Download citation
Download citation
link to html
The X-ray crystal structure of the title compound, C8H15N3O4·H2O, at 20 K (space group P21) reveals that the mol­ecular conformation of the tripeptide is remarkably different from the water-free form (space group P212121) reported previously [Padiyar & Seshadri (1996), Acta Cryst. C52, 1693-1695].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105015015/fa1135sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105015015/fa1135Isup2.hkl
Contains datablock I

CCDC reference: 278555

Comment top

In the course of our ongoing charge-density investigations on oligopeptides, we became interested in some comparative studies of tripeptides of the type Ala-Xxx-Ala, where Xxx was to be varied among the 20 naturally encoded amino acids. An initial charge-density study was performed on the homotripeptide (L-Ala)3 (Rödel, 2003). In a further step, we considered the system L-alanyl-glycyl-L-alanine, the conventional X-ray crystal structure of which (with spherical scattering factors) had previously been determined at room temperature (Padiyar & Seshadri, 1996). In a number of recrystallization attempts, we were unable to reproduce the literature modification. However, we were able to grow crystals as the title monohydrate, (I), while the structure reported by Padiyar & Seshadri (1996) is solvent free. We present here the previously unreported structure of (L-Ala-Gly-L-Ala)·H2O, (I), based on a low-order X-ray data set (d = 0.70 Å) taken at 20 K.

The structure of the asymmetric unit of (I), together with the atomic numbering scheme, is shown in Fig. 1, with the displacement parameters at 20 K. The tripeptide exists in the zwitterionic form in the crystal. Bond lengths and angles are as expected and need no detailed discussion. A tendency of the 20 K structure to have slightly longer bonds than the room-temperature water-free structure (up to 0.027 Å longer) could be expected.

Apart from the space group (P212121 for the water-free form and P21 for the monohydrate), the two conformational isomers differ considerably in the torsion angles of the terminal groups (Table 1 and Fig. 2). This holds for ψ1 at the N terminus and is even more pronounced for ϕ3. This angle is −159.1 (2)° for (I), indicating an almost trans arrangement of the carboxylate group with respect to the N2—C4 peptide bond, while it is −71.3 (2)° for the water-free form, describing a gauche conformation in this region. All further conformational torsion angles of the two molecules agree to within 5–15°.

The crystal packing of (I) is illustrated in Fig. 3, with the hydrogen bonds indicated by dashed lines. The hydrogen bonds are also summarized in Table 2. The twofold screw axis generates a head-to-tail arrangement of two molecules in the ac plane linked by three hydrogen bonds, N1—H11A···O4i, N3—H13···O1i and O4···H11Ciii—N1iii (symmetry codes as in Table 2). The screw axis also generates a helical linkage of this molecular pair in the b direction. Molecules related by a pure translation in the c direction are connected by a bifurcated hydrogen bond from the ammonium N1—H11B group to both oxygen acceptors of the carboxylic acid group, with the N1—H11B···O4ii hydrogen bond as a rather weak one. A further interaction in the ac plane is also seen in the a direction, where neighbouring layers are linked via the water molecule, establishing a cycle of four (three independent) hydrogen bonds, N2—H12···O5iv—H25Aiv···O2iv···H25B—O5—H25A···O2—C4—C3—N2 (symmetry code as in Table 2). Except for two weak C—H···O interactions, no further intermolecular contacts of interest exist.

Experimental top

Crystals of (I) were grown by evaporation from an aqueous solution of L-alanylglycyl-L-alanine (Bachem, Germany).

Refinement top

All H atoms were found in difference Fourier maps and refined freely.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and SCHAKAL99 (Keller & Pierrard, 1999); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-numbering scheme of (I). Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A fit of L-alanylglycyl-L-alanine as the monohydrate (this work) and the water-free form (Padiyar & Seshadri, 1996).
[Figure 3] Fig. 3. The crystal packing of (I), projected on the ac plane. Hydrogen bonds are indicated by dashed lines. Symmetry codes are as in Table 2.
L-Alanylglycyl-L-alanine monohydrate top
Crystal data top
C8H15N3O4·H2OF(000) = 252
Mr = 235.25Dx = 1.366 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1009 reflections
a = 10.207 (6) Åθ = 2.9–24.7°
b = 4.780 (3) ŵ = 0.11 mm1
c = 11.955 (7) ÅT = 20 K
β = 101.39 (1)°Needle, colourless
V = 571.8 (6) Å30.4 × 0.3 × 0.2 mm
Z = 2
Data collection top
Huber with Bruker APEX CCD area detector
diffractometer
1811 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 30.0°, θmin = 1.7°
ϕ scansh = 1314
13577 measured reflectionsk = 56
1851 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.1445P]
where P = (Fo2 + 2Fc2)/3
1851 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C8H15N3O4·H2OV = 571.8 (6) Å3
Mr = 235.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.207 (6) ŵ = 0.11 mm1
b = 4.780 (3) ÅT = 20 K
c = 11.955 (7) Å0.4 × 0.3 × 0.2 mm
β = 101.39 (1)°
Data collection top
Huber with Bruker APEX CCD area detector
diffractometer
1811 reflections with I > 2σ(I)
13577 measured reflectionsRint = 0.027
1851 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.071All H-atom parameters refined
S = 1.07Δρmax = 0.37 e Å3
1851 reflectionsΔρmin = 0.16 e Å3
213 parameters
Special details top

Experimental. A Bruker AXS low-temerature device was used.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

A large Huber four-circle diffractometer (400 mm diameter, offset χ circle) combined with a Bruker APEX CCD area detector was used for data collection. Cooling to 20 K was achieved with a closed-cycle helium cryostat. The crystal-to-detector distance was 5 cm and each frame covered 0.3° in ϕ. Reciprocal space was explored by a combination of three different runs at three different χ positions. SAINT and SADABS (Siemens, 1996) were used for integration and data reduction. All non-H atoms were refined anisotropically. All H atoms were found in difference Fourier maps and refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55329 (8)0.6257 (2)0.84657 (7)0.0128 (2)
O20.84040 (8)0.6846 (2)1.08887 (7)0.0110 (2)
O30.71113 (8)0.4144 (2)1.45860 (6)0.0126 (2)
O40.54365 (8)0.64670 (19)1.34973 (7)0.0110 (2)
N10.59381 (9)0.6346 (2)0.62856 (8)0.0097 (2)
N20.70669 (9)0.9652 (2)0.90006 (8)0.0092 (2)
N30.68831 (9)0.7964 (2)1.19533 (8)0.0096 (2)
C10.70742 (10)0.7056 (2)0.72320 (9)0.0088 (3)
C20.64798 (10)0.7679 (3)0.82858 (9)0.0091 (3)
C30.66531 (11)1.0110 (3)1.00775 (9)0.0094 (3)
C40.73787 (10)0.8138 (3)1.10047 (8)0.0085 (3)
C50.75878 (10)0.6395 (3)1.29395 (9)0.0094 (3)
C60.66314 (11)0.5614 (2)1.37301 (9)0.0100 (3)
C70.79573 (11)0.9253 (3)0.68381 (9)0.0123 (3)
C80.87804 (11)0.8057 (3)1.35989 (9)0.0131 (3)
O51.09491 (8)0.8779 (2)1.09209 (7)0.0126 (2)
H10.7590 (16)0.540 (4)0.7387 (14)0.009 (4)*
H3A0.6897 (17)1.208 (5)1.0330 (15)0.014 (4)*
H3B0.5701 (16)0.986 (5)0.9976 (15)0.012 (4)*
H50.7918 (18)0.467 (5)1.2653 (16)0.020 (5)*
H7A0.8694 (19)0.964 (5)0.7421 (17)0.023 (5)*
H7B0.749 (2)1.097 (6)0.6612 (18)0.028 (5)*
H7C0.8282 (19)0.858 (5)0.6170 (16)0.021 (5)*
H8A0.9283 (19)0.698 (6)1.4214 (18)0.029 (5)*
H8B0.841 (2)0.982 (6)1.3939 (19)0.034 (6)*
H8C0.9441 (18)0.855 (5)1.3070 (16)0.020 (4)*
H11A0.5414 (17)0.784 (5)0.6116 (15)0.013 (4)*
H11B0.6258 (18)0.578 (5)0.5670 (16)0.017 (4)*
H11C0.5369 (19)0.501 (5)0.6499 (17)0.019 (5)*
H120.7751 (19)1.055 (5)0.8913 (15)0.017 (4)*
H130.6104 (19)0.875 (5)1.1943 (16)0.018 (4)*
H25A1.0116 (19)0.847 (5)1.0848 (16)0.019 (4)*
H25B1.106 (2)0.981 (6)1.0355 (19)0.031 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0149 (3)0.0126 (4)0.0119 (3)0.0045 (3)0.0052 (3)0.0016 (3)
O20.0107 (3)0.0122 (4)0.0107 (3)0.0009 (3)0.0034 (3)0.0002 (3)
O30.0159 (3)0.0135 (4)0.0087 (3)0.0033 (3)0.0035 (3)0.0025 (3)
O40.0112 (3)0.0103 (4)0.0119 (3)0.0004 (3)0.0034 (3)0.0007 (3)
N10.0111 (4)0.0100 (4)0.0079 (4)0.0005 (4)0.0019 (3)0.0003 (3)
N20.0116 (4)0.0095 (4)0.0072 (4)0.0014 (3)0.0033 (3)0.0001 (3)
N30.0101 (4)0.0109 (4)0.0083 (4)0.0024 (4)0.0028 (3)0.0018 (4)
C10.0100 (4)0.0091 (5)0.0074 (4)0.0004 (4)0.0019 (3)0.0007 (4)
C20.0111 (4)0.0091 (5)0.0074 (4)0.0013 (4)0.0023 (3)0.0001 (4)
C30.0120 (4)0.0095 (5)0.0072 (4)0.0003 (4)0.0030 (3)0.0002 (4)
C40.0107 (4)0.0079 (5)0.0070 (4)0.0018 (4)0.0018 (3)0.0007 (4)
C50.0110 (4)0.0098 (5)0.0077 (4)0.0014 (4)0.0026 (3)0.0017 (4)
C60.0135 (4)0.0082 (5)0.0087 (4)0.0008 (4)0.0035 (3)0.0009 (4)
C70.0139 (4)0.0125 (5)0.0116 (4)0.0045 (4)0.0051 (4)0.0015 (4)
C80.0119 (4)0.0157 (5)0.0111 (4)0.0014 (4)0.0011 (3)0.0008 (4)
O50.0107 (3)0.0133 (4)0.0137 (4)0.0001 (3)0.0024 (3)0.0022 (3)
Geometric parameters (Å, º) top
O1—C21.2347 (17)C1—C71.5181 (19)
O2—C41.2463 (16)C1—C21.5316 (18)
O3—C61.2581 (15)C3—C41.5302 (19)
O4—C61.2638 (16)C5—C61.5330 (18)
O5—H25A0.85 (2)C5—C81.5347 (19)
O5—H25B0.86 (2)C1—H10.949 (18)
N1—C11.4906 (17)C3—H3B0.963 (17)
N2—C31.4487 (17)C3—H3A1.01 (2)
N2—C21.3329 (18)C5—H50.98 (2)
N3—C51.4611 (18)C7—H7B0.96 (3)
N3—C41.3325 (16)C7—H7C0.98 (2)
N1—H11B0.904 (19)C7—H7A0.94 (2)
N1—H11C0.93 (2)C8—H8C1.038 (19)
N1—H11A0.89 (2)C8—H8A0.96 (2)
N2—H120.84 (2)C8—H8B1.04 (3)
N3—H130.88 (2)
O1···N12.719 (2)C6···N1iii3.288 (3)
O1···C43.363 (2)C8···O23.239 (2)
O1···N3i2.885 (2)C1···H7Bvi3.05 (3)
O1···C3i3.138 (2)C2···H25Bii3.04 (2)
O2···C23.359 (2)C4···H25A2.84 (2)
O2···O5ii2.798 (2)C4···H25Bii2.96 (2)
O2···N22.746 (2)C4···H8C2.918 (19)
O2···O52.750 (2)C4···H3Avi3.02 (2)
O2···C83.239 (2)C6···H11Civ2.91 (2)
O3···N1iii2.763 (2)C6···H11Biii2.425 (19)
O4···N1iv2.760 (2)C6···H11Ai2.51 (2)
O4···N1i2.859 (2)C7···H1ix3.050 (19)
O4···C1i3.300 (2)C7···H122.605 (18)
O4···C2i3.163 (2)H1···C7vi3.050 (19)
O4···N32.679 (2)H1···H7Bvi2.31 (3)
O5···N2ii2.815 (2)H1···O5ii2.393 (17)
O5···C2v3.206 (2)H3A···O2ix2.76 (2)
O5···C3ii3.412 (3)H3A···C4ix3.02 (2)
O5···O22.750 (2)H3B···H132.37 (3)
O5···C1v3.105 (2)H3B···O12.48 (2)
O5···O2v2.798 (2)H3B···O1iv2.536 (18)
O1···H3B2.48 (2)H5···O22.49 (2)
O1···H11C2.40 (2)H7A···N22.75 (2)
O1···H3Bi2.536 (18)H7A···H122.23 (3)
O1···H13i2.04 (2)H7A···O5v2.77 (2)
O1···H11A2.889 (18)H7B···O3x2.82 (2)
O2···H3Avi2.76 (2)H7B···C1ix3.05 (3)
O2···H25Bii1.94 (2)H7B···H1ix2.31 (3)
O2···H52.49 (2)H7B···H11A2.57 (3)
O2···H25A1.92 (2)H7C···H11B2.44 (3)
O2···H8C2.738 (19)H8A···O32.71 (2)
O3···H8A2.71 (2)H8B···O3ix2.65 (3)
O3···H8Bvi2.65 (3)H8C···O22.738 (19)
O3···H11Biii1.87 (2)H8C···C42.918 (19)
O3···H7Bvii2.82 (2)H11A···H7B2.57 (3)
O3···H11Ai2.623 (18)H11A···O12.889 (18)
O4···H132.37 (2)H11A···C6iv2.51 (2)
O4···H11Biii2.588 (19)H11A···O3iv2.623 (18)
O4···H11Ai2.03 (2)H11A···O4iv2.03 (2)
O4···H11Civ1.88 (2)H11B···O4viii2.588 (19)
O5···H1v2.393 (17)H11B···C6viii2.425 (19)
O5···H7Aii2.77 (2)H11B···H7C2.44 (3)
O5···H12ii2.02 (2)H11B···O3viii1.87 (2)
N1···O3viii2.763 (2)H11C···O4i1.88 (2)
N1···C6viii3.288 (3)H11C···C6i2.91 (2)
N1···O12.719 (2)H11C···O12.40 (2)
N1···C6iv3.320 (3)H12···O5v2.02 (2)
N1···O4iv2.859 (2)H12···H25Av2.55 (3)
N1···O4i2.760 (2)H12···H25Bv2.44 (3)
N2···O22.746 (2)H12···C72.605 (18)
N2···O5v2.815 (2)H12···H7A2.23 (3)
N3···O1iv2.885 (2)H13···O1iv2.04 (2)
N3···O42.679 (2)H13···O42.37 (2)
N2···H7A2.75 (2)H13···H3B2.37 (3)
C1···O5ii3.105 (2)H25A···O21.92 (2)
C1···O4iv3.300 (2)H25A···C42.84 (2)
C2···O23.359 (2)H25A···H12ii2.55 (3)
C2···O5ii3.206 (2)H25A···H25Bii2.43 (3)
C2···O4iv3.163 (2)H25B···O2v1.94 (2)
C3···O1iv3.138 (2)H25B···C2v3.04 (2)
C3···O5v3.412 (3)H25B···C4v2.96 (2)
C4···O13.363 (2)H25B···H12ii2.44 (3)
C6···N1i3.320 (3)H25B···H25Av2.43 (3)
H25A—O5—H25B108 (2)O3—C6—C5116.39 (10)
C2—N2—C3120.24 (10)O4—C6—C5119.34 (9)
C4—N3—C5120.64 (9)O3—C6—O4124.27 (10)
C1—N1—H11A109.4 (13)N1—C1—H1106.1 (10)
C1—N1—H11B109.5 (12)C7—C1—H1107.3 (10)
H11B—N1—H11C111 (2)C2—C1—H1107.2 (10)
H11A—N1—H11B110.6 (18)N2—C3—H3A108.1 (10)
H11A—N1—H11C103.5 (18)N2—C3—H3B109.5 (11)
C1—N1—H11C112.4 (12)C4—C3—H3B110.3 (13)
C3—N2—H12115.3 (13)H3A—C3—H3B109.8 (17)
C2—N2—H12124.0 (13)C4—C3—H3A107.7 (11)
C5—N3—H13122.1 (13)C6—C5—H5108.4 (12)
C4—N3—H13117.2 (13)C8—C5—H5108.9 (11)
N1—C1—C2107.07 (8)N3—C5—H5107.4 (11)
C2—C1—C7118.46 (9)C1—C7—H7A110.1 (13)
N1—C1—C7110.04 (9)C1—C7—H7B112.7 (13)
O1—C2—N2123.10 (10)H7A—C7—H7B109 (2)
N2—C2—C1117.64 (10)H7A—C7—H7C108.7 (17)
O1—C2—C1119.15 (11)C1—C7—H7C110.1 (13)
N2—C3—C4111.49 (10)H7B—C7—H7C106.3 (18)
O2—C4—N3122.14 (11)C5—C8—H8B107.9 (12)
N3—C4—C3116.37 (10)C5—C8—H8C110.4 (11)
O2—C4—C3121.44 (9)C5—C8—H8A111.5 (15)
C6—C5—C8110.27 (9)H8A—C8—H8C106.0 (16)
N3—C5—C8111.28 (11)H8B—C8—H8C112.6 (19)
N3—C5—C6110.52 (9)H8A—C8—H8B108.4 (19)
C2—N2—C3—C485.44 (13)N1—C1—C2—N2145.21 (10)
C3—N2—C2—O13.55 (18)C7—C1—C2—N220.18 (15)
C3—N2—C2—C1172.70 (10)N2—C3—C4—N3166.48 (10)
C5—N3—C4—C3172.96 (11)N2—C3—C4—O215.91 (17)
C5—N3—C4—O24.63 (18)C8—C5—C6—O359.66 (14)
C4—N3—C5—C877.32 (14)C8—C5—C6—O4120.05 (11)
C4—N3—C5—C6159.81 (11)N3—C5—C6—O43.41 (15)
C7—C1—C2—O1163.42 (11)N3—C5—C6—O3176.89 (10)
N1—C1—C2—O138.38 (14)
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+2, y1/2, z+2; (iii) x, y, z+1; (iv) x+1, y+1/2, z+2; (v) x+2, y+1/2, z+2; (vi) x, y1, z; (vii) x, y1, z+1; (viii) x, y, z1; (ix) x, y+1, z; (x) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11A···O4iv0.89 (2)2.03 (2)2.859 (2)153.6 (16)
N1—H11B···O3viii0.90 (2)1.87 (2)2.763 (2)169 (2)
N1—H11B···O4viii0.90 (2)2.59 (2)3.272 (2)133.0 (16)
N1—H11C···O4i0.93 (2)1.88 (2)2.760 (2)155.9 (19)
N2—H12···O5v0.84 (2)2.02 (2)2.815 (2)157.0 (19)
N3—H13···O40.88 (2)2.37 (2)2.679 (2)101.1 (16)
N3—H13···O1iv0.88 (2)2.04 (2)2.885 (2)162.6 (19)
O5—H25A···O20.85 (2)1.92 (2)2.750 (2)165 (2)
O5—H25B···O2v0.86 (2)1.94 (2)2.798 (2)171 (2)
C1—H1···O5ii0.95 (2)2.39 (2)3.105 (2)131.7 (13)
C3—H3B···O1iv0.96 (2)2.54 (2)3.138 (2)120.7 (14)
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+2, y1/2, z+2; (iv) x+1, y+1/2, z+2; (v) x+2, y+1/2, z+2; (viii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC8H15N3O4·H2O
Mr235.25
Crystal system, space groupMonoclinic, P21
Temperature (K)20
a, b, c (Å)10.207 (6), 4.780 (3), 11.955 (7)
β (°) 101.39 (1)
V3)571.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerHuber with Bruker APEX CCD area detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13577, 1851, 1811
Rint0.027
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.07
No. of reflections1851
No. of parameters213
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.16

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and SCHAKAL99 (Keller & Pierrard, 1999), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11A···O4i0.89 (2)2.03 (2)2.859 (2)153.6 (16)
N1—H11B···O3ii0.90 (2)1.87 (2)2.763 (2)169 (2)
N1—H11B···O4ii0.90 (2)2.59 (2)3.272 (2)133.0 (16)
N1—H11C···O4iii0.93 (2)1.88 (2)2.760 (2)155.9 (19)
N2—H12···O5iv0.84 (2)2.02 (2)2.815 (2)157.0 (19)
N3—H13···O1i0.88 (2)2.04 (2)2.885 (2)162.6 (19)
O5—H25A···O20.85 (2)1.92 (2)2.750 (2)165 (2)
O5—H25B···O2iv0.86 (2)1.94 (2)2.798 (2)171 (2)
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x, y, z1; (iii) x+1, y1/2, z+2; (iv) x+2, y+1/2, z+2.
Comparison of selected torsion angles (°) for L-alanyl-glycyl-L-alanine monohydrate, (I), and the water-free form, (II) (Padiyar & Seshadri, 1996) top
Torsion angleNomenclature*(I)(II)
N1—C1—C2—N2ψ1-146.8 (2)172.6 (2)
C1—C2—N2—C3ω1-173.5 (2)-178.2 (2)
C2—N2—C3—C4ϕ286.4 (2)91.7 (1)
N2—C3—C4—N3ψ2-167.4 (2)-151.9 (2)
C3—C4—N3—C5ω2-173.8 (2)-176.9 (1)
C4—N3—C5—C6ϕ3-159.1 (2)-71.3 (2)
N3—C5—C6—O4ψ3.2-5.0 (3)-6.9 (1)
For nomenclature, see IUPAC–IUB Commission on Biochemical Nomenclature (1970).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds