3)0.046 (3)0.017 (2)0.013 (2)0.011 (2)
C60.039 (2)0.036 (2)0.030 (2)0.009 (2)0.0118 (19)0.0080 (18)
C70.053 (3)0.029 (2)0.046 (3)0.013 (2)0.012 (2)0.007 (2)
C80.048 (3)0.025 (2)0.047 (3)0.001 (2)0.008 (2)0.0004 (19)
C90.040 (2)0.026 (2)0.030 (2)0.0021 (18)0.0078 (19)0.0010 (17)
C100.038 (2)0.031 (2)0.026 (2)0.0023 (19)0.0080 (18)0.0029 (17)
C110.044 (3)0.033 (2)0.046 (3)0.008 (2)0.009 (2)0.008 (2)
C120.048 (3)0.048 (3)0.043 (3)0.020 (2)0.007 (2)0.015 (2)
C130.035 (2)0.064 (3)0.029 (2)0.009 (2)0.0095 (19)0.007 (2)
C140.034 (3)0.087 (4)0.043 (3)0.007 (3)0.005 (2)0.013 (3)
C150.028 (2)0.102 (4)0.046 (3)0.009 (3)0.002 (2)0.008 (3)
C160.051 (3)0.065 (3)0.049 (3)0.020 (3)0.008 (2)0.000 (3)
C170.036 (2)0.046 (3)0.044 (3)0.007 (2)0.002 (2)0.002 (2)
C180.033 (2)0.044 (3)0.027 (2)0.004 (2)0.0090 (18)0.0048 (18)
Geometric parameters (Å, º) top
Zn1—O11.870 (3)C4—C51.348 (6)
Zn1—O51.894 (3)C4—H4A0.9300
Zn1—N12.014 (3)C5—C61.412 (6)
Zn1—N22.030 (3)C5—H5A0.9300
P1—O11.488 (3)C6—C71.403 (6)
P1—O21.493 (3)C7—C81.355 (6)
P1—O31.548 (3)C7—H7A0.9300
P1—O41.548 (3)C8—C91.394 (5)
P2—O51.489 (3)C8—H8A0.9300
P2—O61.498 (3)C9—C101.490 (5)
P2—O71.525 (3)C10—C111.404 (5)
P2—O81.544 (3)C11—C121.346 (6)
O3—H3P0.82 (3)C11—H11A0.9300
O4—H4P0.84 (4)C12—C131.400 (6)
O7—H7P0.83 (3)C12—H12A0.9300
O8—H8P0.85 (3)C13—C181.408 (5)
N1—C91.325 (5)C13—C141.411 (6)
N1—C11.371 (5)C14—C151.346 (7)
N2—C101.324 (5)C14—H14A0.9300
N2—C181.369 (5)C15—C161.404 (7)
C1—C61.403 (5)C15—H15A0.9300
C1—C21.405 (5)C16—C171.360 (6)
C2—C31.361 (5)C16—H16A0.9300
C2—H2A0.9300C17—C181.405 (5)
C3—C41.392 (6)C17—H17A0.9300
C3—H3A0.9300
O1—Zn1—O5115.51 (13)C4—C5—C6119.8 (4)
O1—Zn1—N1112.78 (12)C4—C5—H5A120.1
O5—Zn1—N1112.29 (12)C6—C5—H5A120.1
O1—Zn1—N2117.21 (13)C1—C6—C7117.8 (4)
O5—Zn1—N2112.95 (13)C1—C6—C5118.6 (4)
N1—Zn1—N281.50 (13)C7—C6—C5123.6 (4)
O1—P1—O2114.05 (18)C8—C7—C6120.5 (4)
O1—P1—O3109.34 (16)C8—C7—H7A119.7
O2—P1—O3110.64 (19)C6—C7—H7A119.7
O1—P1—O4109.26 (19)C7—C8—C9119.1 (4)
O2—P1—O4109.84 (16)C7—C8—H8A120.5
O3—P1—O4103.1 (2)C9—C8—H8A120.5
O5—P2—O6115.42 (16)N1—C9—C8122.2 (4)
O5—P2—O7109.6 (2)N1—C9—C10115.5 (3)
O6—P2—O7107.14 (17)C8—C9—C10122.4 (4)
O5—P2—O8105.24 (19)N2—C10—C11121.6 (4)
O6—P2—O8111.65 (17)N2—C10—C9116.0 (3)
O7—P2—O8107.5 (2)C11—C10—C9122.4 (4)
P1—O1—Zn1149.82 (18)C12—C11—C10119.2 (4)
P1—O3—H3P120 (3)C12—C11—H11A120.4
P1—O4—H4P119 (3)C10—C11—H11A120.4
P2—O5—Zn1130.50 (18)C11—C12—C13120.6 (4)
P2—O7—H7P114 (4)C11—C12—H12A119.7
P2—O8—H8P121 (4)C13—C12—H12A119.7
C9—N1—C1119.8 (3)C12—C13—C18118.2 (4)
C9—N1—Zn1113.9 (3)C12—C13—C14123.7 (4)
C1—N1—Zn1126.3 (3)C18—C13—C14118.1 (4)
C10—N2—C18120.3 (3)C15—C14—C13120.9 (5)
C10—N2—Zn1113.0 (3)C15—C14—H14A119.6
C18—N2—Zn1126.6 (3)C13—C14—H14A119.6
N1—C1—C6120.7 (4)C14—C15—C16121.0 (5)
N1—C1—C2119.2 (4)C14—C15—H15A119.5
C6—C1—C2120.2 (4)C16—C15—H15A119.5
C3—C2—C1119.6 (4)C17—C16—C15119.9 (5)
C3—C2—H2A120.2C17—C16—H16A120.1
C1—C2—H2A120.2C15—C16—H16A120.1
C2—C3—C4120.1 (4)C16—C17—C18120.2 (4)
C2—C3—H3A119.9C16—C17—H17A119.9
C4—C3—H3A119.9C18—C17—H17A119.9
C5—C4—C3121.8 (4)N2—C18—C13120.0 (4)
C5—C4—H4A119.1N2—C18—C17120.0 (4)
C3—C4—H4A119.1C13—C18—C17120.0 (4)
O2—P1—O1—Zn1114.6 (4)C4—C5—C6—C7179.6 (4)
O3—P1—O1—Zn19.8 (5)C1—C6—C7—C80.8 (6)
O4—P1—O1—Zn1122.0 (4)C5—C6—C7—C8178.4 (4)
O5—Zn1—O1—P134.5 (5)C6—C7—C8—C90.2 (6)
N1—Zn1—O1—P1165.5 (4)C1—N1—C9—C80.5 (5)
N2—Zn1—O1—P1102.4 (4)Zn1—N1—C9—C8180.0 (3)
O6—P2—O5—Zn11.7 (3)C1—N1—C9—C10178.8 (3)
O7—P2—O5—Zn1122.8 (3)Zn1—N1—C9—C100.7 (4)
O8—P2—O5—Zn1121.9 (3)C7—C8—C9—N10.9 (6)
O1—Zn1—O5—P249.3 (3)C7—C8—C9—C10178.3 (4)
N1—Zn1—O5—P2179.5 (2)C18—N2—C10—C111.7 (5)
N2—Zn1—O5—P289.5 (3)Zn1—N2—C10—C11176.4 (3)
O1—Zn1—N1—C9117.3 (3)C18—N2—C10—C9177.2 (3)
O5—Zn1—N1—C9110.1 (3)Zn1—N2—C10—C94.7 (4)
N2—Zn1—N1—C91.3 (3)N1—C9—C10—N23.7 (5)
O1—Zn1—N1—C163.2 (3)C8—C9—C10—N2177.0 (3)
O5—Zn1—N1—C169.4 (3)N1—C9—C10—C11177.4 (3)
N2—Zn1—N1—C1179.2 (3)C8—C9—C10—C111.9 (6)
O1—Zn1—N2—C10114.7 (3)N2—C10—C11—C121.3 (6)
O5—Zn1—N2—C10107.3 (3)C9—C10—C11—C12177.5 (4)
N1—Zn1—N2—C103.4 (2)C10—C11—C12—C130.5 (6)
O1—Zn1—N2—C1867.3 (3)C11—C12—C13—C181.8 (6)
O5—Zn1—N2—C1870.7 (3)C11—C12—C13—C14178.7 (4)
N1—Zn1—N2—C18178.6 (3)C12—C13—C14—C15178.6 (4)
C9—N1—C1—C60.5 (5)C18—C13—C14—C150.8 (6)
Zn1—N1—C1—C6178.9 (3)C13—C14—C15—C161.1 (7)
C9—N1—C1—C2180.0 (3)C14—C15—C16—C171.0 (7)
Zn1—N1—C1—C20.5 (5)C15—C16—C17—C180.7 (6)
N1—C1—C2—C3178.8 (3)C10—N2—C18—C130.3 (5)
C6—C1—C2—C30.6 (6)Zn1—N2—C18—C13177.6 (3)
C1—C2—C3—C40.3 (6)C10—N2—C18—C17179.3 (3)
C2—C3—C4—C50.5 (7)Zn1—N2—C18—C172.8 (5)
C3—C4—C5—C60.3 (7)C12—C13—C18—N21.4 (6)
N1—C1—C6—C71.1 (5)C14—C13—C18—N2179.1 (3)
C2—C1—C6—C7179.4 (4)C12—C13—C18—C17179.0 (4)
N1—C1—C6—C5178.1 (3)C14—C13—C18—C170.5 (6)
C2—C1—C6—C51.4 (6)C16—C17—C18—N2179.2 (4)
C4—C5—C6—C11.2 (6)C16—C17—C18—C130.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3P···O60.82 (3)1.79 (2)2.593 (4)163 (5)
O4—H4P···O2i0.84 (4)1.73 (2)2.567 (4)174 (5)
O7—H7P···O2ii0.83 (3)1.81 (2)2.620 (4)163 (5)
O8—H8P···O6iii0.85 (3)1.76 (2)2.603 (4)173 (5)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+1; (iii) x+2, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Zn0.88Cu0.12(H2PO4)2(C18H12N2)][Zn0.90Cu0.10(H2PO4)2(C18H12N2)]
Mr515.42515.46
Crystal system, space groupTriclinic, P1Monoclinic, P21/n
Temperature (K)298295
a, b, c (Å)7.8089 (12), 10.5225 (17), 12.3618 (19)9.3801 (12), 20.528 (3), 10.2991 (13)
α, β, γ (°)91.787 (2), 91.722 (2), 106.632 (3)90, 98.791 (2), 90
V3)972.0 (3)1959.8 (5)
Z24
Radiation typeMo KαMo Kα
µ (mm1)1.461.46
Crystal size (mm)0.26 × 0.12 × 0.080.20 × 0.12 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Multi-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.79, 0.890.79, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
7214, 4216, 3529 16359, 4435, 3060
Rint0.0250.059
(sin θ/λ)max1)0.6630.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.136, 1.14 0.059, 0.109, 1.02
No. of reflections42164435
No. of parameters292292
No. of restraints44
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.380.75, 0.39

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 2000), SAINT-NT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-NT (Sheldrick, 2000) and PLATON (Spek, 2003).

Selected bond lengths (Å) for (I) top
Zn1—O11.863 (3)P1—O41.546 (3)
Zn1—O51.892 (3)P1—O31.553 (2)
Zn1—N22.017 (2)P2—O51.496 (3)
Zn1—N12.033 (3)P2—O61.502 (2)
P1—O11.486 (3)P2—O71.542 (3)
P1—O21.496 (2)P2—O81.542 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3—H3P···O60.82 (3)1.78 (2)2.586 (3)166 (4)
O4—H4P···O2i0.83 (3)1.79 (2)2.616 (3)177 (5)
O7—H7P···O6ii0.84 (3)1.75 (2)2.592 (4)173 (4)
O8—H8P···O2iii0.83 (3)1.78 (2)2.580 (3)161 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z.
Table 3. ππ contacts (Å, °) in (I) top
Cg···Cgccdsaipd
Cg1···Cg1iv3.595 (2)21.78 (1)3.338 (1)
Cg1···Cg3iv3.613 (2)22.92 (8)3.330 (4)
Cg1···Cg4v4.248 (2)38.(3.)3.33 (13)
Cg2···Cg2v3.911 (2)27.38 (1)3.473 (1)
Cg2···Cg4v3.779 (3)23.5 (8)3.46 (2)
Cg2···Cg4vi4.094 (3)35.0 (7)3.35 (3)
Symmetry codes: (iv) -x+1,-y+2,-z; (v) -x+1,-y+2,-z+1; (vi) -x+2,-y+2,-z+1.

For centroid definition, see Fig. 1. ccd: centroid-to-centroid distance; sa: (mean) slippage angle; ipd: (mean) interplanar distance
Selected bond lengths (Å) for (II) top
Zn1—O11.870 (3)P1—O31.548 (3)
Zn1—O51.894 (3)P1—O41.548 (3)
Zn1—N12.014 (3)P2—O51.489 (3)
Zn1—N22.030 (3)P2—O61.498 (3)
P1—O11.488 (3)P2—O71.525 (3)
P1—O21.493 (3)P2—O81.544 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O3—H3P···O60.82 (3)1.79 (2)2.593 (4)163 (5)
O4—H4P···O2i0.84 (4)1.73 (2)2.567 (4)174 (5)
O7—H7P···O2ii0.83 (3)1.81 (2)2.620 (4)163 (5)
O8—H8P···O6iii0.85 (3)1.76 (2)2.603 (4)173 (5)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+1; (iii) x+2, y, z+1.
Table 6. ππ contacts (Å, °) in (II) top
Cg···Cgccdsaipd
Cg1···Cg2iv3.747 (2)24.42 (1)3.412 (1)
Cg1···Cg4iv3.522 (2)14.7 (2)3.405 (4)
Cg2···Cg3v4.183 (2)37.2 (2)3.33 (1)
Cg2···Cg3vi3.509 (2)13.9 (3)3.405 (4)
Cg3···Cg4vii3.574 (2)18.9 (9)3.38 (3)
Symmetry codes: (iv) x-1/2,-y+1/2,z-1/2; (v) x+1,y,z; (vi) x+1/2,-y+1/2,z+1/2; (vii) x-1,y, z.

For centroid definition, see Fig. 1. ccd: centroid-to-centroid distance; sa: (mean) slippage angle; ipd: (mean) interplanar distance
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds