Download citation
Download citation
link to html
Crystals of the novel title arsenic(III)–phthalocyanine complex, [As(C32H16N8)]2[As2I8] or [AsPc]2[As2I8], where Pc is the phthalocyaninate(2−) macrocycle, have been obtained from the reaction of pure powdered arsenic with phthalonitrile under oxidizing conditions (iodine vapour) at 463 K. The crystals are formed by separate but inter­acting [AsPc]+ cations and centrosymmetric [As2I8]2− anions. The As atom of the [AsPc]+ ion is bonded to the four isoindole N atoms of the Pc macrocycle and lies 0.762 (1) Å out of their plane. The anionic part of the complex consists of two [AsI4] units joined together into a centrosymmetric [As2I8]2− counter-ion. The arrangement of oppositely charged moieties, viz. [AsPc]+ and [As2I8]2−, in the crystal structure is determined mainly by their ionic attractions and by π–π inter­actions between the aromatic phthalocyaninate(2−) macrocycles.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105042113/fa1174sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105042113/fa1174Isup2.hkl
Contains datablock I

CCDC reference: 299646

Comment top

The present study is part of an investigation on the synthesis, characterization and stereochemistry of metallophthalocyaninate complexes obtained under oxidizing conditions under iodine vapour. In the partially oxidized iodine-doped metallophthalocyanines and metallodiphthalocyanines, the I atoms form linear chains of symmetrical I3 ions, which are usually disordered (Janczak, Kubiak & Jezierski, 1999; Janczak & Idemori, 2001a) or ordered in the crystal structure (Janczak, 2003); in metallophthalocyanines, the I atoms are directly linked to the central metal ion, yielding mono- or diiodometallophthalocyanines (Janczak & Kubiak, 1999a,b; Janczak & Idemori, 2001b). Alternatively, the I atoms can form a neutral I2 molecule, which acts as a bridge for dimerization (Janczak, Kubiak & Hahn, 1999; Janczak, 2004) or for developing a polymeric supramolecular structure (Janczak, Razik & Kubiak, 1999; Janczak & Idemori, 2002a).

The metallophthalocyanines with group 15 metals are less well investigated. The title compound, (I), is an example of a phthalocyaninate (Pc) complex containing the same metal in both the cation and the anion, i.e. [AsPc]+ and [As2I8]2−. A search of the Cambridge Structural Database (Version 5.24; Allen, 2002) for phthalocyaninate structures containing the same metal in both parts of the complex gives only [(SbPc)4(Sb4I16)] (Janczak & Idemori, 2002b), [(BiPc)4(Bi4I16)] (Kubiak & Ejsmont, 1999), [(AsPc)2(As4I14)] (Janczak & Kubiak, 2003) and [(SbPc)2(Sb4I14)] (Perpétuo & Janczak, 2005), none of which contain the [M2I8]2− ion. The present [AsPc]2[As2I8] structure is therefore the first example of this type of phthalocyaninate system.

The crystal structure of (I) is built up of separate but interacting [AsPc]+ and [As2I8]2− units (Fig. 1). The phthalocyaninate(2-) macrocycle of the [AsPc]+ moiety is saucer-shaped as a result of the interaction of the central AsIII ion with the oppositely charged [As2I8]2− counter-ion. The greatest deviations from the plane defined by the four isoindole N atoms of the phthalocyaninate macrocycle are observed for the outermost C atoms of the phenyl rings, ranging from 0.074 (1) to 0.346 (1) Å for the C2–C7 ring. The positively charged AsIII atom of the [AsPc]+ cation, which is coordinated by the four isoindole N atoms, is significantly displaced from the N4-isoindole plane [0.762 (1) Å] towards atoms I2, I3 and I4 of the [As2I8]2− anion. The As2···I2i [symmetry code: (i) −x + 1/2, −y + 3/2, −z + 1], As2···I4 and As2···I3 distances of 3.5376 (9), 3.5655 (8) and 3.7941 (9) Å, respectively, are shorter than the sum of the van der Waals radii of As and I atoms (Shannon, 1976). The displacement of the AsIII atom from the N4-isoindole plane is comparable to that observed in phthalocyaninato(2-)arsenic(III) triiodide [0.757 (2) Å; Janczak & Idemori, 2002c] and in bis[phthalocyaninato(2-)arsenic(III)] tetradecaiodotetraarsenic(III) [0.743 (3) Å; Janczak & Kubiak, 2003]. In the SbIII–phthalocyanine (Kubiak & Razik, 1998), SbIII–phthalocyanine triiodide (Kubiak, Janczak & Razik, 1999) and two SbIII–phthalocyanine SbIII–iodine complexes (Janczak & Idemori, 2002b; Perpétuo & Janczak, 2005), the displacement of the central Sb atom from the N4-isoindole plane is ~0.25 Å greater than that observed in the AsIII–phthalocyaninate(2-) complexes. This difference is quite reasonable, because of the difference between the ionic radii of AsIII and SbIII (Shannon, 1976). The ionic attraction between the [AsPc]+ and [As2I8]2− ions is clearly manifested in the As—N coordination, leading to the molecular symmetry of the As—N4 core being close to Cs rather than C4v, which corresponds to the conformation in solution. The displacement of the AsIII atom from the N4-isoindole plane is significantly greater in the unique example of a partially oxidized I-doped AsIII–phthalocyaninate metal-free phthalocyanine complex [0.975 (2) Å; Janczak, Kubiak & Jezierski, 1999], as a result of the location of the As atom between the two phthalocyaninate rings.

The anionic part of (I) consists of two AsI4 moieties joined together by two bridging I atoms to form the centrosymmetic [As2I8]2− anion. The As—I bond lengths fall into two groups, namely shorter As—I bonds, which join the terminal I atoms, and longer As—I bonds with the I-bridging atoms. Thus the [As2I8]2− counter-ion can be viewed as two distorted square-pyramidal AsI5 polyhedra linked together by one edge. The distortion of the AsI5 units from ideal square-pyramidal geometry is probably due to the lone electron pair on the AsIII atoms predicted by the valence-shell electron-pair repulsion model (Gillespie, 1963, 1992), as well as to the interaction with the oppositely charged [AsPc]+ counter-ion. Looking in more detail at the As—I bond lengths in the [As2I8]2− ion, it is clear that the I atoms are linked to As with different strengths; atom I3 is linked more strongly than atom I1, and atom I1 more strongly than atom I4 (Table 1). These differences correlate with the strength of the interactions between the I atoms in the [As2I8]2− anion and the oppositely charged AsIII atom of the [AsPc]+ moiety. The strongest interaction between the [AsPc]+ and the [As2I8]2− ions takes place between the As atom of the [AsPc]+ ion and the bridging I atom of the [As2I8]2− ion [As2···I2i = 3.5376 (9) Å].

The ionic attraction between the [AsPc]+ and [As2I8]2− ions seems to be significant in the crystal structure (Fig. 2). The basic packing unit includes two [AsPc]+ complexes related by an inversion centre and one centrosymmetric [As2I8]2− counter-ion. The positively charged [AsPc]+ moieties are attached to the [As2I8]2− anion on both sides, forming centrosymmetric [(AsPc)(As2I8)(AsPc)] aggregates with a distance of ~10.11 (1) Å between the N4-isoindole planes. These aggregates form stacks that are propagated along the [101] direction. The distance of ~3.41 (1) Å between the N4-isoindole planes of two neighbouring [AsPc]+ units within the stack indicates strong ππ interaction between Pc macrocycles (Pauling, 1960). The ππ intermolecular interaction is a common feature of phthalocyanine chemistry, and it leads phthalocyanine and its metal complexes to form supramolecular aggregates (Nevin et al., 1987; Terekhov et al., 1996; Isago et al., 1997, 1998).

Although the crystal of [(AsPc)2(As2I8)] is built up from oppositely charged [AsPc]+ and As2I8]2− ions, the compound does not possess the characteristic properties of ionic crystals. The solubility of this compound in most polar solvents, such as water, methanol, ethanol and acetone, is insignificant, and it is slightly soluble in pyridine, dimethyl sulfoxide, tetrahydrofuran, chloronaphthalene and other aromatic solvents. This is in agreement with the crystal structure, in which both hydrophilic parts of the complex are surrounded by the hydrophobic phenyl rings of the Pc macrocycle.

The electrical conductivity of (I) measured from a single-crystal along the stacking direction of the {[AsPc]+···[As2I8]2−···[AsPc]+} aggregates (along the [101] direction) as well as along the b axis (perpendicular to the stacks), exhibits non-metallic character (dσ/dT > 0). At room temperature the conductivity is ~4.4–5.1 × 10−6 Ω−1 cm−1 along [101] and ~5.8–6.5 × 10−7 Ω−1 cm−1 along the b axis.

Experimental top

The crystals of the title compound were obtained by the direct reaction of pure powdered arsenic with phthalonitrile (Kubiak & Janczak, 1993) under a stream of iodine vapour at 463 K. [Quantities of reagents?]

Refinement top

The greatest positive and negative residual electron densities are located at the positions (0.1871, 0.2648, 0.3078) and (0.1269, 0.6243, 0.3007), respectively.

Computing details top

Data collection: KM-4 CCD Software (Kuma 2001); cell refinement: KM-4 CCD Software; data reduction: KM-4 CCD Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990b); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the (a) [AsPc]+ and (b) [As2I8]2− units with the labelling of the atoms. Displacement ellipsoids are shown at the 50% probability level and H atoms as spheres of arbitrary radii. [Symmetry code: (i) −x 1/2, −y + 3/2, −z + 1.]
[Figure 2] Fig. 2. The molecular stacking in the extended structure. The dashed lines represent the As···I interactions between the [AsPc]+ and [As2I8]2− units. The distances d1 and d2 are 3.41 and 10.11 Å.
Bis{[phthalocyaninato(2-)]arsenic(III)} octaiododiarsenic(III) top
Crystal data top
[As(C32H16N8)]2[As2I8]F(000) = 4336
Mr = 2339.94Dx = 2.246 Mg m3
Dm = 2.24 Mg m3
Dm measured by flotation in what?
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5312 reflections
a = 19.357 (3) Åθ = 3.3–28.3°
b = 16.537 (2) ŵ = 5.54 mm1
c = 21.783 (3) ÅT = 295 K
β = 97.09 (1)°Parallelepiped, black–violet
V = 6919.6 (17) Å30.42 × 0.24 × 0.24 mm
Z = 4
Data collection top
Kuma KM-4 CCD area-detector
diffractometer
8498 independent reflections
Radiation source: fine-focus sealed tube5312 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 28.3°, θmin = 3.3°
ω scansh = 2525
Absorption correction: analytical
face-indexed, SHELXTL (Sheldrick, 1990b)
k = 2221
Tmin = 0.212, Tmax = 0.273l = 2828
37315 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0806P)2]
where P = (Fo2 + 2Fc2)/3
8498 reflections(Δ/σ)max = 0.001
416 parametersΔρmax = 1.72 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
[As(C32H16N8)]2[As2I8]V = 6919.6 (17) Å3
Mr = 2339.94Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.357 (3) ŵ = 5.54 mm1
b = 16.537 (2) ÅT = 295 K
c = 21.783 (3) Å0.42 × 0.24 × 0.24 mm
β = 97.09 (1)°
Data collection top
Kuma KM-4 CCD area-detector
diffractometer
8498 independent reflections
Absorption correction: analytical
face-indexed, SHELXTL (Sheldrick, 1990b)
5312 reflections with I > 2σ(I)
Tmin = 0.212, Tmax = 0.273Rint = 0.028
37315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.00Δρmax = 1.72 e Å3
8498 reflectionsΔρmin = 1.07 e Å3
416 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.41698 (2)0.56124 (3)0.47197 (3)0.06785 (17)
I20.35105 (2)0.78309 (3)0.52327 (3)0.06633 (19)
I30.29321 (2)0.69707 (2)0.350978 (19)0.06351 (14)
I40.22161 (2)0.49341 (2)0.42133 (2)0.06544 (14)
As10.29310 (3)0.63305 (4)0.45974 (3)0.05431 (17)
As20.10542 (3)0.62595 (4)0.33005 (3)0.06176 (19)
N10.0961 (3)0.7380 (3)0.2858 (2)0.0662 (13)
N20.1806 (3)0.7174 (3)0.2098 (3)0.0756 (15)
N30.1382 (3)0.5898 (3)0.2465 (2)0.0698 (14)
N40.1285 (4)0.4451 (4)0.2523 (3)0.100 (2)
N50.0565 (3)0.5150 (4)0.3213 (3)0.0810 (17)
N60.0228 (4)0.5301 (4)0.3990 (4)0.102 (2)
N70.0141 (3)0.6605 (3)0.3588 (3)0.0718 (15)
N80.0182 (3)0.8074 (4)0.3476 (3)0.0729 (16)
C10.0643 (4)0.8042 (4)0.3088 (3)0.0677 (16)
C20.0916 (4)0.8770 (4)0.2812 (3)0.0732 (18)
C30.0769 (4)0.9563 (5)0.2882 (4)0.094 (2)
H30.04720.97480.31560.113*
C40.1114 (5)1.0093 (5)0.2493 (4)0.094 (3)
H40.10451.06480.25210.124*
C50.1517 (4)0.9829 (5)0.2108 (4)0.082 (2)
H50.16891.02020.18460.098*
C60.1717 (5)0.9010 (5)0.2055 (3)0.087 (2)
H60.20460.88360.18090.105*
C70.1367 (4)0.8501 (4)0.2411 (3)0.0780 (19)
C80.1412 (3)0.7595 (4)0.2436 (3)0.0649 (16)
C90.1776 (4)0.6372 (5)0.2129 (4)0.086 (2)
C100.2162 (4)0.5879 (4)0.1734 (3)0.081 (2)
C110.2627 (5)0.6071 (5)0.1313 (4)0.107 (3)
H110.27420.66050.12380.140*
C120.2906 (5)0.5451 (5)0.1017 (4)0.113 (3)
H120.32370.55610.07530.135*
C130.2706 (6)0.4647 (6)0.1101 (5)0.102 (4)
H130.29000.42410.08820.159*
C140.2241 (5)0.4438 (5)0.1490 (4)0.110 (3)
H140.21060.39030.15320.133*
C150.1962 (5)0.5086 (5)0.1837 (3)0.092 (2)
C160.1509 (5)0.5090 (5)0.2297 (4)0.087 (2)
C170.0859 (4)0.4470 (5)0.2930 (4)0.086 (2)
C180.0578 (5)0.3741 (5)0.3231 (5)0.103 (3)
C190.0721 (6)0.2908 (6)0.3131 (6)0.114 (4)
H190.10100.27220.28510.161*
C200.0361 (7)0.2393 (6)0.3519 (6)0.115 (5)
H200.04400.18390.34990.186*
C210.0075 (5)0.2643 (5)0.3902 (4)0.102 (3)
H210.02960.22630.41250.123*
C220.0211 (5)0.3460 (5)0.3981 (5)0.108 (4)
H220.05180.36410.42470.154*
C230.0145 (5)0.3989 (5)0.3634 (4)0.098 (2)
C240.0127 (4)0.4859 (5)0.3626 (4)0.097 (3)
C250.0236 (4)0.6133 (5)0.3953 (4)0.081 (2)
C260.0670 (4)0.6603 (5)0.4276 (4)0.081 (2)
C270.1143 (4)0.6411 (5)0.4688 (4)0.097 (2)
H270.12200.58740.47880.116*
C280.1499 (5)0.7028 (5)0.4949 (4)0.115 (3)
H280.18180.68940.52180.138*
C290.1389 (5)0.7869 (5)0.4816 (4)0.109 (3)
H290.16160.82770.50050.131*
C300.0908 (4)0.8051 (5)0.4374 (4)0.095 (2)
H300.08310.85850.42660.114*
C310.0571 (4)0.7441 (5)0.4119 (4)0.081 (2)
C320.0064 (3)0.7390 (5)0.3692 (3)0.0706 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0525 (2)0.0664 (3)0.0829 (4)0.01422 (18)0.0032 (2)0.0104 (2)
I20.0466 (2)0.0873 (4)0.0905 (4)0.0071 (2)0.0089 (2)0.0611 (3)
I30.0793 (3)0.0473 (2)0.0610 (3)0.00030 (17)0.0029 (2)0.00127 (17)
I40.0666 (3)0.0532 (2)0.0743 (3)0.00597 (17)0.0001 (2)0.00410 (18)
As10.0494 (3)0.0634 (4)0.0481 (3)0.0078 (2)0.0021 (2)0.0064 (3)
As20.0613 (4)0.0520 (3)0.0653 (4)0.0123 (3)0.0189 (3)0.0073 (3)
N10.059 (3)0.069 (3)0.069 (3)0.010 (3)0.001 (3)0.010 (3)
N20.109 (5)0.063 (3)0.055 (3)0.004 (3)0.009 (3)0.003 (3)
N30.083 (4)0.062 (3)0.059 (3)0.009 (3)0.012 (3)0.000 (3)
N40.138 (6)0.099 (5)0.059 (4)0.034 (5)0.007 (4)0.001 (4)
N50.072 (4)0.072 (4)0.094 (4)0.023 (3)0.007 (3)0.002 (3)
N60.073 (4)0.070 (4)0.157 (7)0.021 (3)0.009 (4)0.031 (4)
N70.050 (3)0.072 (3)0.088 (4)0.008 (2)0.013 (3)0.022 (3)
N80.068 (4)0.068 (4)0.079 (4)0.001 (3)0.007 (3)0.008 (3)
C10.059 (4)0.072 (4)0.071 (4)0.006 (3)0.004 (3)0.001 (3)
C20.077 (4)0.070 (4)0.073 (4)0.003 (3)0.006 (4)0.014 (3)
C30.084 (5)0.081 (5)0.116 (7)0.007 (4)0.006 (5)0.003 (5)
C40.106 (8)0.086 (6)0.089 (6)0.019 (5)0.012 (6)0.015 (5)
C50.105 (6)0.070 (4)0.076 (5)0.005 (4)0.031 (4)0.018 (4)
C60.118 (6)0.067 (4)0.078 (5)0.005 (4)0.017 (4)0.003 (4)
C70.078 (5)0.074 (4)0.076 (5)0.003 (4)0.012 (4)0.010 (4)
C80.064 (4)0.069 (4)0.056 (3)0.009 (3)0.001 (3)0.010 (3)
C90.107 (6)0.069 (4)0.075 (5)0.001 (4)0.017 (4)0.006 (4)
C100.125 (6)0.058 (4)0.055 (4)0.011 (4)0.005 (4)0.004 (3)
C110.136 (10)0.115 (7)0.070 (5)0.044 (7)0.015 (6)0.019 (5)
C120.154 (9)0.102 (7)0.087 (6)0.015 (6)0.029 (6)0.016 (5)
C130.133 (12)0.093 (9)0.085 (6)0.026 (8)0.029 (7)0.001 (6)
C140.148 (9)0.100 (7)0.083 (6)0.025 (6)0.011 (6)0.001 (5)
C150.133 (7)0.078 (5)0.059 (4)0.005 (5)0.013 (4)0.006 (4)
C160.118 (6)0.073 (5)0.066 (5)0.001 (4)0.001 (4)0.001 (4)
C170.089 (5)0.068 (4)0.095 (6)0.024 (4)0.014 (4)0.003 (4)
C180.099 (7)0.095 (6)0.107 (7)0.011 (5)0.023 (5)0.004 (5)
C190.116 (10)0.107 (8)0.120 (10)0.021 (7)0.014 (8)0.001 (7)
C200.111 (10)0.092 (8)0.137 (11)0.010 (8)0.001 (11)0.003 (8)
C210.080 (5)0.064 (5)0.163 (9)0.012 (4)0.014 (6)0.031 (5)
C220.115 (7)0.089 (7)0.114 (10)0.006 (6)0.010 (7)0.017 (7)
C230.096 (6)0.086 (6)0.110 (7)0.014 (5)0.006 (5)0.007 (5)
C240.069 (5)0.084 (6)0.133 (8)0.003 (4)0.003 (5)0.019 (5)
C250.065 (4)0.091 (5)0.086 (5)0.015 (4)0.004 (4)0.013 (4)
C260.064 (4)0.093 (5)0.088 (5)0.014 (4)0.018 (4)0.008 (4)
C270.067 (5)0.104 (6)0.122 (7)0.008 (4)0.019 (5)0.014 (5)
C280.096 (7)0.109 (7)0.137 (8)0.009 (6)0.007 (6)0.010 (6)
C290.105 (7)0.112 (7)0.109 (7)0.004 (6)0.006 (6)0.001 (6)
C300.072 (5)0.094 (6)0.116 (7)0.002 (4)0.003 (5)0.010 (5)
C310.059 (4)0.096 (6)0.086 (5)0.000 (4)0.002 (4)0.015 (4)
C320.054 (3)0.082 (5)0.072 (4)0.004 (3)0.008 (3)0.018 (4)
Geometric parameters (Å, º) top
I1—As12.6595 (7)C9—C101.456 (9)
I2—As12.9910 (8)C10—C151.394 (10)
I3—As12.5953 (8)C10—C111.399 (8)
I4—As12.7680 (7)C11—C121.358 (9)
As2—N72.028 (6)C11—H110.9300
As2—N52.063 (6)C12—C131.403 (11)
As2—N12.086 (5)C12—H120.9300
As2—N32.088 (6)C13—C141.353 (10)
N1—C11.380 (8)C13—H130.9300
N1—C81.389 (7)C14—C151.453 (9)
N2—C81.323 (7)C14—H140.9300
N2—C91.328 (8)C15—C161.412 (10)
N3—C91.369 (9)C17—C181.504 (10)
N3—C161.414 (8)C18—C231.351 (10)
N4—C161.265 (8)C18—C191.427 (10)
N4—C171.284 (9)C19—C201.440 (11)
N5—C241.395 (8)C19—H190.9300
N5—C171.433 (8)C20—C211.324 (9)
N6—C241.331 (9)C20—H200.9300
N6—C251.379 (8)C21—C221.392 (10)
N7—C251.385 (7)C21—H210.9300
N7—C321.385 (7)C22—C231.391 (11)
N8—C11.303 (7)C22—H220.9300
N8—C321.335 (8)C23—C241.439 (10)
C1—C21.473 (8)C25—C261.395 (9)
C2—C31.354 (9)C26—C271.396 (8)
C2—C71.383 (9)C26—C311.447 (8)
C3—C41.439 (10)C27—C281.391 (10)
C3—H30.9300C27—H270.9300
C4—C51.291 (10)C28—C291.441 (10)
C4—H40.9300C28—H280.9300
C5—C61.416 (9)C29—C301.450 (10)
C5—H50.9300C29—H290.9300
C6—C71.377 (9)C30—C311.358 (9)
C6—H60.9300C30—H300.9300
C7—C81.501 (9)C31—C321.434 (9)
I3—As1—I199.86 (3)C11—C12—H12119.3
I3—As1—I496.95 (2)C13—C12—H12119.3
I1—As1—I493.94 (2)C14—C13—C12122.7 (10)
I3—As1—I292.38 (2)C14—C13—H13118.7
I1—As1—I292.41 (2)C12—C13—H13118.7
I4—As1—I2167.65 (3)C13—C14—C15117.1 (10)
N7—As2—N582.6 (2)C13—C14—H14121.5
N7—As2—N182.1 (2)C15—C14—H14121.5
N5—As2—N1137.3 (2)C10—C15—C16108.6 (7)
N7—As2—N3136.0 (2)C10—C15—C14118.8 (9)
N5—As2—N381.4 (2)C16—C15—C14132.6 (8)
N1—As2—N382.5 (2)N4—C16—C15123.0 (8)
C1—N1—C8112.4 (5)N4—C16—N3127.6 (8)
C1—N1—As2123.6 (4)C15—C16—N3109.3 (7)
C8—N1—As2120.5 (4)N4—C17—N5129.7 (7)
C8—N2—C9117.8 (7)N4—C17—C18125.3 (9)
C9—N3—C16106.1 (7)N5—C17—C18104.9 (8)
C9—N3—As2123.4 (5)C23—C18—C19122.6 (10)
C16—N3—As2125.2 (5)C23—C18—C17109.1 (9)
C16—N4—C17121.9 (8)C19—C18—C17128.3 (11)
C24—N5—C17108.1 (7)C18—C19—C20111.4 (12)
C24—N5—As2123.8 (6)C18—C19—H19124.3
C17—N5—As2122.4 (5)C20—C19—H19124.3
C24—N6—C25121.1 (8)C21—C20—C19125.3 (12)
C25—N7—C32104.5 (6)C21—C20—H20117.4
C25—N7—As2124.0 (5)C19—C20—H20117.4
C32—N7—As2126.4 (4)C20—C21—C22121.7 (9)
C1—N8—C32119.8 (6)C20—C21—H21119.2
N8—C1—N1129.8 (6)C22—C21—H21119.2
N8—C1—C2122.7 (6)C21—C22—C23115.5 (10)
N1—C1—C2107.6 (6)C21—C22—H22122.3
C3—C2—C7122.7 (7)C23—C22—H22122.3
C3—C2—C1130.9 (7)C18—C23—C22123.5 (9)
C7—C2—C1106.3 (6)C18—C23—C24108.1 (8)
C2—C3—C4113.9 (9)C22—C23—C24128.5 (9)
C2—C3—H3123.1N6—C24—N5126.5 (7)
C4—C3—H3123.1N6—C24—C23123.7 (8)
C5—C4—C3122.5 (9)N5—C24—C23109.7 (7)
C5—C4—H4118.7N6—C25—N7126.4 (8)
C3—C4—H4118.7N6—C25—C26121.9 (7)
C4—C5—C6124.7 (7)N7—C25—C26111.6 (7)
C4—C5—H5117.7C25—C26—C27132.9 (8)
C6—C5—H5117.7C25—C26—C31108.0 (6)
C7—C6—C5112.4 (8)C27—C26—C31119.1 (8)
C7—C6—H6123.8C28—C27—C26119.6 (9)
C5—C6—H6123.8C28—C27—H27120.2
C6—C7—C2123.4 (7)C26—C27—H27120.2
C6—C7—C8127.0 (8)C27—C28—C29122.1 (10)
C2—C7—C8109.6 (6)C27—C28—H28118.9
N2—C8—N1133.3 (6)C29—C28—H28118.9
N2—C8—C7122.7 (6)C28—C29—C30117.2 (9)
N1—C8—C7104.1 (6)C28—C29—H29121.4
N2—C9—N3129.0 (8)C30—C29—H29121.4
N2—C9—C10120.0 (8)C31—C30—C29119.8 (8)
N3—C9—C10110.8 (7)C31—C30—H30120.1
C15—C10—C11122.1 (8)C29—C30—H30120.1
C15—C10—C9105.0 (7)C30—C31—C32135.3 (8)
C11—C10—C9132.8 (8)C30—C31—C26122.1 (7)
C12—C11—C10117.8 (10)C32—C31—C26102.6 (7)
C12—C11—H11121.1N8—C32—N7127.8 (7)
C10—C11—H11121.1N8—C32—C31118.8 (7)
C11—C12—C13121.4 (10)N7—C32—C31113.2 (6)

Experimental details

Crystal data
Chemical formula[As(C32H16N8)]2[As2I8]
Mr2339.94
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)19.357 (3), 16.537 (2), 21.783 (3)
β (°) 97.09 (1)
V3)6919.6 (17)
Z4
Radiation typeMo Kα
µ (mm1)5.54
Crystal size (mm)0.42 × 0.24 × 0.24
Data collection
DiffractometerKuma KM-4 CCD area-detector
diffractometer
Absorption correctionAnalytical
face-indexed, SHELXTL (Sheldrick, 1990b)
Tmin, Tmax0.212, 0.273
No. of measured, independent and
observed [I > 2σ(I)] reflections
37315, 8498, 5312
Rint0.028
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.139, 1.00
No. of reflections8498
No. of parameters416
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.72, 1.07

Computer programs: KM-4 CCD Software (Kuma 2001), KM-4 CCD Software, SHELXS97 (Sheldrick, 1990a), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1990b), SHELXL97.

Selected geometric parameters (Å, º) top
I1—As12.6595 (7)As2—N72.028 (6)
I2—As12.9910 (8)As2—N52.063 (6)
I3—As12.5953 (8)As2—N12.086 (5)
I4—As12.7680 (7)As2—N32.088 (6)
I3—As1—I199.86 (3)N7—As2—N582.6 (2)
I3—As1—I496.95 (2)N7—As2—N182.1 (2)
I1—As1—I493.94 (2)N5—As2—N1137.3 (2)
I3—As1—I292.38 (2)N7—As2—N3136.0 (2)
I1—As1—I292.41 (2)N5—As2—N381.4 (2)
I4—As1—I2167.65 (3)N1—As2—N382.5 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds