Download citation
Download citation
link to html
X-ray analysis of the title compound reveals three crystallographically distinct cations of 1,9-diethyl­adeninium, two iodide anions and one triiodide anion in the asymmetric unit, giving six residues and the formula 3C9H14N5+·I3·2I. Standard purine nomenclature is used to identify the atoms of each adenine moiety. Hydrogen bonding is observed between atoms N6 and N7 of a pair of cations [N...N = 2.885 (4)/2.902 (3) and 2.854 (3)/2.854 (3) Å], with additional hydrogen bonding to I anions via the other N6 H atom [N...I = 3.708 (3), 3.738 (3) and 3.638 (3) Å]. The triiodide anion is not involved in hydrogen bonding. The bond lengths and angles of the 1,9-diethyl­adeninium cations are compared with literature values and confirm the formation of the imine tautomer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106029532/fa3022sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106029532/fa3022Isup2.hkl
Contains datablock I

CCDC reference: 621292

Comment top

Derivatized nucleobases have long been studied, due to the biological activity of the many compounds that contain them. Nucleoside analogues and substituted nucleobases are used as antiviral and anticancer therapeutic agents (Galmarini et al., 2002; Mitsuya et al., 1990). Additionally, modified nucleobases, including those with N1 alkylation, are present in natural systems such as tRNA (McCloskey & Nishimura, 1977; Rich, 1977). As a result, a detailed understanding of the structures and reactivity of nucleobase derivatives remains an important topic of research.

The title compound, (I), has three independent cations, A, B and C, in the asymmetric unit. Fig. 1 shows the independent components of (I) with the atom-numbering scheme. Selected bond distances and angles for the three cations are presented in Table 1, using the standard purine numbering scheme shown in the scheme.

The amine tautomeric form dominates for N9-substituted adenine derivatives under normal conditions, with <0.01% of the imine form in 9-ethyladenine and adenosine (Lippert et al., 1992). However, alkylation of the 1 position leads to imine stabilization (Dreyfus et al., 1977). Notable parameters to support imine formation in (I) are the shortening of the C6—N6 bond distance [1.314 (4), 1.318 (4) and 1.314 (4) Å in cations A, B and C, respectively] compared with 9-MeAH [1.329 (2) Å; Reference?] and the lengthening of the C6—N1 bond [1.369 (4), 1.373 (4) and 1.374 (4) Å in cations A, B and C, respectively] compared with 1.357 (2) Å obtained from the crystal structure of 9-MeAH (Kistenmacher & Rossi, 1977; Clowney et al., 1996). Although the differences are just at the limit of statistical significance, the clear trend supports the bonding description of the nucleobase derivative as being the imine form. The enhanced internal C6—N1—C2 angle [121.9 (3), 121.6 (3) and 121.3 (3)° for cations A, B and C, respectively] clearly shows the effects of a substituent on N1, compared with 118.7 (1)° for 9-MeAH. As expected, comparison between the purine parameters of the three cations of (I) shows that the three cations have the same dimensions within experimental error. Also, comparison of the geometric values for the cations of (I) with those for the cations of 1,9-dimethyladeninium chloride shows that the parameters of the purine ring are all within calculated error (Chiang et al., 1979).

The three unique cations in the asymmetric unit of (I) form two sets of hydrogen-bonded dimers (Fig. 2). Cations A and C form a hydrogen-bonded dimer via atoms N6 and N7 to give a ten-membered ring with two donors and two acceptors (N6A···N7C and N6C···N7A) [graph set R22(10); Bernstein et al., 1995]. Cation B similarly dimerizes with a neighbouring cation Bi at (-x, -y + 1, -z + 1) [N7B···N6Bi and N6Bi···N7B]. This pair lies on a crystallographic centre of symmetry, with the two hydrogen bonds having the same length. The angle between the planes of the two hydrogen-bonded dimers is 53.53 (6)°. There is additional hydrogen bonding to I- anions via the other N6 H atom (N6A···I47, N6B···I47 and N6C···I46). The triiodide anion is not involved in hydrogen bonding. Details of the hydrogen bonds are given in Table 2. A packing diagram is presented in Fig. 3 and illustrates the presence of alternating layers of B dimers and A···C dimers, as viewed down the b axis. Additionally, the hydrogen bonds to the anions are shown.

The triiodide anion is proposed to be a result of air oxidation of the I- anions present in the reaction mixture. This is a well documented reaction known to occur in acidic environments. According to a review by Svensson & Kloo (2003), the triiodide parameters of (I) are well within the expected range. Using these published parameters, the triiodide ion in (I) is defined as essentially linear, with I44—I43—I45 = 178.980 (11)°, and symmetric [I44—I43 = 2.9079 (4) Å and I43—I45 = 2.9186 (4) Å]. The triiodide anions in (I) do not have close contacts with any components of the unit cell.

Experimental top

the addition of equimolar quantities of 1,9-diethyladenine iodide (Itaya et al., 1972) and Re2(CH3COO)2Cl4·2H2O (Chakravarty et al., 1986) in ethanol resulted in a purple precipitate. The precipitate was treated with 0.2 molar equivalents of Re2(CH3CH2COO)4Cl2 (Brignole & Cotton, 1971) in acetonitrile. The resulting purple solid was removed by filtration and slow evaporation of the filtrate gave red crystals of the starting material [Should this be (I)?] suitable for X-ray diffraction.

Refinement top

Displacement ellipsoids did not show any abnormalities. H atoms were positioned geometrically after each cycle. All H atoms were included in the refinement in calculated positions as riding models, with N—H = 0.88 Å, and C—H = 0.95 for Ar—H, 0.99 for CH2, and 0.98 Å for CH3, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C) for methyl H. [Please check added text]

Computing details top

Data collection: SMART (Siemens, 1993); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The independent components of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The asymmetric unit of (I), including an extra congener of cation B at (-x, -y + 1, -z + 1), showing the formation of the hydrogen-bonded dimer (dotted lines).
[Figure 3] Fig. 3. A packing diagram of (I), viewed down the b axis, showing the hydrogen bonding (dotted lines) and the alternating layers of cation B hydrogen-bonded dimers and cation A···C hydrogen-bonded dimers (the latter roughly in the plane of the drawing).
Tris(1,9-diethyladeninium) triiodide diiodide top
Crystal data top
3C9H14N5+·I3·2IF(000) = 2296
Mr = 1211.26Dx = 2.020 Mg m3
MonoclinicP21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5476 reflections
a = 12.3570 (9) Åθ = 2.4–27.2°
b = 10.3185 (7) ŵ = 3.95 mm1
c = 31.305 (2) ÅT = 100 K
β = 93.876 (1)°Prism, red
V = 3982.4 (5) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Brruker SMART CCD area-detector
diffractometer
8826 independent reflections
Radiation source: fine-focus sealed tube7819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1515
Tmin = 0.439, Tmax = 0.537k = 1313
31380 measured reflectionsl = 3939
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0218P)2 + 5.0719P]
where P = (Fo2 + 2Fc2)/3
8826 reflections(Δ/σ)max = 0.022
424 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
3C9H14N5+·I3·2IV = 3982.4 (5) Å3
Mr = 1211.26Z = 4
MonoclinicP21/cMo Kα radiation
a = 12.3570 (9) ŵ = 3.95 mm1
b = 10.3185 (7) ÅT = 100 K
c = 31.305 (2) Å0.25 × 0.20 × 0.18 mm
β = 93.876 (1)°
Data collection top
Brruker SMART CCD area-detector
diffractometer
8826 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
7819 reflections with I > 2σ(I)
Tmin = 0.439, Tmax = 0.537Rint = 0.031
31380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.04Δρmax = 0.95 e Å3
8826 reflectionsΔρmin = 0.59 e Å3
424 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.4065 (2)0.6966 (2)0.84301 (8)0.0173 (5)
C2A0.4862 (3)0.7811 (3)0.83158 (10)0.0221 (7)
H2A0.51910.83410.85360.026*
N3A0.5203 (2)0.7949 (3)0.79351 (8)0.0206 (6)
C4A0.4671 (2)0.7171 (3)0.76460 (10)0.0159 (6)
C5A0.3841 (2)0.6319 (3)0.77174 (10)0.0139 (6)
C6A0.3513 (2)0.6187 (3)0.81361 (10)0.0153 (6)
N6A0.2759 (2)0.5377 (2)0.82461 (8)0.0165 (5)
H6A10.25980.53250.85150.020*
H6A20.24160.48870.80510.020*
N7A0.3484 (2)0.5706 (2)0.73440 (8)0.0154 (5)
C8A0.4107 (2)0.6188 (3)0.70597 (10)0.0171 (6)
H8A0.40510.59430.67670.021*
N9A0.4843 (2)0.7076 (2)0.72242 (8)0.0149 (5)
C13A0.3869 (3)0.6904 (3)0.88911 (10)0.0217 (7)
H13A0.30910.67300.89230.026*
H14A0.40490.77500.90260.026*
C15A0.4543 (3)0.5855 (4)0.91158 (11)0.0295 (8)
H15A0.43970.58360.94190.044*
H16A0.53140.60330.90880.044*
H17A0.43560.50140.89850.044*
C20A0.5663 (3)0.7826 (3)0.70081 (10)0.0196 (7)
H20A0.63790.77160.71660.024*
H21A0.54720.87570.70140.024*
C22A0.5740 (3)0.7402 (3)0.65525 (11)0.0266 (8)
H22A0.62920.79210.64200.040*
H23A0.50370.75250.63940.040*
H24A0.59430.64840.65460.040*
N1B0.3080 (2)0.4613 (2)0.46298 (8)0.0151 (5)
C2B0.3821 (2)0.5604 (3)0.46873 (10)0.0170 (6)
H2B0.45300.54480.45980.020*
N3B0.36430 (19)0.6728 (2)0.48513 (8)0.0168 (5)
C4B0.2623 (2)0.6849 (3)0.49724 (9)0.0160 (6)
C5B0.1805 (2)0.5946 (3)0.49265 (9)0.0151 (6)
C6B0.2033 (2)0.4743 (3)0.47443 (10)0.0159 (6)
N6B0.1323 (2)0.3795 (2)0.46865 (8)0.0192 (6)
H6B10.15170.30580.45720.023*
H6B20.06560.38980.47620.023*
N7B0.0880 (2)0.6400 (3)0.50999 (8)0.0183 (6)
C8B0.1160 (2)0.7559 (3)0.52410 (10)0.0195 (7)
H8B0.06790.81180.53770.023*
N9B0.2204 (2)0.7885 (2)0.51742 (8)0.0185 (6)
C13B0.3462 (3)0.3371 (3)0.44561 (10)0.0200 (7)
H13B0.41230.35300.43020.024*
H14B0.28980.30200.42480.024*
C15B0.3712 (3)0.2383 (3)0.48069 (11)0.0248 (7)
H15B0.39630.15770.46810.037*
H16B0.30540.22110.49560.037*
H17B0.42790.27220.50110.037*
C20B0.2806 (3)0.9070 (3)0.53013 (12)0.0266 (8)
H20B0.30980.94630.50450.032*
H21B0.34270.88370.55030.032*
C22B0.2115 (3)1.0050 (3)0.55094 (11)0.0275 (8)
H22B0.25521.08180.55870.041*
H23B0.18370.96740.57680.041*
H24B0.15061.02980.53090.041*
N1C0.0798 (2)0.2378 (2)0.66445 (8)0.0179 (6)
C2C0.0083 (3)0.1661 (3)0.67542 (11)0.0244 (7)
H2C0.04650.11940.65300.029*
N3C0.0442 (2)0.1561 (3)0.71316 (9)0.0248 (6)
C4C0.0159 (2)0.2254 (3)0.74275 (10)0.0182 (7)
C5C0.1046 (2)0.3011 (3)0.73582 (10)0.0145 (6)
C6C0.1399 (2)0.3098 (3)0.69439 (10)0.0160 (6)
N6C0.22291 (19)0.3800 (2)0.68407 (8)0.0168 (5)
H6C10.24120.38180.65740.020*
H6C20.26020.42530.70380.020*
N7C0.1468 (2)0.3541 (2)0.77378 (8)0.0174 (5)
C8C0.0829 (2)0.3099 (3)0.80245 (11)0.0199 (7)
H8C0.09220.33050.83200.024*
N9C0.0016 (2)0.2314 (3)0.78555 (8)0.0192 (6)
C13C0.1081 (3)0.2329 (3)0.61925 (10)0.0246 (7)
H13C0.08480.14840.60680.029*
H14C0.18790.23870.61830.029*
C15C0.0560 (3)0.3407 (4)0.59232 (11)0.0323 (9)
H15C0.07730.33300.56280.048*
H16C0.08000.42470.60410.048*
H17C0.02310.33430.59260.048*
C20C0.0820 (3)0.1618 (4)0.80749 (11)0.0326 (9)
H20C0.06660.06770.80660.039*
H21C0.15330.17670.79190.039*
C22C0.0883 (3)0.2026 (4)0.85325 (12)0.0306 (8)
H22C0.14520.15280.86620.046*
H23C0.10560.29520.85440.046*
H24C0.01850.18650.86910.046*
I430.248646 (17)0.97569 (2)0.760819 (8)0.02560 (6)
I440.18962 (2)0.96314 (2)0.849434 (8)0.03517 (7)
I450.31148 (2)0.98887 (2)0.673068 (8)0.03473 (7)
I460.652104 (17)0.98231 (2)0.912337 (7)0.02143 (6)
I470.134898 (17)0.45351 (2)0.921727 (7)0.01976 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0211 (13)0.0192 (13)0.0115 (13)0.0029 (11)0.0009 (11)0.0045 (10)
C2A0.0283 (18)0.0221 (17)0.0155 (16)0.0075 (14)0.0005 (14)0.0062 (13)
N3A0.0223 (14)0.0215 (14)0.0178 (14)0.0089 (11)0.0015 (12)0.0019 (11)
C4A0.0169 (15)0.0158 (15)0.0154 (16)0.0017 (12)0.0035 (13)0.0004 (12)
C5A0.0110 (13)0.0149 (14)0.0153 (15)0.0011 (11)0.0018 (12)0.0004 (12)
C6A0.0132 (14)0.0139 (14)0.0184 (16)0.0027 (11)0.0009 (12)0.0002 (12)
N6A0.0166 (13)0.0199 (13)0.0130 (13)0.0031 (10)0.0009 (11)0.0027 (10)
N7A0.0169 (13)0.0154 (12)0.0141 (13)0.0011 (10)0.0019 (11)0.0017 (10)
C8A0.0201 (15)0.0181 (15)0.0129 (15)0.0005 (12)0.0006 (13)0.0022 (12)
N9A0.0145 (12)0.0146 (12)0.0161 (13)0.0020 (10)0.0035 (11)0.0002 (10)
C13A0.0296 (18)0.0226 (16)0.0131 (16)0.0085 (14)0.0024 (14)0.0067 (13)
C15A0.034 (2)0.041 (2)0.0135 (17)0.0001 (17)0.0010 (15)0.0014 (15)
C20A0.0188 (16)0.0193 (16)0.0213 (17)0.0067 (13)0.0051 (14)0.0033 (13)
C22A0.0316 (19)0.0249 (18)0.0246 (19)0.0068 (15)0.0116 (16)0.0001 (15)
N1B0.0137 (12)0.0174 (13)0.0144 (13)0.0001 (10)0.0013 (10)0.0002 (10)
C2B0.0143 (14)0.0233 (16)0.0136 (15)0.0008 (12)0.0031 (12)0.0053 (13)
N3B0.0129 (12)0.0199 (13)0.0178 (14)0.0005 (10)0.0022 (11)0.0045 (11)
C4B0.0164 (15)0.0203 (15)0.0111 (15)0.0015 (12)0.0015 (12)0.0028 (12)
C5B0.0130 (14)0.0192 (15)0.0129 (15)0.0006 (12)0.0002 (12)0.0018 (12)
C6B0.0150 (14)0.0220 (16)0.0106 (14)0.0015 (12)0.0001 (12)0.0030 (12)
N6B0.0138 (12)0.0206 (14)0.0238 (15)0.0019 (11)0.0049 (11)0.0076 (11)
N7B0.0139 (12)0.0242 (14)0.0168 (14)0.0024 (11)0.0004 (11)0.0023 (11)
C8B0.0151 (15)0.0238 (16)0.0199 (17)0.0006 (13)0.0030 (13)0.0031 (13)
N9B0.0170 (13)0.0183 (13)0.0205 (14)0.0004 (10)0.0033 (11)0.0034 (11)
C13B0.0163 (15)0.0233 (16)0.0215 (17)0.0004 (13)0.0088 (13)0.0084 (13)
C15B0.0193 (16)0.0217 (17)0.033 (2)0.0025 (13)0.0016 (15)0.0037 (15)
C20B0.0227 (17)0.0201 (17)0.037 (2)0.0046 (14)0.0029 (16)0.0054 (15)
C22B0.0325 (19)0.0263 (18)0.0244 (19)0.0052 (15)0.0071 (16)0.0063 (15)
N1C0.0187 (13)0.0172 (13)0.0173 (14)0.0034 (10)0.0032 (11)0.0048 (11)
C2C0.0240 (17)0.0229 (17)0.0254 (19)0.0101 (14)0.0064 (15)0.0069 (14)
N3C0.0231 (15)0.0252 (15)0.0254 (16)0.0104 (12)0.0035 (13)0.0015 (12)
C4C0.0190 (16)0.0172 (15)0.0178 (16)0.0031 (12)0.0037 (13)0.0013 (13)
C5C0.0146 (14)0.0125 (14)0.0159 (16)0.0013 (11)0.0025 (12)0.0005 (12)
C6C0.0139 (14)0.0141 (14)0.0194 (16)0.0044 (12)0.0037 (13)0.0032 (12)
N6C0.0158 (13)0.0210 (13)0.0135 (13)0.0027 (10)0.0001 (11)0.0045 (11)
N7C0.0160 (13)0.0177 (13)0.0186 (14)0.0014 (10)0.0011 (11)0.0012 (11)
C8C0.0185 (16)0.0212 (16)0.0198 (17)0.0047 (13)0.0005 (14)0.0003 (13)
N9C0.0196 (13)0.0202 (14)0.0177 (14)0.0081 (11)0.0003 (12)0.0032 (11)
C13C0.0261 (18)0.0288 (18)0.0185 (17)0.0060 (14)0.0013 (14)0.0120 (14)
C15C0.0263 (19)0.053 (2)0.0173 (18)0.0018 (17)0.0006 (15)0.0003 (17)
C20C0.0296 (19)0.043 (2)0.025 (2)0.0217 (17)0.0031 (16)0.0035 (17)
C22C0.0274 (19)0.033 (2)0.033 (2)0.0062 (16)0.0119 (16)0.0045 (16)
I430.02348 (11)0.01799 (11)0.03477 (14)0.00156 (8)0.00224 (10)0.00062 (9)
I440.03507 (14)0.03477 (14)0.03601 (15)0.00137 (11)0.00493 (11)0.00021 (11)
I450.03723 (14)0.03208 (13)0.03464 (15)0.00698 (11)0.00062 (11)0.00412 (11)
I460.01742 (10)0.03375 (12)0.01321 (10)0.00525 (9)0.00158 (8)0.00501 (8)
I470.01974 (10)0.02323 (11)0.01622 (11)0.00090 (8)0.00063 (8)0.00575 (8)
Geometric parameters (Å, º) top
N1A—C6A1.369 (4)N9B—C20B1.472 (4)
N1A—C13A1.481 (4)C13B—C15B1.515 (5)
C2A—N1A1.380 (4)C13B—H13B0.9900
C2A—H2A0.9500C13B—H14B0.9900
N3A—C2A1.299 (4)C15B—H15B0.9800
C4A—N3A1.347 (4)C15B—H16B0.9800
C4A—N9A1.355 (4)C15B—H17B0.9800
C5A—N7A1.376 (4)C20B—C22B1.500 (5)
C5A—C4A1.380 (4)C20B—H20B0.9900
C5A—C6A1.405 (4)C20B—H21B0.9900
C6A—N6A1.314 (4)C22B—H22B0.9800
N6A—H6A10.8800C22B—H23B0.9800
N6A—H6A20.8800C22B—H24B0.9800
C8A—N7A1.313 (4)N1C—C6C1.374 (4)
C8A—H8A0.9500N1C—C13C1.481 (4)
N9A—C8A1.367 (4)C2C—N1C1.379 (4)
N9A—C20A1.475 (4)C2C—H2C0.9500
C13A—C15A1.510 (5)N3C—C2C1.294 (4)
C13A—h13a0.9900C4C—N3C1.352 (4)
C13A—H14A0.9900C4C—N9C1.364 (4)
C15A—H15A0.9800C5C—C4C1.376 (4)
C15A—H16A0.9800C5C—N7C1.378 (4)
C15A—H17A0.9800C5C—C6C1.399 (4)
C20A—C22A1.501 (4)C6C—N6C1.314 (4)
C20A—H20A0.9900N6C—H6C10.8800
C20A—H21A0.9900N6C—H6C20.8800
C22A—H22A0.9800C8C—N7C1.317 (4)
C22A—H23A0.9800C8C—H8C0.9500
C22A—H24A0.9800N9C—C8C1.368 (4)
N1B—C6B1.373 (4)N9C—C20C1.467 (4)
N1B—C13B1.481 (4)C13C—C15C1.513 (5)
C2B—N1B1.376 (4)C13C—H13C0.9900
N3B—C2B1.293 (4)C13C—H14C0.9900
C4B—N3B1.346 (4)C15C—H15C0.9800
C4B—N9B1.362 (4)C15C—H16C0.9800
C5B—C4B1.376 (4)C15C—H17C0.9800
C5B—N7B1.380 (4)C20C—C22C1.500 (5)
C5B—C6B1.402 (4)C20C—H20C0.9900
C6B—N6B1.318 (4)C20C—H21C0.9900
N6B—H6B10.8800C22C—H22C0.9800
N6B—H6B20.8800C22C—H23C0.9800
C8B—N7B1.313 (4)C22C—H24C0.9800
C8B—H8B0.9500i43—i452.9079 (4)
N9B—C8B1.363 (4)i43—i442.9186 (4)
N1A—C2A—H2A117.0C8B—N7B—C5B103.6 (3)
N1A—C6A—C5A114.0 (3)N9B—C4B—C5B106.3 (3)
N1A—C13A—C15A111.3 (3)N9B—C8B—H8B123.1
N1A—C13A—H13a109.4N9B—C20B—C22B112.7 (3)
N1A—C13A—H14A109.4N9B—C20B—H20B109.1
C2A—N3A—C4A112.1 (3)N9B—C20B—H21B109.1
C2A—N1A—C13A116.6 (2)H13B—C13B—H14B107.9
N3A—C2A—N1A126.1 (3)C13B—C15B—H15B109.5
N3A—C2A—H2A117.0C13B—C15B—H16B109.5
N3A—C4A—N9A126.6 (3)C13B—C15B—H17B109.5
N3A—C4A—C5A127.2 (3)H15B—C15B—H16B109.5
C4A—C5A—C6A118.6 (3)C15B—C13B—H13B109.3
C4A—N9A—C8A105.8 (2)C15B—C13B—H14B109.3
C4A—N9A—C20A124.5 (3)H15B—C15B—H17B109.5
C6A—N1A—C2A121.9 (3)H16B—C15B—H17B109.5
C6A—N1A—C13A121.5 (3)C20B—C22B—H24B109.5
C6A—N6A—H6A1120.0H20B—C20B—H21B107.8
C6A—N6A—H6A2120.0C20B—C22B—H22B109.5
H6A1—N6A—H6A2120.0C20B—C22B—H23B109.5
N6A—C6A—N1A121.8 (3)C22B—C20B—H21B109.1
N6A—C6A—C5A124.1 (3)C22B—C20B—H20B109.1
N7A—C5A—C4A110.8 (3)H22B—C22B—H23B109.5
N7A—C5A—C6A130.7 (3)H22B—C22B—H24B109.5
N7A—C8A—N9A113.8 (3)H23B—C22B—H24B109.5
N7A—C8A—H8A123.1N1C—C2C—H2C116.7
C8A—N9A—C20A129.7 (3)N1C—C6C—C5C114.2 (3)
C8A—N7A—C5A103.4 (2)N1C—C13C—C15C112.8 (3)
N9A—C4A—C5A106.2 (3)N1C—C13C—H13C109.0
N9A—C8A—H8A123.1N1C—C13C—H14C109.0
N9A—C20A—C22A111.9 (3)C2C—N3C—C4C112.2 (3)
N9A—C20A—H20A109.2C2C—N1C—C13C117.5 (3)
N9A—C20A—H21A109.2N3C—C2C—N1C126.5 (3)
H13A—C13A—H14A108.0N3C—C2C—H2C116.7
C13A—C15A—H15A109.5N3C—C4C—N9C126.5 (3)
C13A—C15A—H16A109.5N3C—C4C—C5C126.8 (3)
C13A—C15A—H17A109.5C4C—C5C—N7C110.4 (3)
C15A—C13A—h13a109.4C4C—C5C—C6C119.0 (3)
C15A—C13A—H14A109.4C4C—N9C—C8C105.5 (2)
H15A—C15A—H17A109.5C4C—N9C—C20C125.4 (3)
H15A—C15A—H16A109.5C6C—N1C—C2C121.3 (3)
H16A—C15A—H17A109.5C6C—N1C—C13C121.2 (3)
H20A—C20A—H21A107.9N6C—C6C—N1C121.7 (3)
C20A—C22A—H22A109.5N6C—C6C—C5C124.1 (3)
C20A—C22A—H23A109.5C6C—N6C—H6C1120.0
C20A—C22A—H24A109.5C6C—N6C—H6C2120.0
C22A—C20A—H20A109.2H6C1—N6C—H6C2120.0
C22A—C20A—H21A109.2N7C—C5C—C6C130.6 (3)
H22A—C22A—H23A109.5N7C—C8C—N9C113.6 (3)
H22A—C22A—H24A109.5N7C—C8C—H8C123.2
H23A—C22A—H24A109.5C8C—N7C—C5C103.9 (3)
N1B—C2B—H2B117.0C8C—N9C—C20C129.1 (3)
N1B—C6B—C5B114.3 (3)N9C—C4C—C5C106.6 (3)
N1B—C13B—C15B111.7 (3)N9C—C8C—H8C123.2
N1B—C13B—H13B109.3N9C—C20C—C22C113.2 (3)
N1B—C13B—H14B109.3N9C—C20C—H20C108.9
C2B—N1B—C13B117.7 (2)N9C—C20C—H21C108.9
C2B—N3B—C4B112.5 (3)H13C—C13C—H14C107.8
N3B—C2B—N1B126.0 (3)C13C—C15C—H15C109.5
N3B—C2B—H2B117.0C13C—C15C—H16C109.5
N3B—C4B—N9B126.6 (3)C13C—C15C—H17C109.5
N3B—C4B—C5B127.1 (3)C15C—C13C—H13C109.0
C4B—C5B—N7B110.6 (3)C15C—C13C—H14C109.0
C4B—C5B—C6B118.4 (3)H15C—C15C—H16C109.5
C4B—N9B—C8B105.7 (3)H15C—C15C—H17C109.5
C4B—N9B—C20B125.2 (3)H16C—C15C—H17C109.5
C6B—N1B—C2B121.6 (3)H20C—C20C—H21C107.8
C6B—N1B—C13B120.6 (2)C20C—C22C—H22C109.5
N6B—C6B—N1B121.5 (3)C20C—C22C—H23C109.5
N6B—C6B—C5B124.2 (3)C20C—C22C—H24C109.5
C6B—N6B—H6B1120.0C22C—C20C—H21C108.9
C6B—N6B—H6B2120.0H22C—C22C—H23C109.5
H6B1—N6B—H6B2120.0H22C—C22C—H24C109.5
N7B—C5B—C6B130.9 (3)C22C—C20C—H20C108.9
N7B—C8B—N9B113.8 (3)H23C—C22C—H24C109.5
N7B—C8B—H8B123.1i45—i43—i44178.980 (11)
C8B—N9B—C20B129.0 (3)
C2A—N1A—C13A—C15A92.1 (3)C5B—C4B—N3B—C2B2.0 (5)
C2A—N1A—C6A—N6A179.6 (3)C6B—C5B—C4B—N3B1.7 (5)
C2A—N1A—C6A—C5A0.8 (4)C6B—C5B—C4B—N9B177.0 (3)
N3A—C4A—N9A—C8A179.1 (3)C6B—C5B—N7B—C8B176.6 (3)
N3A—C4A—N9A—C20A0.1 (5)C6B—N1B—C13B—C15B78.2 (4)
N3A—C2A—N1A—C6A2.1 (5)N7B—C5B—C4B—N3B178.3 (3)
N3A—C2A—N1A—C13A175.4 (3)N7B—C5B—C4B—N9B0.4 (3)
C4A—N9A—C8A—N7A0.4 (4)N7B—C5B—C6B—N6B3.6 (5)
C4A—N9A—C20A—C22A173.8 (3)N7B—C5B—C6B—N1B175.9 (3)
C4A—C5A—N7A—C8A0.6 (3)C8B—N9B—C20B—C22B3.8 (5)
C4A—N3A—C2A—N1A1.2 (5)N9B—C4B—N3B—C2B176.4 (3)
C4A—C5A—C6A—N6A177.6 (3)N9B—C8B—N7B—C5B0.4 (4)
C4A—C5A—C6A—N1A1.1 (4)C13B—N1B—C6B—N6B3.0 (4)
C5A—C4A—N9A—C8A0.7 (3)C13B—N1B—C6B—C5B176.5 (3)
C5A—C4A—N9A—C20A179.9 (3)C20B—N9B—C8B—N7B177.6 (3)
C5A—C4A—N3A—C2A1.0 (5)C2C—N1C—C6C—N6C178.9 (3)
C6A—C5A—C4A—N3A2.2 (5)C2C—N1C—C13C—C15C92.9 (4)
C6A—C5A—C4A—N9A178.1 (3)C2C—N1C—C6C—C5C1.0 (4)
C6A—C5A—N7A—C8A178.1 (3)N3C—C4C—N9C—C8C178.4 (3)
C6A—N1A—C13A—C15A85.4 (4)N3C—C4C—N9C—C20C0.7 (5)
N7A—C5A—C4A—N3A179.0 (3)N3C—C2C—N1C—C6C0.6 (5)
N7A—C5A—C4A—N9A0.8 (3)N3C—C2C—N1C—C13C178.6 (3)
N7A—C5A—C6A—N6A1.0 (5)C4C—N9C—C20C—C22C171.4 (3)
N7A—C5A—C6A—N1A179.7 (3)C4C—N9C—C8C—N7C0.2 (4)
C8A—N9A—C20A—C22A7.3 (5)C4C—C5C—N7C—C8C0.2 (3)
N9A—C4A—N3A—C2A179.3 (3)C4C—N3C—C2C—N1C0.4 (5)
N9A—C8A—N7A—C5A0.1 (3)C4C—C5C—C6C—N6C179.3 (3)
C13A—N1A—C6A—N6A2.2 (4)C4C—C5C—C6C—N1C0.5 (4)
C13A—N1A—C6A—C5A176.6 (3)C5C—C4C—N9C—C8C0.4 (3)
C20A—N9A—C8A—N7A179.5 (3)C5C—C4C—N9C—C20C178.0 (3)
C2B—N1B—C13B—C15B99.2 (3)C5C—C4C—N3C—C2C0.9 (5)
C2B—N1B—C6B—N6B179.6 (3)C6C—C5C—C4C—N3C0.4 (5)
C2B—N1B—C6B—C5B0.9 (4)C6C—C5C—C4C—N9C178.3 (3)
N3B—C4B—N9B—C20B0.6 (5)C6C—C5C—N7C—C8C177.8 (3)
N3B—C4B—N9B—C8B178.6 (3)C6C—N1C—C13C—C15C88.0 (4)
N3B—C2B—N1B—C6B0.5 (5)N7C—C5C—C4C—N3C178.3 (3)
N3B—C2B—N1B—C13B176.9 (3)N7C—C5C—C4C—N9C0.4 (3)
C4B—N9B—C8B—N7B0.2 (4)N7C—C5C—C6C—N6C3.3 (5)
C4B—C5B—N7B—C8B0.5 (3)N7C—C5C—C6C—N1C176.9 (3)
C4B—N9B—C20B—C22B178.8 (3)C8C—N9C—C20C—C22C11.5 (5)
C4B—N3B—C2B—N1B0.8 (4)N9C—C4C—N3C—C2C177.6 (3)
C4B—C5B—C6B—N6B179.4 (3)N9C—C8C—N7C—C5C0.0 (4)
C4B—C5B—C6B—N1B0.1 (4)C13C—N1C—C6C—N6C2.0 (4)
C5B—C4B—N9B—C8B0.1 (3)C13C—N1C—C6C—C5C178.1 (3)
C5B—C4B—N9B—C20B178.1 (3)C20C—N9C—C8C—N7C177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6C—H6C2···N7A0.882.052.902 (3)162
N6B—H6B1···I47i0.882.903.738 (3)160
N6C—H6C1···I46ii0.882.823.638 (3)155
N6A—H6A1···I470.882.893.708 (3)156
N6B—H6B2···N7Biii0.882.002.854 (3)164
N6A—H6A2···N7C0.882.032.885 (4)165
C8A—H8A···I46ii0.953.053.989 (3)168
C2A—H2A···I460.952.833.769 (3)170
C2B—H2B···I46iv0.952.973.903 (3)167
C2C—H2C···I47v0.953.043.983 (3)171
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x, y+1, z+1; (iv) x, y+3/2, z1/2; (v) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula3C9H14N5+·I3·2I
Mr1211.26
Crystal system, space groupMonoclinicP21/c
Temperature (K)100
a, b, c (Å)12.3570 (9), 10.3185 (7), 31.305 (2)
β (°) 93.876 (1)
V3)3982.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.95
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBrruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.439, 0.537
No. of measured, independent and
observed [I > 2σ(I)] reflections
31380, 8826, 7819
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.062, 1.04
No. of reflections8826
No. of parameters424
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.59

Computer programs: SMART (Siemens, 1993), SMART, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), CAMERON (Watkin et al., 1996), CRYSTALS (Betteridge et al., 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6C—H6C2···N7A0.882.052.902 (3)162.2
N6B—H6B1···I47i0.882.903.738 (3)159.8
N6C—H6C1···I46ii0.882.823.638 (3)154.8
N6A—H6A1···I470.882.893.708 (3)155.9
N6B—H6B2···N7Biii0.882.002.854 (3)163.9
N6A—H6A2···N7C0.882.032.885 (4)164.9
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x, y+1, z+1.
Comparative geometric parameters (Å,°) using the standard purine numbering for the independent 1,9-diethyladenine cations of (I) (labelled A, B, and C) top
Purine No.ABC
N1—C21.380 (4)1.376 (4)1.379 (4)
C2—N31.299 (4)1.293 (4)1.294 (4)
N3—N41.347 (4)1.346 (4)1.352 (4)
C4—C51.380 (4)1.376 (4)1.376 (4)
C5—C61.405 (4)1.402 (4)1.399 (4)
C6—N61.314 (4)1.318 (4)1.314 (4)
C6—N11.369 (4)1.373 (4)1.374 (4)
C5—N71.376 (4)1.380 (4)1.378 (4)
N7—C81.313 (4)1.313 (4)1.317 (4)
C8—N91.367 (4)1.363 (4)1.368 (4)
N9—C41.355 (4)1.362 (4)1.364 (4)
N1–C2–N3126.1 (3)126.0 (3)126.5 (3)
C2–N3–C4112.1 (3)112.5 (3)112.2 (3)
N3–C4–C5127.2 (3)127.1 (3)126.8 (3)
C4–C5–C6118.6 (3)118.4 (3)119.0 (3)
C5–C6–N1114.0 (3)114.3 (3)114.2 (3)
C6–N1–C2121.9 (3)121.6 (3)121.3 (3)
N6–C6–N1121.8 (3)121.5 (3)121.7 (3)
C4–C5–N7110.8 (3)110.6 (3)110.4 (3)
C5–N7–C8103.4 (2)103.6 (3)103.9 (3)
N7–C8–N9113.8 (3)113.8 (3)113.6 (3)
C8–N9–C4105.8 (2)105.7 (3)105.5 (2)
N9–C4–C5106.2 (3)106.3 (3)106.6 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds