Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In {[Rh2(C2H4NO)4Cl]·CH3OH}n, the cationic dirhodium complex and bridging chloro ligands form a one-dimensional zigzag chain, [Rh2(acam)4(μ-Cl)] (Hacam is acetamide). There is a large difference between the two Rh—Cl distances [2.6076 (14) and 2.5027 (14) Å]. Neighboring chains are connected by two N—H...O hydrogen bonds per link between the amidate ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106040121/fa3040sup1.cif
Contains datablocks I, General

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106040121/fa3040Isup2.hkl
Contains datablock I

CCDC reference: 628510

Comment top

A halide-bridged one-dimensional chain is commonly observed in structures with metal–metal-bonded paddlewheel complexes such as K[Mo2(O2CH)4Cl] (Robbins & Martin, 1984), [Pt2(S2CR)4I] (Bellitto et al., 1983; Kitagawa et al., 2001; Mitsumi et al., 2002) and [Ru2(O2CR)4X] (X = Cl and Br; Angaridis, 2005). The chain in K[Mo2(O2CH)4Cl] is a zigzag one, that in [Pt2(S2CR)4I] is linear and [Ru2(O2CR)4X] contains both types. We have reported assemblies of acetamidate-bridged dirhodium paddlewheel complexes with halide linkers, viz. one-dimensional chain structures in [Rh2(acam)4(µ-X)].nH2O (Hacam is acetamide; X = Cl, Br and I; n = 0, 2, 3 and 7; Yang et al., 2000, 2001), a two-dimensional honeycomb structure in [{Rh2(acam)4}33-Cl)2]·4H2O (Takazaki et al., 2003), and a three-dimensional diamondoid structure in [{Rh2(acam)4}24-I)]·6H2O (Fuma et al., 2004). In the zigzag chain structure of [Rh2(acam)4(µ-X)].nH2O, the Rh—Cl—Rh angle varies with the hydrogen bonding involving the water molecules. We have attempted to synthesize the chain structure with solvent molecules other than water. In this paper, we report the zigzag chain structure of [Rh2(acam)4(µ-Cl)]·CH3OH, (I).

The structure of (I) is shown in Fig. 1. There are one independent [Rh2(acam)4Cl] unit and one methanol molecule in the asymmetric unit. The bond distances in the [Rh2(acam)4] skeleton are similar to those observed previously for the cationic [Rh2(acam)4] unit (Yang et al., 2000, 2001, 2006; Ebihara & Fuma, 2006; Baranovskii et al., 1986). The [Rh2(acam)4Cl] unit forms an infinite zigzag chain structure (Fig. 2) as in [Rh2(acam)4(µ-Cl)] and [Rh2(acam)4(µ-Cl)]·7H2O (Yang et al., 2000, 2001).

In the reported zigzag chain structures of [M2L4X] (M = Ru and Rh, L = O2CR, HN(O)CR, and X = Cl, Br and I; Bennett et al., 1969; Togano et al., 1980; Kimura et al., 1982; Chakravarty & Cotton, 1985; Chakravarty et al., 1985; Das & Chakravarty, 1991; Abe et al., 1992; Barral et al., 1998, 1999, 2000, 2004; Cukiernik et al., 1998; Yang et al., 2000, 2001), the dimetal unit usually lies on an inversion center or on a twofold axis. For example, in the chain structure of [Rh2(acam)4(µ-Cl)] (Yang et al., 2001), which crystallizes in C2/c, the dirhodium unit lies on an inversion center and the Cl atom lies on a twofold axis. In the structure of [Ru2(O2CC6H4OMe)4Cl] (Das & Chakravarty, 1991), there are three independent diruthenium units of which two lie on inversion centers and one occupies a general position. In the structure of (I), the chain is propagated along the c axis with each unit of the complex connected to adjacent units generated by the c-glide plane at y = 1/4. Compound (I) is the first example of a zigzag chain constructed from one independent paddlewheel complex that does not have any symmetry.

The Rh—Cl—Rh angles in [Rh2(acam)4(µ-Cl)] and [Rh2(acam)4(µ-Cl)]·7H2O are 115.48 (10) and 153.50 (6)°, respectively. Since the corresponding angle in (I) is 114.59 (5)°, the chain structure in (I) more closely resembles that in [Rh2(acam)4(µ-Cl)]. The hydrogen bonds from NH of the acam ligands to O atoms of the next complexes along the chain [N1···O4i and N3···O2ii; symmetry codes: (i) x, −y + 1/2, z − 1/2; (ii) x, −y + 1/2, z + 1/2; Table 2] also support the chain structure, as was observed in [Rh2(acam)4(µ-Cl)] (Yang et al., 2001). The CH3OH molecule lies beside the chain, accepting a hydrogen bond from an N atom of an acam ligand (N2) and donating a hydrogen bond to an O atom of a neighboring complex (O2ii).

The Rh—Rh—Cl angles in (I) (Table 1) are slightly more bent than that in [Rh2(acam)4(µ-Cl)] [174.52 (4)°]. Rh1—Cl1 and Rh2—Cl1i (Table 1) are both different from the corresponding value in [Rh2(acam)4(µ-Cl)] [2.581 (1) Å]. The difference between these Rh—Cl distances is very large (ca 0.1 Å). In the previously reported chain structures, the largest differences (ca 0.04 Å) between M—Cl bonds were observed in [Ru2{HN(O)CC6H4R}4(µ-Cl)] [R = H (Chakravarty & Cotton, 1985) and R = Cl (Chakravarty et al., 1985). The long–short pattern of the M—Cl bonds in the Cl—MM—Cl—MM—Cl unit is long–long–short–short for [Ru2(HN(O)CC6H4R)4(µ-Cl)] since two independent diruthenium units lie on inversion centers, but long–short–long–short for (I).

The chains are mutually parallel and are connected to each other by a pair of hydrogen bonds [N4···O3iii and N4iii···O3; symmetry code: (iii) −x + 1, −y + 1, −z + 1]. These interchain hydrogen bonds were not observed in other chain structures with amidate-bridged paddlewheel complexes (Chakravarty & Cotton, 1985; Chakravarty et al., 1985; Yang et al., 2000, 2001).

Experimental top

[Rh2(acam)4(H2O)2]ClO4 was prepared by the method described by Baranovskii et al. (1986). Into a methanol solution of [Rh2(acam)4(H2O)2]ClO4 (3.1 mmol l−1), a methanol solution of CoCl2·6H2O (0.21 mol l−1) was diffused slowly. After several days, brown crystals of (I) were obtained.

Refinement top

The positional parameters of the H atom attached to O were refined with Uiso(H) values of 1.5Ueq(O). All other H atoms were placed in idealized positions and treated as riding atoms, with C—H distances of 0.98 Å and Uiso(H) values of 1.5Ueq(C), and with N—H distances of 0.88 Å and Uiso(H) of 1.2Ueq(N).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku Corporation, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) x, −y + 1/2, −1/2 + z.]
[Figure 2] Fig. 2. Crystal structure of (I). Hydrogen bonds were drawn as thin lines. [symmetry codes: (i) x, −y + 1/2, z − 1/2; (ii) x, −y + 1/2, z + 1/2; (iii) −x + 1, −y + 1, −z + 1.]
poly[µ-chloro-tetra-µ-acetamidato-κ4 N:O;κ4O:N-dirhodium(II,III) methanol solvate] top
Crystal data top
[Rh2Cl(C2H4NO)4]·CH4OF(000) = 996
Mr = 505.56Dx = 2.189 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 4776 reflections
a = 8.601 (4) Åθ = 3.0–27.5°
b = 14.254 (7) ŵ = 2.35 mm1
c = 12.664 (7) ÅT = 173 K
β = 98.854 (5)°Prism, brown
V = 1534.1 (13) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3496 independent reflections
Radiation source: rotating-anode X-ray tube3246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 14.62 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1011
Absorption correction: integration
(NUMABS; Higashi, 1999)
k = 1318
Tmin = 0.624, Tmax = 0.755l = 1416
12335 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0256P)2 + 3.6476P]
where P = (Fo2 + 2Fc2)/3
3496 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Rh2Cl(C2H4NO)4]·CH4OV = 1534.1 (13) Å3
Mr = 505.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.601 (4) ŵ = 2.35 mm1
b = 14.254 (7) ÅT = 173 K
c = 12.664 (7) Å0.30 × 0.10 × 0.10 mm
β = 98.854 (5)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3496 independent reflections
Absorption correction: integration
(NUMABS; Higashi, 1999)
3246 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.755Rint = 0.034
12335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.95 e Å3
3496 reflectionsΔρmin = 0.80 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.55116 (3)0.223511 (18)0.65224 (2)0.01191 (8)
Rh20.56671 (3)0.312306 (18)0.49089 (2)0.01183 (8)
Cl10.56444 (11)0.10902 (6)0.81398 (7)0.01671 (18)
N10.4437 (4)0.2088 (2)0.4147 (3)0.0163 (6)
H10.41700.21340.34500.020*
O10.4298 (3)0.12200 (17)0.5627 (2)0.0167 (5)
N20.7552 (4)0.1693 (2)0.6306 (3)0.0153 (6)
H20.79940.12900.67880.018*
O20.7716 (3)0.24327 (18)0.4741 (2)0.0179 (5)
N30.6648 (4)0.3294 (2)0.7305 (3)0.0164 (6)
H30.68170.32720.80070.020*
O30.6972 (3)0.41216 (18)0.5816 (2)0.0180 (5)
N40.3756 (4)0.3777 (2)0.5188 (2)0.0155 (6)
H40.34070.42470.47680.019*
O40.3415 (3)0.28888 (18)0.6625 (2)0.0168 (5)
C10.3999 (4)0.1342 (3)0.4617 (3)0.0154 (7)
C20.3105 (5)0.0573 (3)0.3979 (3)0.0243 (9)
H50.38350.01890.36420.036*
H60.23150.08490.34270.036*
H70.25810.01800.44530.036*
C30.8296 (4)0.1878 (2)0.5514 (3)0.0160 (7)
C40.9870 (5)0.1445 (3)0.5449 (4)0.0253 (9)
H80.98550.11630.47410.038*
H91.00960.09590.59990.038*
H101.06870.19300.55640.038*
C50.7162 (4)0.4023 (2)0.6840 (3)0.0156 (7)
C60.8015 (5)0.4796 (3)0.7496 (3)0.0222 (8)
H110.88840.50220.71470.033*
H120.84330.45560.82090.033*
H130.72850.53130.75610.033*
C70.2973 (4)0.3556 (3)0.5961 (3)0.0163 (7)
C80.1492 (5)0.4072 (3)0.6069 (3)0.0232 (9)
H140.08580.36940.64900.035*
H150.08940.41870.53580.035*
H160.17560.46720.64300.035*
O50.9595 (4)0.1373 (2)0.8394 (3)0.0309 (7)
H170.885 (7)0.157 (4)0.871 (5)0.046*
C91.0613 (5)0.2118 (3)0.8249 (4)0.0316 (10)
H180.99940.26620.79590.047*
H191.13190.19260.77510.047*
H201.12360.22840.89380.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01449 (14)0.01280 (14)0.00845 (14)0.00139 (10)0.00178 (10)0.00018 (10)
Rh20.01393 (15)0.01311 (14)0.00857 (14)0.00078 (10)0.00210 (10)0.00066 (10)
Cl10.0248 (5)0.0152 (4)0.0106 (4)0.0016 (3)0.0041 (3)0.0010 (3)
N10.0201 (17)0.0180 (15)0.0107 (15)0.0003 (12)0.0014 (13)0.0028 (12)
O10.0199 (13)0.0169 (12)0.0128 (13)0.0010 (10)0.0008 (11)0.0004 (10)
N20.0184 (16)0.0155 (14)0.0113 (15)0.0023 (12)0.0004 (12)0.0018 (11)
O20.0177 (13)0.0215 (13)0.0151 (14)0.0037 (10)0.0045 (11)0.0030 (10)
N30.0215 (17)0.0171 (15)0.0102 (15)0.0040 (12)0.0009 (13)0.0019 (11)
O30.0219 (14)0.0173 (13)0.0149 (14)0.0039 (10)0.0032 (11)0.0007 (10)
N40.0193 (16)0.0167 (15)0.0101 (15)0.0043 (12)0.0008 (12)0.0021 (11)
O40.0196 (14)0.0198 (13)0.0117 (13)0.0007 (10)0.0050 (11)0.0005 (10)
C10.0150 (17)0.0167 (17)0.0144 (18)0.0020 (13)0.0018 (14)0.0037 (14)
C20.032 (2)0.0196 (19)0.019 (2)0.0041 (16)0.0030 (18)0.0034 (15)
C30.0171 (18)0.0149 (17)0.0153 (19)0.0007 (14)0.0006 (15)0.0023 (14)
C40.023 (2)0.029 (2)0.025 (2)0.0076 (17)0.0060 (17)0.0017 (17)
C50.0158 (18)0.0158 (17)0.0145 (19)0.0027 (14)0.0002 (15)0.0029 (13)
C60.026 (2)0.0175 (18)0.022 (2)0.0049 (15)0.0004 (17)0.0009 (15)
C70.0175 (18)0.0181 (17)0.0130 (18)0.0011 (14)0.0012 (14)0.0034 (14)
C80.022 (2)0.030 (2)0.019 (2)0.0072 (16)0.0051 (17)0.0011 (16)
O50.0249 (16)0.0379 (18)0.0305 (18)0.0038 (14)0.0060 (14)0.0041 (14)
C90.028 (2)0.033 (2)0.032 (3)0.0028 (18)0.001 (2)0.0047 (19)
Geometric parameters (Å, º) top
Rh1—Rh22.4247 (11)O4—C71.287 (5)
Rh1—Cl12.6076 (14)C1—C21.500 (5)
Rh1—O12.026 (3)C2—H50.9800
Rh1—O42.052 (3)C2—H60.9800
Rh1—N21.975 (3)C2—H70.9800
Rh1—N31.979 (3)C3—C41.501 (5)
Rh2—Cl1i2.5027 (14)C4—H80.9800
Rh2—O22.057 (3)C4—H90.9800
Rh2—O32.051 (3)C4—H100.9800
Rh2—N11.978 (3)C5—C61.501 (5)
Rh2—N41.968 (3)C6—H110.9800
N1—C11.302 (5)C6—H120.9800
N1—H10.8800C6—H130.9800
O1—C11.277 (5)C7—C81.495 (5)
N2—C31.297 (5)C8—H140.9800
N2—H20.8800C8—H150.9800
O2—C31.297 (5)C8—H160.9800
N3—C51.304 (5)O5—C91.406 (5)
N3—H30.8800O5—H170.86 (6)
O3—C51.289 (5)C9—H180.9800
N4—C71.310 (5)C9—H190.9800
N4—H40.8800C9—H200.9800
N2—Rh1—N389.26 (13)Rh2—N4—H4118.0
N2—Rh1—O192.00 (12)C7—O4—Rh1117.9 (2)
N3—Rh1—O1175.59 (12)O1—C1—N1122.7 (3)
N2—Rh1—O4174.29 (12)O1—C1—C2116.6 (3)
N3—Rh1—O489.61 (12)N1—C1—C2120.7 (3)
O1—Rh1—O488.72 (11)C1—C2—H5109.5
N2—Rh1—Rh285.51 (9)C1—C2—H6109.5
N3—Rh1—Rh286.36 (10)H5—C2—H6109.5
O1—Rh1—Rh289.52 (8)C1—C2—H7109.5
O4—Rh1—Rh288.83 (8)H5—C2—H7109.5
N2—Rh1—Cl186.09 (9)H6—C2—H7109.5
N3—Rh1—Cl197.21 (10)O2—C3—N2121.9 (3)
O1—Rh1—Cl187.09 (8)O2—C3—C4117.1 (3)
O4—Rh1—Cl199.61 (8)N2—C3—C4121.0 (3)
Rh2—Rh1—Cl1170.82 (2)C3—C4—H8109.5
N4—Rh2—N192.43 (13)C3—C4—H9109.5
N4—Rh2—O388.32 (12)H8—C4—H9109.5
N1—Rh2—O3174.91 (12)C3—C4—H10109.5
N4—Rh2—O2175.61 (12)H8—C4—H10109.5
N1—Rh2—O289.72 (12)H9—C4—H10109.5
O3—Rh2—O289.21 (11)O3—C5—N3122.8 (3)
N4—Rh2—Rh186.54 (9)O3—C5—C6116.9 (3)
N1—Rh2—Rh185.79 (10)N3—C5—C6120.3 (3)
O3—Rh2—Rh189.23 (8)C5—C6—H11109.5
O2—Rh2—Rh189.80 (8)C5—C6—H12109.5
N4—Rh2—Cl1i93.28 (9)H11—C6—H12109.5
N1—Rh2—Cl1i88.16 (10)C5—C6—H13109.5
O3—Rh2—Cl1i96.82 (8)H11—C6—H13109.5
O2—Rh2—Cl1i90.62 (8)H12—C6—H13109.5
Rh1—Rh2—Cl1i173.94 (2)O4—C7—N4122.1 (3)
Rh2ii—Cl1—Rh1114.59 (5)O4—C7—C8118.3 (3)
C1—N1—Rh2123.8 (3)N4—C7—C8119.6 (3)
C1—N1—H1118.1C7—C8—H14109.5
Rh2—N1—H1118.1C7—C8—H15109.5
C1—O1—Rh1118.1 (2)H14—C8—H15109.5
C3—N2—Rh1125.6 (3)C7—C8—H16109.5
C3—N2—H2117.2H14—C8—H16109.5
Rh1—N2—H2117.2H15—C8—H16109.5
C3—O2—Rh2116.8 (2)C9—O5—H17110 (4)
C5—N3—Rh1123.9 (3)O5—C9—H18109.5
C5—N3—H3118.1O5—C9—H19109.5
Rh1—N3—H3118.1H18—C9—H19109.5
C5—O3—Rh2117.5 (2)O5—C9—H20109.5
C7—N4—Rh2124.1 (3)H18—C9—H20109.5
C7—N4—H4118.0H19—C9—H20109.5
O1—Rh1—Rh2—N11.08 (12)Rh1—Rh2—O2—C36.1 (3)
N2—Rh1—Rh2—O23.40 (12)Cl1i—Rh2—O2—C3179.9 (3)
N3—Rh1—Rh2—O33.73 (12)N2—Rh1—N3—C582.1 (3)
O4—Rh1—Rh2—N45.04 (12)O4—Rh1—N3—C592.3 (3)
N2—Rh1—Rh2—N4174.18 (13)Rh2—Rh1—N3—C53.4 (3)
N3—Rh1—Rh2—N484.64 (13)Cl1—Rh1—N3—C5168.1 (3)
O1—Rh1—Rh2—N493.78 (12)N4—Rh2—O3—C581.2 (3)
N2—Rh1—Rh2—N193.13 (13)O2—Rh2—O3—C595.2 (3)
N3—Rh1—Rh2—N1177.33 (13)Rh1—Rh2—O3—C55.3 (3)
O4—Rh1—Rh2—N187.65 (12)Cl1i—Rh2—O3—C5174.3 (2)
N2—Rh1—Rh2—O385.82 (12)N1—Rh2—N4—C780.5 (3)
O1—Rh1—Rh2—O3177.86 (11)O3—Rh2—N4—C794.5 (3)
O4—Rh1—Rh2—O393.41 (11)Rh1—Rh2—N4—C75.2 (3)
N3—Rh1—Rh2—O292.94 (12)Cl1i—Rh2—N4—C7168.8 (3)
O1—Rh1—Rh2—O288.65 (11)N3—Rh1—O4—C779.6 (3)
O4—Rh1—Rh2—O2177.38 (11)O1—Rh1—O4—C796.3 (3)
N2—Rh1—Cl1—Rh2ii119.27 (10)Rh2—Rh1—O4—C76.8 (3)
N3—Rh1—Cl1—Rh2ii30.51 (10)Cl1—Rh1—O4—C7176.9 (2)
O1—Rh1—Cl1—Rh2ii148.52 (8)Rh1—O1—C1—N10.2 (5)
O4—Rh1—Cl1—Rh2ii60.31 (8)Rh1—O1—C1—C2179.7 (3)
N4—Rh2—N1—C188.1 (3)Rh2—N1—C1—O11.6 (5)
O2—Rh2—N1—C188.1 (3)Rh2—N1—C1—C2178.3 (3)
Rh1—Rh2—N1—C11.8 (3)Rh2—O2—C3—N26.6 (5)
Cl1i—Rh2—N1—C1178.7 (3)Rh2—O2—C3—C4174.2 (3)
N2—Rh1—O1—C186.3 (3)Rh1—N2—C3—O22.7 (5)
O4—Rh1—O1—C188.0 (3)Rh1—N2—C3—C4178.1 (3)
Rh2—Rh1—O1—C10.8 (3)Rh2—O3—C5—N34.4 (5)
Cl1—Rh1—O1—C1172.3 (3)Rh2—O3—C5—C6175.5 (3)
N3—Rh1—N2—C388.2 (3)Rh1—N3—C5—O30.1 (5)
O1—Rh1—N2—C387.6 (3)Rh1—N3—C5—C6180.0 (3)
Rh2—Rh1—N2—C31.8 (3)Rh1—O4—C7—N44.9 (5)
Cl1—Rh1—N2—C3174.5 (3)Rh1—O4—C7—C8176.6 (3)
N1—Rh2—O2—C391.9 (3)Rh2—N4—C7—O41.2 (5)
O3—Rh2—O2—C383.1 (3)Rh2—N4—C7—C8177.2 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.882.303.180 (4)175
N2—H2···O50.882.282.976 (5)136
N3—H3···O2ii0.882.433.251 (5)155
N4—H4···O3iii0.882.453.277 (4)158
O5—H17···O2ii0.86 (6)2.25 (6)3.045 (4)155 (5)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Rh2Cl(C2H4NO)4]·CH4O
Mr505.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.601 (4), 14.254 (7), 12.664 (7)
β (°) 98.854 (5)
V3)1534.1 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.35
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionIntegration
(NUMABS; Higashi, 1999)
Tmin, Tmax0.624, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
12335, 3496, 3246
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.071, 1.17
No. of reflections3496
No. of parameters198
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.95, 0.80

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku Corporation, 2001), CrystalClear, TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and TEXSAN.

Selected geometric parameters (Å, º) top
Rh1—Rh22.4247 (11)Rh2—Cl1i2.5027 (14)
Rh1—Cl12.6076 (14)Rh2—O22.057 (3)
Rh1—O12.026 (3)Rh2—O32.051 (3)
Rh1—O42.052 (3)Rh2—N11.978 (3)
Rh1—N21.975 (3)Rh2—N41.968 (3)
Rh1—N31.979 (3)
Rh2—Rh1—Cl1170.82 (2)Rh2ii—Cl1—Rh1114.59 (5)
Rh1—Rh2—Cl1i173.94 (2)
O1—Rh1—Rh2—N11.08 (12)N3—Rh1—Rh2—O33.73 (12)
N2—Rh1—Rh2—O23.40 (12)O4—Rh1—Rh2—N45.04 (12)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.882.303.180 (4)174.8
N2—H2···O50.882.282.976 (5)136.3
N3—H3···O2ii0.882.433.251 (5)155.3
N4—H4···O3iii0.882.453.277 (4)157.6
O5—H17···O2ii0.86 (6)2.25 (6)3.045 (4)155 (5)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds