Download citation
Download citation
link to html
In the title complex, catena-poly[[[diaqua­calcium(I)]-μ2-aqua-μ3-benzoato-κ4O:O,O′:O′] benzoate], {[Ca(C7H5O2)(H2O)3](C7H5O2)}n, obtained by the reaction of CaCl2 and potassium benzoate in water, the Ca atom is eight-coordinated by four carboxyl­ate O atoms and four water mol­ecules. The structure consists of polymeric {[Ca(C6H5COO)(H2O)3]+} chains alternating with layers of uncoordinated C6H5COO anions. The nearly planar anions are linked to the chain by short hydrogen bonds to form a two-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105027484/fa1149sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105027484/fa1149Isup2.hkl
Contains datablock I

CCDC reference: 288618

Comment top

This study is part of a systematic structural investigation of complexes of aromatic carboxylic acids and alkaline earth metals (Ca, Sr and Ba) in aqueous solution. A wide variety of coordination modes, polymeric arrangements and molecular topologies have been observed, depending on the metal, pH and other synthetic conditions. For calcium with the benzoate anion, three compounds have been reported, namely [Ca(C6H5COO)2]·3H2O (from neutral solution), [Ca(C6H5COO)2]·0.5C6H5COO·2H2O (from acid solution; Cherkezova et al., 1987) and [Ca(C6H5COO)2] (hydrothermal conditions; Keli et al., 1999).

In spite of the wide application of calcium benzoate (for example, as a preservative in the food industry), the crystal structure of this compound has been poorly investigated. Cherkezova et al. (1987) studied the syntheses and thermal stabilities of Mg, Ca, Sr and Ba benzoates and determined only the space group and cell parameters of [Ca(C6H5COO)2]·3H2O. Here, we describe the crystal structure of [Ca(C6H5COO)](C6H5COO)·3H2O, triaquabenzoatocalcium(II) monobenzoate, (I).

The asymmetric unit of (I) consists of one Ca centre, two benzoate anions and three water molecules. The Ca atom is coordinated in a distorted square-antiprismatic geometry by two monodentate carboxylate groups of different benzoate moieties, one bidentate carboxylate and four water molecules. Indeed, the atoms that form square faces [O2/O7Ai/O3/O7Bi and O1/O1i/O7B/O7A; symmetry code: (i) ? Please provide symmetry code] deviate from a square-planar geometry and the coordination polyhedra could alternatively be described as an irregular trigonal dodecahedron. The coordination geometry around the Ca atom cannot be assigned unequivocally to one of these ideal structures due to strong distortion (Fig. 1). The Ca—O bond lengths vary from 2.338 (1) to 2.616 (1) Å (Table 1).

The independent benzoate entities play distinct structural roles. One type (atoms C1–C7/O7A/O7B) acts as a ligand to two Ca atoms, bridging them to give polymeric [Ca(C6H5COO)(H2O)3]+ chains running parallel to the c axis (Fig. 1). The carboxylate group (O7A/C7/O7B) of these anions is almost coplanar with the phenyl ring [dihedral angle 6.64 (6)°].

The second type of benzoate anions (atoms C11–C17/O17A/O17B) is present in an isolated form and is not linked to the chain by covalent bonds (Figs. 1 and 2). These anions are linked to the chain by strong hydrogen bonds between the carboxyl group (O17A/C17/O17B) and water molecules (Table 2). All aqua ligands act as hydrogen-bond donors, and atoms O17A and O17B of the carboxylate group are hydrogen-bond acceptors.

Neighbouring phenyl groups are stacked nearly parallel along the a axis. The interplanar distance between the phenyl rings C1–C6 and C11–C16 is 3.593 (4) Å. The dihedral angle is 0.99 (6)° and the shortest atom-to-atom distance between these two rings is 3.596 (1) Å. This distance lies in the normal range of 3.3–3.8 Å (Janiak, 2000), indicative of ππ interaction.

The combination of these hydrogen bonds, ππ stacking interactions and Ca—O bonds leads to the formation of a two-dimensional network running parallel to the ac plane (Fig 2).

Experimental top

Single crystals of triaquabenzoatocalcium(II)]monobenzoate suitable for X-ray analysis were obtained by slow evaporation at room temperature of an aqueous solution containing CaCl2 and potassium benzoate.

Refinement top

The structure was solved by direct and difference-Fourier methods, and refined by the full-matrix least-squares method. All H atoms were found in ΔF maps, but those connected to C atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.3Ueq(C). Water H atoms were refined isotropically.

Computing details top

Data collection: IPDS (Stoe & Cie, 1996); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Johnson & Burnett, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Part of the [Ca(C6H5COO)(H2O)3]+ chain. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.
[Figure 2] Fig. 2. A view of the two-dimensional networks in (I), which are assembled by hydrogen bonds, ππ stacking interactions and Ca—O bonds, shown approximately down the crystallographic [001] direction. The H atoms of the phenyl rings have been omitted for clarity. [Symmetry code: (i) −x, −y + 1/2, z + 1/2]. [No symop shown - do you wish to add it?]
catena-poly[[[diaquacalcium(I)]-µ-aqua-µ-benzoato-κ4O:O,O':O'] benzoate] top
Crystal data top
[Ca(C7H5O2)(H2O)3](C7H5O2)F(000) = 704
Mr = 336.35Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11074 reflections
a = 7.3004 (10) Åθ = 2.5–25.9°
b = 32.252 (4) ŵ = 0.44 mm1
c = 6.5364 (7) ÅT = 293 K
β = 91.145 (15)°Needles, colourless
V = 1538.7 (3) Å30.38 × 0.15 × 0.04 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
2256 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 25.9°, θmin = 2.5°
ϕ scansh = 88
12022 measured reflectionsk = 3939
2838 independent reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.036P)2]
where P = (Fo2 + 2Fc2)/3
2838 reflections(Δ/σ)max = 0.002
223 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
[Ca(C7H5O2)(H2O)3](C7H5O2)V = 1538.7 (3) Å3
Mr = 336.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3004 (10) ŵ = 0.44 mm1
b = 32.252 (4) ÅT = 293 K
c = 6.5364 (7) Å0.38 × 0.15 × 0.04 mm
β = 91.145 (15)°
Data collection top
Stoe IPDS
diffractometer
2256 reflections with I > 2σ(I)
12022 measured reflectionsRint = 0.038
2838 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.25 e Å3
2838 reflectionsΔρmin = 0.17 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 7.0664 (0.0023) x + 1.8491 (0.0230) y − 1.4714 (0.0048) z = 0.2409 (0.0140)

* 0.0020 (0.0011) C1 * −0.0035 (0.0012) C2 * 0.0015 (0.0014) C3 * 0.0019 (0.0014) C4 * −0.0033 (0.0014) C5 * 0.0013 (0.0013) C6

Rms deviation of fitted atoms = 0.0024

− 7.2146 (0.0025) x + 2.4806 (0.0816) y − 0.7344 (0.0047) z = 0.5039 (0.0576)

Angle to previous plane (with approximate e.s.d.) = 6.64 (0.06)

* 0.0000 (0.0000) C7 * 0.0000 (0.0000) O7A * 0.0000 (0.0000) O7B

Rms deviation of fitted atoms = 0.0000 7.2737 (0.0020) x + 0.3814 (0.0896) y + 0.4228 (0.0049) z = 5.4692 (0.0737)

* 0.0000 (0.0000) C17 * 0.0000 (0.0000) O17A * 0.0000 (0.0000) O17B

7.0608 (0.0024) x + 2.4048 (0.0246) y + 1.4612 (0.0052) z = 7.3596 (0.0225)

Angle to previous plane (with approximate e.s.d.) = 9.91 (0.05)

* −0.0038 (0.0012) C11 * 0.0019 (0.0013) C12 * 0.0004 (0.0014) C13 * −0.0008 (0.0015) C14 * −0.0012 (0.0015) C15 * 0.0034 (0.0013) C16

Rms deviation of fitted atoms = 0.0023

7.0664 (0.0023) x + 1.8491 (0.0231) y + 1.4714 (0.0049) z = 3.2684 (0.0207)

Angle to previous plane (with approximate e.s.d.) = 0.99 (0.06)

* −0.0020 (0.0011) C1 * 0.0035 (0.0012) C2 * −0.0015 (0.0014) C3 * −0.0019 (0.0014) C4 * 0.0033 (0.0014) C5 * −0.0013 (0.0013) C6

Rms deviation of fitted atoms = 0.0024

7.0608 (0.0024) x + 2.4048 (0.0246) y + 1.4612 (0.0052) z = 7.3596 (0.0225)

* −0.0038 (0.0012) C11 * 0.0019 (0.0013) C12 * 0.0004 (0.0014) C13 * −0.0008 (0.0015) C14 * −0.0012 (0.0015) C15 * 0.0034 (0.0013) C16 − 3.6193 (0.0025) C1 − 3.6048 (0.0031) C2 − 3.5860 (0.0030) C3 − 3.5716 (0.0027) C4 − 3.5751 (0.0024) C5 − 3.6035 (0.0023) C6

Rms deviation of fitted atoms = 0.0023

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.26210 (4)0.726062 (8)0.29568 (5)0.02316 (9)
C10.17204 (19)0.86040 (4)0.3124 (2)0.0282 (3)
C20.1297 (2)0.87945 (5)0.4953 (3)0.0386 (4)
H20.11070.86350.61150.050*
C30.1157 (3)0.92224 (5)0.5055 (3)0.0531 (5)
H30.08640.93490.62840.069*
C40.1449 (3)0.94603 (5)0.3351 (4)0.0564 (6)
H40.13530.97470.34260.073*
C50.1884 (3)0.92741 (5)0.1535 (4)0.0553 (5)
H50.20900.94360.03850.072*
C60.2016 (2)0.88456 (5)0.1406 (3)0.0411 (4)
H60.23020.87210.01710.053*
C70.18634 (19)0.81405 (4)0.3002 (2)0.0238 (3)
O7A0.17715 (15)0.79293 (3)0.46184 (16)0.0315 (2)
O7B0.20950 (15)0.79679 (3)0.13105 (16)0.0329 (3)
C110.6858 (2)0.88771 (4)0.2591 (3)0.0305 (3)
C120.6439 (2)0.91208 (5)0.4256 (3)0.0413 (4)
H120.62270.89970.55140.054*
C130.6329 (3)0.95486 (5)0.4071 (4)0.0557 (5)
H130.60400.97090.52020.072*
C140.6644 (3)0.97351 (6)0.2235 (4)0.0614 (6)
H140.65701.00220.21160.080*
C150.7070 (3)0.94980 (6)0.0565 (4)0.0606 (6)
H150.72810.96250.06860.079*
C160.7187 (3)0.90682 (5)0.0738 (3)0.0450 (4)
H160.74870.89090.03950.059*
C170.69162 (19)0.84098 (4)0.2786 (2)0.0269 (3)
O17A0.70218 (15)0.82019 (3)0.11567 (18)0.0361 (3)
O17B0.68227 (16)0.82526 (3)0.45358 (18)0.0364 (3)
O10.51237 (15)0.75169 (3)0.53670 (17)0.0302 (2)
O20.45748 (17)0.66682 (3)0.2878 (2)0.0333 (3)
O30.05469 (19)0.70475 (6)0.2976 (3)0.0579 (4)
H1A0.581 (3)0.7723 (6)0.503 (3)0.052 (6)*
H1B0.579 (3)0.7328 (6)0.574 (3)0.050 (6)*
H2A0.519 (3)0.6651 (6)0.186 (4)0.053 (6)*
H2B0.535 (3)0.6655 (6)0.385 (4)0.063 (7)*
H3A0.108 (3)0.6995 (7)0.399 (4)0.073 (8)*
H3B0.111 (4)0.7006 (8)0.196 (5)0.094 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.03273 (15)0.02336 (14)0.01341 (16)0.00075 (12)0.00124 (10)0.00002 (11)
C10.0278 (7)0.0283 (7)0.0284 (10)0.0040 (6)0.0013 (6)0.0014 (6)
C20.0475 (10)0.0328 (8)0.0354 (11)0.0058 (7)0.0014 (7)0.0059 (7)
C30.0600 (12)0.0398 (9)0.0593 (15)0.0069 (8)0.0058 (10)0.0219 (9)
C40.0613 (12)0.0249 (8)0.0827 (19)0.0007 (8)0.0102 (11)0.0044 (9)
C50.0669 (13)0.0324 (9)0.0667 (17)0.0032 (8)0.0004 (10)0.0145 (9)
C60.0504 (10)0.0343 (8)0.0386 (12)0.0021 (7)0.0037 (8)0.0046 (7)
C70.0245 (7)0.0268 (7)0.0200 (9)0.0042 (5)0.0003 (5)0.0001 (6)
O7A0.0481 (6)0.0299 (5)0.0165 (6)0.0079 (4)0.0008 (4)0.0024 (4)
O7B0.0509 (7)0.0315 (5)0.0163 (6)0.0058 (5)0.0044 (5)0.0030 (4)
C110.0306 (7)0.0275 (7)0.0333 (10)0.0038 (6)0.0022 (6)0.0021 (6)
C120.0485 (10)0.0324 (8)0.0431 (12)0.0020 (7)0.0006 (8)0.0008 (7)
C130.0633 (12)0.0317 (9)0.0722 (17)0.0067 (8)0.0013 (10)0.0065 (9)
C140.0647 (13)0.0295 (9)0.0895 (19)0.0016 (8)0.0059 (12)0.0102 (10)
C150.0725 (14)0.0450 (11)0.0642 (17)0.0105 (10)0.0043 (11)0.0254 (10)
C160.0543 (11)0.0410 (9)0.0396 (13)0.0104 (8)0.0012 (8)0.0070 (8)
C170.0267 (7)0.0285 (7)0.0256 (10)0.0041 (5)0.0025 (6)0.0010 (6)
O17A0.0465 (7)0.0342 (6)0.0278 (7)0.0047 (5)0.0038 (5)0.0057 (5)
O17B0.0523 (7)0.0303 (5)0.0268 (7)0.0023 (5)0.0073 (5)0.0033 (5)
O10.0343 (6)0.0258 (5)0.0304 (7)0.0005 (5)0.0006 (5)0.0002 (4)
O20.0426 (7)0.0339 (6)0.0233 (8)0.0048 (5)0.0028 (6)0.0003 (5)
O30.0386 (8)0.1092 (12)0.0261 (10)0.0179 (7)0.0041 (6)0.0006 (8)
Geometric parameters (Å, º) top
Ca1—O7Ai2.3383 (11)C7—O7A1.2598 (18)
Ca1—O7Bii2.3516 (11)C11—C121.382 (2)
Ca1—O22.3855 (12)C11—C161.384 (2)
Ca1—O32.4129 (14)C11—C171.513 (2)
Ca1—O7A2.4985 (10)C12—C131.387 (2)
Ca1—O12.5275 (12)C12—H120.9300
Ca1—O7B2.5481 (11)C13—C141.366 (3)
Ca1—O1i2.6158 (12)C13—H130.9300
Ca1—Ca1ii3.6146 (4)C14—C151.373 (3)
C1—C21.385 (2)C14—H140.9300
C1—C61.387 (2)C15—C161.393 (2)
C1—C71.5010 (19)C15—H150.9300
C2—C31.386 (2)C16—H160.9300
C2—H20.9300C17—O17B1.2543 (19)
C3—C41.373 (3)C17—O17A1.2619 (19)
C3—H30.9300O1—H1A0.86 (2)
C4—C51.373 (3)O1—H1B0.82 (2)
C4—H40.9300O2—H2A0.81 (2)
C5—C61.388 (2)O2—H2B0.84 (3)
C5—H50.9300O3—H3A0.79 (3)
C6—H60.9300O3—H3B0.79 (3)
C7—O7B1.2523 (18)
O7Ai—Ca1—O7Bii137.96 (4)C3—C4—H4120.0
O7Ai—Ca1—O285.28 (4)C4—C5—C6120.36 (18)
O7Bii—Ca1—O282.98 (4)C4—C5—H5119.8
O7Ai—Ca1—O372.17 (5)C6—C5—H5119.8
O7Bii—Ca1—O374.43 (5)C1—C6—C5119.88 (17)
O2—Ca1—O3110.21 (5)C1—C6—H6120.1
O7Ai—Ca1—O7A124.63 (4)C5—C6—H6120.1
O7Bii—Ca1—O7A79.56 (4)Ca1i—O7B—Ca194.99 (3)
O2—Ca1—O7A148.70 (4)C12—C11—C16118.74 (14)
O3—Ca1—O7A89.85 (5)C12—C11—C17120.44 (15)
O7Ai—Ca1—O1147.38 (4)C16—C11—C17120.81 (15)
O7Bii—Ca1—O169.57 (4)C11—C12—C13120.69 (18)
O2—Ca1—O181.39 (4)C11—C12—H12119.7
O3—Ca1—O1140.44 (5)C13—C12—H12119.7
O7A—Ca1—O168.25 (4)C14—C13—C12120.3 (2)
O7Ai—Ca1—O7B78.79 (4)C14—C13—H13119.9
O7Bii—Ca1—O7B130.41 (4)C12—C13—H13119.9
O2—Ca1—O7B142.48 (4)C13—C14—C15119.86 (17)
O3—Ca1—O7B96.94 (5)C13—C14—H14120.1
O7A—Ca1—O7B51.26 (3)C15—C14—H14120.1
O1—Ca1—O7B94.09 (4)C14—C15—C16120.3 (2)
O7Ai—Ca1—O1i69.12 (4)C14—C15—H15119.9
O7Bii—Ca1—O1i144.93 (4)C16—C15—H15119.9
O2—Ca1—O1i77.30 (4)C11—C16—C15120.16 (19)
O3—Ca1—O1i139.76 (5)C11—C16—H16119.9
O7A—Ca1—O1i103.13 (4)C15—C16—H16119.9
O1—Ca1—O1i78.93 (3)O17B—C17—O17A124.06 (13)
O7B—Ca1—O1i65.32 (3)O17B—C17—C11118.51 (13)
Ca1ii—Ca1—Ca1i129.422 (16)O17A—C17—C11117.41 (14)
C2—C1—C6119.40 (14)Ca1—O1—H1A120.5 (14)
C2—C1—C7120.30 (14)Ca1ii—O1—H1A111.7 (13)
C6—C1—C7120.30 (14)Ca1—O1—H1B111.4 (14)
C1—C2—C3120.08 (17)Ca1ii—O1—H1B115.6 (15)
C1—C2—H2120.0H1A—O1—H1B107.9 (19)
C3—C2—H2120.0Ca1—O2—H2A114.4 (14)
C4—C3—C2120.33 (19)Ca1—O2—H2B114.6 (15)
C4—C3—H3119.8H2A—O2—H2B104 (2)
C2—C3—H3119.8Ca1—O3—H3A123.3 (19)
C5—C4—C3119.96 (16)Ca1—O3—H3B122 (2)
C5—C4—H4120.0H3A—O3—H3B115 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O17B0.86 (2)1.89 (2)2.7370 (15)165.9 (18)
O1—H1B···O17Aii0.82 (2)1.95 (2)2.7445 (15)165.8 (19)
O2—H2B···O17Aii0.84 (3)1.98 (3)2.7939 (19)163 (2)
O2—H2A···O17Bi0.81 (2)1.97 (2)2.7705 (18)166.4 (19)
O3—H3A···O17Aiii0.79 (3)2.10 (3)2.875 (2)166 (3)
O3—H3B···O17Biv0.79 (3)2.32 (3)3.083 (2)164 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y+3/2, z+1/2; (iv) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ca(C7H5O2)(H2O)3](C7H5O2)
Mr336.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.3004 (10), 32.252 (4), 6.5364 (7)
β (°) 91.145 (15)
V3)1538.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.38 × 0.15 × 0.04
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12022, 2838, 2256
Rint0.038
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.063, 0.97
No. of reflections2838
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.17

Computer programs: IPDS (Stoe & Cie, 1996), IPDS, SHELXS86 (Sheldrick, 1985), SHELXL97 (Sheldrick, 1997), ORTEPIII (Johnson & Burnett, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Ca1—O7Ai2.3383 (11)Ca1—O7B2.5481 (11)
Ca1—O7Bii2.3516 (11)Ca1—O1i2.6158 (12)
Ca1—O22.3855 (12)C7—O7B1.2523 (18)
Ca1—O32.4129 (14)C7—O7A1.2598 (18)
Ca1—O7A2.4985 (10)C17—O17B1.2543 (19)
Ca1—O12.5275 (12)C17—O17A1.2619 (19)
O7Ai—Ca1—O7Bii137.96 (4)O7A—Ca1—O168.25 (4)
O7Ai—Ca1—O285.28 (4)O7Ai—Ca1—O7B78.79 (4)
O7Bii—Ca1—O282.98 (4)O7Bii—Ca1—O7B130.41 (4)
O7Ai—Ca1—O372.17 (5)O2—Ca1—O7B142.48 (4)
O7Bii—Ca1—O374.43 (5)O3—Ca1—O7B96.94 (5)
O2—Ca1—O3110.21 (5)O7A—Ca1—O7B51.26 (3)
O7Ai—Ca1—O7A124.63 (4)O1—Ca1—O7B94.09 (4)
O7Bii—Ca1—O7A79.56 (4)O7Ai—Ca1—O1i69.12 (4)
O2—Ca1—O7A148.70 (4)O7Bii—Ca1—O1i144.93 (4)
O3—Ca1—O7A89.85 (5)O2—Ca1—O1i77.30 (4)
O7Ai—Ca1—O1147.38 (4)O3—Ca1—O1i139.76 (5)
O7Bii—Ca1—O169.57 (4)O7A—Ca1—O1i103.13 (4)
O2—Ca1—O181.39 (4)O1—Ca1—O1i78.93 (3)
O3—Ca1—O1140.44 (5)O7B—Ca1—O1i65.32 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O17B0.86 (2)1.89 (2)2.7370 (15)165.9 (18)
O1—H1B···O17Aii0.82 (2)1.95 (2)2.7445 (15)165.8 (19)
O2—H2B···O17Aii0.84 (3)1.98 (3)2.7939 (19)163 (2)
O2—H2A···O17Bi0.81 (2)1.97 (2)2.7705 (18)166.4 (19)
O3—H3A···O17Aiii0.79 (3)2.10 (3)2.875 (2)166 (3)
O3—H3B···O17Biv0.79 (3)2.32 (3)3.083 (2)164 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y+3/2, z+1/2; (iv) x1, y+3/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds