Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Zn(C2H3N)(C16H21N3O)](ClO4)2·H2O, the ZnII ion is coordinated by two pyridyl N atoms, one amine N atom, and an ethanol O atom from the N,N′,N′′,O-tetra­dentate 2-[bis­(2-pyridylethyl)amino]­ethanol donor ligand. The fifth coordination site is filled by an acetonitrile N atom, and there is one solvent water mol­ecule in the asymmetric unit. The 2+ charge of the cationic portion of the complex is balanced by two perchlorate counter-anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106037747/fa3036sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106037747/fa3036Isup2.hkl
Contains datablock I

CCDC reference: 628497

Comment top

Zinc complexes of multidentate N-donor ligands with pendant alcohol or alkoxide O-donors have been useful for modelling alkaline phosphatase, a ZnII-containing phosphomonoesterase that catalyzes the hydrolysis of phosphate monoesters at high pH (Kimura et al., 1994). Recently, we reported the crystal structure of a new ZnII complex containing the 2-[bis(2-pyridin-2-ylethyl)amino]ethanol ligand, (I), in which the ethanol moiety was deprotonated upon coordinating to a ZnII centre, to form a bridging alkoxide ligand in a dimeric ZnII structure, (II), in the solid state (Zhang & Liang, 2004). The previous crystal structure was obtained by crystallizing the complex in an aqueous solution. Here, we report on a crystal structure of a similar complex, (III), crystallized from acetonitrile, in which the monomeric ZnII complex of the ligand 2-[bis(2-pyridin-2-ylethyl)amino]ethanol is obtained and the ethanol H atom remains bound to the O atom of the ethanol unit.

As shown in Fig. 1, complex (III) has five donor atoms coordinated to the ZnII centre. The calculated τ value for the ZnII centre in (III) is 0.23, which shows that it is closer to square-pyramidal geometry [N2—Zn1—N4 159.35 (6)° and N1—Zn1—O1 145.36 (6)°; τ = 0 correlates to perfect square-pyramidal geometry and τ = 1 correlates to perfect trigonal–bipyramidal geometry (Addison et al., 1984)]. The structure of (III) can be viewed as having atoms N1, N2, N4, O1 and Zn1 as the basal atoms and N3 in the apical position of a pseudo square-pyramidal complex.

The Zn—ligand bond lengths in (III) (Table 1) are similar to those found in analogous ZnII complexes. For example, the Zn—Npyridyl bond lengths of 2.0418 (15) Å (Zn1—N1) and 2.0498 (14) Å (Zn1—N3) are similar to the analogous Zn—Npyridyl bond lengths in (II) [2.049 (4) and 2.068 (4) Å; Zhang & Liang (2004)]. However, the amine N2—Zn1 bond of 2.1336 (14) Å in (III) is shorter than that found in the dimeric complex [2.231 (4) Å]. The longer Zn—Namine bond in (II) can be explained by the fact that the ZnII centre in (II) adopts a more trigonal–pyramidal shape than in (III), with a τ value of 0.46. Because the amine atom N3 of (II) can be considered as more of an axial ligand in a trigonal–bipyramidal geometry than the analogous amine atom N2 in (III), the Zn—Namine bond in (II) is expected to be longer. Comparison of the Zn—O bonds in complexes (II) and (III) also reveals differences in bond lengths [1.959 (3) Å in (II) and 2.0552 (14) Å in (III)]. This observed lengthening of the Zn—O bond in (III) is consistent with a ZnII metal centre bonded to a neutral ethanol O-atom donor, whereas the intramolecular Zn—O bond in (II) involves a monoanionic alkoxide O-atom donor. Several previous studies have shown that ZnII–alcohol complexes with neutral coordinating O-atom donors have Zn—O bonds longer than 2 Å (Follner, 1972; Lutz & Bakker, 2003; Iranzo et al., 2003), while ZnII alkoxide compounds typically exhibit Zn—O bonds shorter than 2 Å (Kimura et al., 1994; Hahn et al., 2003; Davies et al., 1998).

Inspection of the asymmetric unit of compound (III) (Fig. 1) reveals one complex cation, one uncoordinated water molecule and two perchlorate anions. The ethanolic OH group of (III) forms an intermolecular O1—H1A···O10 hydrogen bond with a water molecule, which further links two adjacent perchlorate anions via O10–H10A(H10B).·O2(O9) close contacts (Table 2). As can be seen in Fig. 2, the organization of this motif is influenced by a complex blend of weak C—H···perchlorate interactions that extend along the a axis. Although a structural feature of this organization is inversion-related face-to-face stacking of pyridyl fragments, only the pyridyl (N3) moiety adopts a favourable geometry for ππ stacking [interplanar distance 3.434 (3) Å and centroid···centroid distance 3.862 (3) Å].

Experimental top

Caution! Although no problems were encountered in this work, metal perchlorate complexes are potentially explosive and should be handled with proper precautions and in small amounts.

Complex (III) was synthesized by treating the ligand (I) (0.030 g, 0.11 mmol) with 1 equivalent of Zn(ClO4)2·6H2O (0.041 g, 0.11 mmol) in CH3CN (10 ml) with stirring for 1 h at room temperature. After 1 h, diethyl ether (25 ml) was layered onto the light-yellow acetonitrile solution of (III), and the mixture was set aside for crystallization. After 4 d, colourless crystals of (III) had formed (0.037 g, 0.058 mmol, 53% yield). A single-crystal from this procedure was used for X-ray analysis. Spectroscopic analysis: 1H NMR (500 MHz, CD3CN, δ, p.p.m.): 8.55 (d, py-6H), 8.19 (t, py-4H), 7.71 (d, py-5H), 7.60 (t, py-3H), 3.86 (t, NCH2CH2OZn), 3.28–3.04 (py-CH2CH2N), 2.97 (t, NCH2CH2OZn); 13C NMR (CD3CN, δ, p.p.m.): 162.1 (py-2), 149.9 (py-6), 142.1 (py-4), 127.1 (py-3), 124.7 (py-5), 60.7 (NCH2CH2OZn), 58.5 (NCH2CH2OZn), 54.5 (py-CH2CH2N), 33.5 (py-CH2CH2N); FT–IR (KBr, ν, cm−1): 3448 (O—H, str, br), 3073, 2948, 2926, 2871, 2809 (C–H, str), 1608, 1571, 1486, 1445 (pyridine ring), 1085, 622 (ClO4). Elemental analysis, calculated for C18H26Cl2N4O10Zn: C 36.35, H 4.41, N 9.42%; found: C 35.98, H 4.67, N 9.05%. MS (ESI) m/z 334 ([L1—H + M - CH3CN]+).

Refinement top

Methyl H atoms were treated as riding, with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C), and were allowed to rotate freely during refinement using the AFIX 137 command of SHELXTL (Bruker, 2000). All other H atoms were located in a difference density map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2002) and XPREP (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: X-SEED; software used to prepare material for publication: X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dotted lines indicate what?
[Figure 2] Fig. 2. A view of the molecular packing of (III), projected down the a axis showing the hydrogen-bond network (dotted lines?). H atoms have been omitted for clarity. [Symmetry codes: (i) x, y − 1, z; (ii) 2 − x, 2 − y, 2 − z; (iii) 1 − x, 2 − y, 2 − z; (iv) 2 − x,1 − y, 2 − z; (v) 1 − x,1 − y, 2 − z.]
(Acetonitrile-κN){2-[bis(2-pyridethyl)amino]ethanol-κ4N,N',N'',O}zinc(II) bis(perchlorate) monohydrate top
Crystal data top
[Zn(C2H3N)(C16H21N3O)](ClO4)2·H2OF(000) = 1224
Mr = 594.72Dx = 1.637 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9361 reflections
a = 17.3792 (13) Åθ = 2.3–28.3°
b = 7.8924 (6) ŵ = 1.30 mm1
c = 18.6583 (14) ÅT = 193 K
β = 109.487 (1)°Block, colourless
V = 2412.6 (3) Å30.35 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5502 independent reflections
Radiation source: fine-focus sealed tube4695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2220
Tmin = 0.659, Tmax = 0.881k = 1010
16837 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0503P)2 + 1.2239P]
where P = (Fo2 + 2Fc2)/3
5502 reflections(Δ/σ)max = 0.002
409 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Zn(C2H3N)(C16H21N3O)](ClO4)2·H2OV = 2412.6 (3) Å3
Mr = 594.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.3792 (13) ŵ = 1.30 mm1
b = 7.8924 (6) ÅT = 193 K
c = 18.6583 (14) Å0.35 × 0.20 × 0.10 mm
β = 109.487 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5502 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4695 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.881Rint = 0.031
16837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.91 e Å3
5502 reflectionsΔρmin = 0.40 e Å3
409 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.730424 (11)0.63244 (3)0.985731 (11)0.02481 (5)
O10.70047 (8)0.80338 (17)1.05525 (7)0.0301 (3)
N10.81947 (8)0.55236 (19)0.94474 (9)0.0279 (3)
N20.68983 (8)0.83863 (19)0.90833 (8)0.0258 (3)
N30.62484 (8)0.49311 (19)0.95215 (9)0.0272 (3)
N40.78804 (9)0.5013 (2)1.08945 (9)0.0332 (4)
C10.84356 (12)0.3900 (2)0.95692 (12)0.0351 (5)
C20.90413 (13)0.3235 (3)0.93368 (13)0.0417 (5)
C30.94193 (12)0.4269 (3)0.89649 (13)0.0437 (5)
C40.91751 (11)0.5927 (3)0.88364 (12)0.0394 (5)
C50.85618 (10)0.6534 (2)0.90817 (11)0.0296 (4)
C60.83011 (11)0.8349 (3)0.89702 (12)0.0351 (4)
C70.73912 (12)0.8607 (3)0.85710 (11)0.0328 (4)
C80.60303 (11)0.8128 (3)0.86066 (11)0.0324 (4)
C90.58665 (12)0.6342 (3)0.82901 (11)0.0363 (5)
C100.56823 (11)0.5115 (2)0.88268 (10)0.0302 (4)
C110.49605 (12)0.4225 (3)0.86301 (12)0.0372 (5)
C120.48063 (12)0.3136 (3)0.91336 (13)0.0389 (5)
C130.53755 (11)0.2974 (2)0.98477 (12)0.0343 (4)
C140.60837 (11)0.3892 (2)1.00197 (11)0.0299 (4)
C150.69742 (11)0.9930 (2)0.95501 (11)0.0317 (4)
C160.66839 (11)0.9608 (2)1.02142 (11)0.0327 (4)
C170.82307 (10)0.4511 (2)1.14735 (11)0.0306 (4)
C180.86836 (14)0.3869 (3)1.22227 (13)0.0506 (6)
H18A0.83310.31271.23990.076*
H18B0.88690.48201.25770.076*
H18C0.91570.32271.22000.076*
H10.8187 (11)0.326 (3)0.9857 (11)0.027 (5)*
H20.9166 (13)0.215 (3)0.9465 (12)0.044 (6)*
H30.9862 (14)0.381 (3)0.8795 (13)0.045 (7)*
H40.9424 (13)0.676 (3)0.8602 (13)0.042 (6)*
H6A0.8559 (15)0.886 (3)0.8696 (14)0.051 (7)*
H6B0.8503 (12)0.896 (3)0.9493 (12)0.031 (5)*
H7A0.7307 (11)0.970 (3)0.8395 (11)0.030 (5)*
H7B0.7202 (11)0.780 (3)0.8179 (11)0.028 (5)*
H8A0.5695 (12)0.839 (2)0.8916 (11)0.027 (5)*
H8B0.5859 (11)0.897 (3)0.8210 (11)0.028 (5)*
H9A0.6331 (14)0.588 (3)0.8139 (13)0.044 (6)*
H9B0.5453 (13)0.637 (3)0.7867 (13)0.039 (6)*
H110.4625 (13)0.436 (3)0.8172 (13)0.045 (6)*
H120.4309 (13)0.252 (3)0.9009 (12)0.044 (6)*
H130.5291 (13)0.223 (3)1.0221 (13)0.041 (6)*
H140.6486 (13)0.387 (3)1.0541 (13)0.037 (6)*
H15A0.7548 (12)1.021 (3)0.9759 (11)0.032 (5)*
H15B0.6707 (12)1.084 (3)0.9269 (12)0.030 (5)*
H16A0.6101 (12)0.957 (3)1.0093 (11)0.029 (5)*
H16B0.6874 (11)1.044 (3)1.0581 (11)0.025 (5)*
H1A0.7228 (15)0.823 (3)1.0949 (15)0.052 (8)*
Cl10.92321 (3)0.97603 (7)1.12378 (3)0.03805 (12)
O20.93152 (11)0.9510 (4)1.20099 (10)0.0809 (7)
O30.99937 (10)1.0086 (3)1.11588 (12)0.0713 (6)
O40.89125 (11)0.8214 (2)1.08408 (13)0.0683 (6)
O50.86505 (12)1.1040 (2)1.09256 (11)0.0682 (6)
Cl20.65077 (3)1.20441 (7)1.22309 (3)0.03733 (11)
O60.59799 (11)1.0986 (3)1.16613 (11)0.0660 (5)
O70.67617 (11)1.3450 (3)1.18870 (11)0.0680 (5)
O80.60992 (10)1.2649 (2)1.27248 (10)0.0560 (4)
O90.72074 (10)1.1088 (2)1.26714 (9)0.0546 (5)
O100.77656 (10)0.8372 (2)1.20043 (9)0.0438 (4)
H10A0.8169 (19)0.872 (4)1.1985 (18)0.070 (10)*
H10B0.7573 (15)0.908 (3)1.2160 (15)0.050 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02616 (9)0.02270 (10)0.02630 (10)0.00160 (7)0.00971 (8)0.00305 (8)
O10.0354 (6)0.0282 (6)0.0255 (6)0.0030 (5)0.0087 (5)0.0001 (5)
N10.0277 (6)0.0250 (7)0.0312 (8)0.0009 (6)0.0099 (6)0.0002 (6)
N20.0284 (6)0.0250 (7)0.0251 (7)0.0026 (6)0.0103 (6)0.0032 (6)
N30.0288 (6)0.0248 (7)0.0290 (7)0.0008 (6)0.0109 (6)0.0021 (6)
N40.0340 (7)0.0330 (8)0.0329 (8)0.0034 (7)0.0116 (6)0.0034 (7)
C10.0393 (9)0.0283 (9)0.0377 (10)0.0013 (8)0.0130 (8)0.0004 (8)
C20.0445 (10)0.0315 (10)0.0489 (12)0.0094 (9)0.0152 (9)0.0021 (9)
C30.0366 (9)0.0476 (12)0.0507 (12)0.0110 (9)0.0197 (9)0.0017 (10)
C40.0340 (8)0.0436 (11)0.0452 (11)0.0010 (8)0.0194 (8)0.0013 (9)
C50.0279 (7)0.0311 (9)0.0301 (9)0.0005 (7)0.0099 (7)0.0002 (7)
C60.0370 (8)0.0306 (9)0.0443 (11)0.0003 (8)0.0225 (8)0.0095 (8)
C70.0400 (8)0.0307 (10)0.0327 (9)0.0038 (8)0.0187 (7)0.0102 (8)
C80.0301 (8)0.0358 (10)0.0282 (9)0.0030 (8)0.0057 (7)0.0072 (8)
C90.0382 (9)0.0444 (11)0.0230 (9)0.0065 (9)0.0059 (8)0.0028 (8)
C100.0335 (8)0.0306 (9)0.0266 (9)0.0004 (7)0.0101 (7)0.0058 (7)
C110.0345 (8)0.0425 (11)0.0323 (10)0.0047 (8)0.0081 (8)0.0087 (9)
C120.0339 (8)0.0347 (10)0.0507 (12)0.0071 (8)0.0175 (8)0.0073 (9)
C130.0363 (8)0.0275 (9)0.0447 (11)0.0002 (8)0.0208 (8)0.0013 (8)
C140.0354 (8)0.0224 (8)0.0336 (9)0.0019 (7)0.0138 (7)0.0011 (7)
C150.0385 (8)0.0242 (9)0.0336 (9)0.0043 (7)0.0136 (8)0.0042 (8)
C160.0374 (8)0.0283 (9)0.0334 (9)0.0061 (8)0.0131 (7)0.0013 (8)
C170.0287 (7)0.0311 (9)0.0317 (9)0.0002 (7)0.0099 (7)0.0023 (8)
C180.0451 (11)0.0676 (16)0.0299 (11)0.0067 (11)0.0001 (9)0.0017 (11)
Cl10.03131 (19)0.0432 (3)0.0390 (2)0.00640 (19)0.01093 (18)0.0074 (2)
O20.0477 (9)0.148 (2)0.0455 (10)0.0170 (11)0.0135 (8)0.0286 (12)
O30.0480 (8)0.0870 (14)0.0833 (13)0.0125 (9)0.0281 (9)0.0105 (11)
O40.0596 (10)0.0473 (10)0.0895 (14)0.0037 (9)0.0137 (10)0.0118 (10)
O50.0701 (11)0.0498 (10)0.0628 (12)0.0255 (9)0.0070 (9)0.0032 (9)
Cl20.0361 (2)0.0452 (3)0.0322 (2)0.0008 (2)0.01346 (18)0.0027 (2)
O60.0578 (10)0.0774 (13)0.0504 (10)0.0063 (9)0.0015 (8)0.0168 (10)
O70.0605 (9)0.0810 (13)0.0664 (11)0.0064 (9)0.0266 (9)0.0309 (10)
O80.0700 (9)0.0539 (10)0.0574 (9)0.0102 (8)0.0390 (8)0.0030 (8)
O90.0461 (8)0.0707 (11)0.0427 (9)0.0164 (8)0.0089 (7)0.0063 (8)
O100.0507 (8)0.0499 (9)0.0323 (7)0.0004 (7)0.0157 (6)0.0007 (7)
Geometric parameters (Å, º) top
Zn1—N12.0418 (15)C8—H8B0.96 (2)
Zn1—N32.0498 (14)C9—C101.502 (3)
Zn1—O12.0552 (14)C9—H9A1.01 (2)
Zn1—N42.1273 (16)C9—H9B0.87 (2)
Zn1—N22.1336 (14)C10—C111.376 (3)
O1—C161.420 (2)C11—C121.364 (3)
O1—H1A0.73 (3)C11—H110.87 (2)
N1—C51.341 (2)C12—C131.375 (3)
N1—C11.344 (2)C12—H120.95 (2)
N2—C151.478 (2)C13—C141.371 (3)
N2—C81.488 (2)C13—H130.96 (2)
N2—C71.491 (3)C14—H140.99 (2)
N3—C141.340 (2)C15—C161.507 (3)
N3—C101.348 (2)C15—H15A0.97 (2)
N4—C171.121 (2)C15—H15B0.92 (2)
C1—C21.370 (3)C16—H16A0.962 (19)
C1—H10.94 (2)C16—H16B0.93 (2)
C2—C31.372 (3)C17—C181.448 (3)
C2—H20.90 (2)C18—H18A0.9800
C3—C41.372 (3)C18—H18B0.9800
C3—H30.99 (2)C18—H18C0.9800
C4—C51.378 (3)Cl1—O31.4036 (18)
C4—H40.97 (2)Cl1—O51.4098 (17)
C5—C61.496 (3)Cl1—O21.4130 (19)
C6—C71.520 (3)Cl1—O41.439 (2)
C6—H6A0.88 (3)Cl2—O61.4204 (19)
C6—H6B1.04 (2)Cl2—O81.4203 (17)
C7—H7A0.92 (2)Cl2—O71.4237 (19)
C7—H7B0.94 (2)Cl2—O91.4341 (16)
C8—C91.519 (3)O10—H10A0.76 (3)
C8—H8A0.97 (2)O10—H10B0.76 (3)
N1—Zn1—N3115.63 (6)N2—C8—H8B110.8 (12)
N1—Zn1—O1145.36 (6)C9—C8—H8B111.8 (12)
N3—Zn1—O198.96 (6)H8A—C8—H8B102.6 (17)
N1—Zn1—N490.27 (6)C10—C9—C8113.16 (17)
N3—Zn1—N496.83 (6)C10—C9—H9A108.7 (14)
O1—Zn1—N483.49 (6)C8—C9—H9A112.5 (14)
N1—Zn1—N295.93 (6)C10—C9—H9B108.9 (16)
N3—Zn1—N298.17 (6)C8—C9—H9B108.8 (15)
O1—Zn1—N280.23 (6)H9A—C9—H9B104 (2)
N4—Zn1—N2159.35 (6)N3—C10—C11120.61 (18)
C16—O1—Zn1115.99 (11)N3—C10—C9117.43 (16)
C16—O1—H1A105 (2)C11—C10—C9121.94 (17)
Zn1—O1—H1A128 (2)C12—C11—C10120.59 (18)
C5—N1—C1118.60 (17)C12—C11—H11122.5 (17)
C5—N1—Zn1123.73 (13)C10—C11—H11116.9 (17)
C1—N1—Zn1117.65 (13)C11—C12—C13118.88 (18)
C15—N2—C8109.79 (14)C11—C12—H12121.8 (14)
C15—N2—C7108.91 (15)C13—C12—H12119.3 (14)
C8—N2—C7108.52 (14)C14—C13—C12118.49 (19)
C15—N2—Zn1106.59 (11)C14—C13—H13119.8 (12)
C8—N2—Zn1109.92 (11)C12—C13—H13121.7 (13)
C7—N2—Zn1113.08 (11)N3—C14—C13122.95 (17)
C14—N3—C10118.45 (15)N3—C14—H14116.7 (13)
C14—N3—Zn1119.52 (12)C13—C14—H14120.2 (13)
C10—N3—Zn1121.86 (13)N2—C15—C16110.92 (16)
C17—N4—Zn1171.29 (16)N2—C15—H15A107.7 (13)
N1—C1—C2122.7 (2)C16—C15—H15A106.9 (13)
N1—C1—H1115.7 (12)N2—C15—H15B112.4 (13)
C2—C1—H1121.4 (12)C16—C15—H15B110.9 (14)
C1—C2—C3118.7 (2)H15A—C15—H15B107.9 (18)
C1—C2—H2115.1 (15)O1—C16—C15108.87 (15)
C3—C2—H2126.1 (15)O1—C16—H16A107.8 (13)
C2—C3—C4118.9 (2)C15—C16—H16A115.3 (12)
C2—C3—H3119.8 (14)O1—C16—H16B107.7 (12)
C4—C3—H3121.3 (14)C15—C16—H16B110.6 (13)
C3—C4—C5120.1 (2)H16A—C16—H16B106.3 (17)
C3—C4—H4124.6 (14)N4—C17—C18179.7 (3)
C5—C4—H4115.2 (14)C17—C18—H18A109.5
N1—C5—C4120.97 (18)C17—C18—H18B109.5
N1—C5—C6117.81 (17)H18A—C18—H18B109.5
C4—C5—C6121.20 (18)C17—C18—H18C109.5
C5—C6—C7114.46 (16)H18A—C18—H18C109.5
C5—C6—H6A109.1 (16)H18B—C18—H18C109.5
C7—C6—H6A107.6 (15)O3—Cl1—O5113.37 (13)
C5—C6—H6B108.8 (11)O3—Cl1—O2110.70 (12)
C7—C6—H6B111.6 (11)O5—Cl1—O2109.70 (14)
H6A—C6—H6B105 (2)O3—Cl1—O4108.46 (13)
N2—C7—C6113.36 (16)O5—Cl1—O4107.11 (11)
N2—C7—H7A106.4 (13)O2—Cl1—O4107.26 (15)
C6—C7—H7A108.5 (12)O6—Cl2—O8110.19 (12)
N2—C7—H7B107.1 (13)O6—Cl2—O7109.92 (12)
C6—C7—H7B109.1 (12)O8—Cl2—O7109.14 (12)
H7A—C7—H7B112.5 (17)O6—Cl2—O9109.39 (12)
N2—C8—C9112.38 (16)O8—Cl2—O9108.47 (10)
N2—C8—H8A107.9 (11)O7—Cl2—O9109.71 (11)
C9—C8—H8A110.9 (12)H10A—O10—H10B107 (3)
N1—Zn1—O1—C1687.53 (15)C2—C3—C4—C50.2 (3)
N3—Zn1—O1—C1695.58 (12)C1—N1—C5—C40.2 (3)
N4—Zn1—O1—C16168.49 (13)Zn1—N1—C5—C4178.23 (14)
N2—Zn1—O1—C161.24 (12)C1—N1—C5—C6178.38 (17)
N3—Zn1—N1—C5127.12 (14)Zn1—N1—C5—C60.0 (2)
O1—Zn1—N1—C556.29 (18)C3—C4—C5—N10.0 (3)
N4—Zn1—N1—C5135.17 (14)C3—C4—C5—C6178.12 (19)
N2—Zn1—N1—C525.10 (14)N1—C5—C6—C755.3 (2)
N3—Zn1—N1—C154.48 (15)C4—C5—C6—C7126.5 (2)
O1—Zn1—N1—C1122.12 (14)C15—N2—C7—C678.02 (19)
N4—Zn1—N1—C143.23 (14)C8—N2—C7—C6162.50 (16)
N2—Zn1—N1—C1156.50 (13)Zn1—N2—C7—C640.27 (19)
N1—Zn1—N2—C15122.82 (11)C5—C6—C7—N279.4 (2)
N3—Zn1—N2—C15120.16 (11)C15—N2—C8—C9163.48 (16)
O1—Zn1—N2—C1522.41 (11)C7—N2—C8—C977.59 (19)
N4—Zn1—N2—C1516.0 (2)Zn1—N2—C8—C946.54 (18)
N1—Zn1—N2—C8118.25 (12)N2—C8—C9—C1085.9 (2)
N3—Zn1—N2—C81.24 (13)C14—N3—C10—C111.4 (3)
O1—Zn1—N2—C896.51 (12)Zn1—N3—C10—C11176.70 (15)
N4—Zn1—N2—C8134.96 (17)C14—N3—C10—C9177.50 (17)
N1—Zn1—N2—C73.19 (12)Zn1—N3—C10—C92.2 (2)
N3—Zn1—N2—C7120.20 (12)C8—C9—C10—N357.6 (2)
O1—Zn1—N2—C7142.05 (12)C8—C9—C10—C11121.3 (2)
N4—Zn1—N2—C7103.60 (19)N3—C10—C11—C120.3 (3)
N1—Zn1—N3—C14106.38 (14)C9—C10—C11—C12179.1 (2)
O1—Zn1—N3—C1471.66 (14)C10—C11—C12—C131.6 (3)
N4—Zn1—N3—C1412.79 (14)C11—C12—C13—C141.2 (3)
N2—Zn1—N3—C14152.98 (14)C10—N3—C14—C131.8 (3)
N1—Zn1—N3—C1078.41 (15)Zn1—N3—C14—C13177.21 (15)
O1—Zn1—N3—C10103.55 (14)C12—C13—C14—N30.5 (3)
N4—Zn1—N3—C10172.00 (14)C8—N2—C15—C1676.63 (18)
N2—Zn1—N3—C1022.23 (15)C7—N2—C15—C16164.68 (14)
C5—N1—C1—C20.1 (3)Zn1—N2—C15—C1642.38 (16)
Zn1—N1—C1—C2178.35 (16)Zn1—O1—C16—C1524.41 (18)
N1—C1—C2—C30.1 (3)N2—C15—C16—O144.55 (19)
C1—C2—C3—C40.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O100.73 (3)1.88 (3)2.602 (2)170 (3)
O10—H10A···O20.76 (3)2.07 (3)2.836 (3)175 (3)
O10—H10B···O90.76 (3)2.06 (3)2.809 (3)172 (3)
C1—H1···O5i0.94 (2)2.57 (2)3.318 (3)136 (2)
C6—H6A···O3ii0.88 (3)2.58 (2)3.293 (3)139 (2)
C8—H8A···O6iii0.97 (2)2.79 (2)3.432 (3)124 (1)
C9—H9B···O8iii0.87 (2)2.67 (2)3.402 (3)143 (2)
C14—H14···O7i0.99 (2)2.42 (2)3.303 (3)149 (2)
Symmetry codes: (i) x, y1, z; (ii) x+2, y+2, z+2; (iii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C2H3N)(C16H21N3O)](ClO4)2·H2O
Mr594.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)17.3792 (13), 7.8924 (6), 18.6583 (14)
β (°) 109.487 (1)
V3)2412.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.35 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.659, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
16837, 5502, 4695
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.05
No. of reflections5502
No. of parameters409
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.91, 0.40

Computer programs: SMART (Bruker, 2001), SMART, SAINT (Bruker, 2002) and XPREP (Bruker, 2001), SHELXTL (Bruker, 2000), SHELXTL, X-SEED (Barbour, 2001).

Selected geometric parameters (Å, º) top
Zn1—N12.0418 (15)Zn1—N42.1273 (16)
Zn1—N32.0498 (14)Zn1—N22.1336 (14)
Zn1—O12.0552 (14)
N1—Zn1—N3115.63 (6)N1—Zn1—N295.93 (6)
N1—Zn1—O1145.36 (6)N3—Zn1—N298.17 (6)
N3—Zn1—O198.96 (6)O1—Zn1—N280.23 (6)
N1—Zn1—N490.27 (6)N4—Zn1—N2159.35 (6)
N3—Zn1—N496.83 (6)N4—C17—C18179.7 (3)
O1—Zn1—N483.49 (6)
O1—Zn1—N2—C1522.41 (11)N1—Zn1—N2—C73.19 (12)
N3—Zn1—N2—C81.24 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O100.73 (3)1.88 (3)2.602 (2)170 (3)
O10—H10A···O20.76 (3)2.07 (3)2.836 (3)175 (3)
O10—H10B···O90.76 (3)2.06 (3)2.809 (3)172 (3)
C1—H1···O5i0.94 (2)2.57 (2)3.318 (3)136 (2)
C6—H6A···O3ii0.88 (3)2.58 (2)3.293 (3)139 (2)
C8—H8A···O6iii0.97 (2)2.79 (2)3.432 (3)124 (1)
C9—H9B···O8iii0.87 (2)2.67 (2)3.402 (3)143 (2)
C14—H14···O7i0.99 (2)2.42 (2)3.303 (3)149 (2)
Symmetry codes: (i) x, y1, z; (ii) x+2, y+2, z+2; (iii) x+1, y+2, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds