Download citation
Download citation
link to html
Nimbolide [systematic name: (4α,5α,6α,7α,15β,17α)-7,15:21,23-diepoxy-6-hydroxy-4,8-dimethyl-1-oxo-18,24-dinor-11,12-secochola-2,13,20,22-tetraene-4,11-dicarboxylic acid γ-lactone methyl ester], C27H30O7, was isolated from the leaves of Azadirachta indica, and its isomer, isonimbolide [systematic name: (4α,5α,6α,7α,15α)-7,15:21,23-diepoxy-6-hydroxy-4,8-dimethyl-1-oxo-18,24-dinor-11,12-secochola-2,16,20,22-tetra­ene-4,11-dicarboxylic acid γ-lactone methyl ester], was prepared from a novel rearrangement reaction of nimbolide, using boron trifluoride etherate and tetra­butyl­ammonium bromide. The reaction conditions are probably responsible for the ether cleavage, double-bond rearrangement and reformation of the ether linkage. As a result, there are conformational changes in two cyclo­pentane rings and the side-chain –CH2COOMe group. In isonimbolide, an R_{4}^{4}(24) hydrogen-bond motif is observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104031385/fa1106sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104031385/fa1106Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104031385/fa1106IIsup3.hkl
Contains datablock II

CCDC references: 249735; 264797

Comment top

The neem (Azadirachta indica) and its constituents have been shown to possess bioinsecticidal activity at different levels (Chawla et al., 1996; Govindachari et al., 1992; Govindachari, Narasimhan et al., 1996; Govindachari & Geetha Gopalakrishnan, 1998). More than 300 limonoids have been isolated and many of them belong to the class of tetranortriterpenoids, the crystal structures of many of which have been established (Govindachari et al., 1994; Govindachari, Geetha Gopalakrishnan et al., 1996; Kabaleeswaran et al., 1994, 1997, 1999; Malathi et al., 2003). It has also been shown that the bioinsecticidal activity can be enhanced by photo-oxidation and microwave-induced oxidation (Suresh et al., 2002; Gopalakrishnan et al., 2001; Geetha Gopalakrishnan et al., 2000). The present paper reports the structures of two compounds, namely nimbolide, (I), a tetranortriterpenoid, isolated from the leaves of Azadirachta indica, and a novel rearranged product, isonimbolide, (II). The rearranged product was synthesized with a view to enhancing the activity of the native compound through the reaction of nimbolide with a Lewis acid, BF3·OEt2, in the presence of tetrabutylammonium bromide.

The chemical modification brought about the cleavage of the ether linkage between atoms C7 and C15. Due to stability constraints, there is a rearrangement of the double bond, from C13C14 in nimbolide to C16C17 in isonimbolide, along with ring closure between C7 and C13, resulting in the re-formation of the ether linkage. Hence, chemically, nimbolide and its isomer differ in the ether linkage, which is between C7 and C15 in nimbolide, and C7 and C13 in isonimbolide (scheme and Fig. 1). Nimbolide and isonimbolide thus differ primarily in the orientation of the –CH2COOMe group attached to C9. The orientation of this group can be defined by the torsion angle C8—C9—C11—C12, which is 91.1 (5)° in nimbolide and 132.5 (6)° in isonimbolide. The orientation of the carbomethoxy group (C9—C11—C12–027) is -ac [−148.8 (5)°] and sp [−29.0 (9)°] (Klyne & Prelog, 1960) in nimbolide and isonimbolide, respectively. These differences in the side-chain conformation arise due to the change in the orientation of ring I and the methyl group attached to C13 between nimbolide and isonimbolide. The migration of the double bond in ring I of isonimbolide accompanies a difference in the fusion of rings I/D, which is quasi-trans in nimbolide and trans in isonimbolide.

The ring junctions A/B, A/F, B/F and B/D in both structures are trans, trans, trans and cis, respectively. In isonimbolide, atom C13 is sp3 hybridized and the C18 methyl attached to this atom is in an α conformation. There are considerable variations in the torsion angles involving the atoms of rings D and I, which indicates that the reaction centre would have been atom O7, which is a potential centre for the coordination of the Lewis acid. In both structures, the rings A, B and F have sofa, chair and half-chair conformations, respectively (Cremer & Pople, 1975), and the methyl atoms C19, C29 and C30 are in β conformations. In nimbolide, the furan ring at C17 shows rotational disorder about the C17—C20 bond. This rotational flexibility has resulted in disorder of all the atoms of the furan ring except C20, and these atoms show split positions viz. C21A, O21A, C22A and C23A, and C21B, O21B, C22B and C23B. However, the furan ring of isonimbolide shows no disorder (Fig. 1 b). The orientation of this furan ring, described by the torsion angle C16—C17—C20—C22, are −101.2 (14) and −55.3 (13)° for the congeners A and B, respectively, in nimbolide, and −12.1 (10)° in isonimbolide. The angles between the least-squares planes of ring A and the furan ring E are 123.0 (7) and 95.6 (9)° for disorder components A and B, respectively, in nimbolide, and 151.4 (2)° in isonimbolide.

No significant hydrogen-bonding interactions are seen in nimbolide, but an interesting hydrogen-bonding pattern is present in isonimbolide, for which three hydrogen-bonded chain motifs (Bernstein et al., 1995) are observed (Table 1). The first, C3···O12(3/2 − x, −y, 1/2 + z), produces a C(9) chain parallel to the z axis. The second chain, a C(6) motif mediated by C6···O1(1 − x, 1/2 + y, 1/2 − z), runs parallel to the y axis. The third, linked by C16···O28(3/2 − x, 1 − y, z − 1/2), forms a C(9) chain along the z axis. These combine to generate a ring with an R44(24) motif (Fig. 2).

Experimental top

Nimbolide, (I), was isolated from the the fresh uncrushed leaves of Azadirachta indica following the procedure described by Govindachari et al. (1999). To prepare isonimbolide, (II), nimbolide (200 mg) was dissolved in chloroform (analytical reagent, 200 ml) at 258 K. To this, tetrabutyl ammonium bromide (145 mg) and boron triflouride etherate (0.3 ml) were added. The reaction mixture was allowed to reach room temperature and was stirred for 6 h. On completion of the reaction (monitored by thin-layer chromatography), it was quenched with solid sodium bicarbonate. The organic layer was filtered and concentrated under reduced pressure to yield the crude isonimbolide. Flash column chromatography of the product over silica gel using hexane ethyl acetate as eluent furnished pure isonimbolide. The final yield was 52%.

Refinement top

In the absence of suitable anomalous scatters, Friedel equivalents could not be used to determine the absolute structure. Refinement of the Flack parameter (Flack, 1983) led to inconclusive values (Flack & Bernadinelli, 2000) for this parameter [−0.8 (7) for nimbolide and −1(3) for isonimbolide]. Therefore, the 103 and 34 Friedel equivalents of nimbolide and isonimbolide, respectively, were merged before the final refinements. The enantiomer employed in the refined model was chosen to agree with the accepted configuration of triterpenoids (Henderson et al., 1968; Narayanan et al., 1964; Harris et al., 1968). The methyl and hydroxyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å and O—H = 0.82 Å), with Uiso(H) = 1.5Ueq(parent atom), but were allowed to rotate freely about the C—C and C—O bonds, respectively. All remaining H atoms were placed in geometrically idealized positions (C—H = 0.97–0.98 Å) and constrained to ride on their parent atom, with Uiso(H) = 1.2Ueq(C). All the disordered atoms were restrained using SAME, SADI and DFIX restraints. A SIMU restraint was used for the chemically equivalent disordered congeners.

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. (a) The molecular structure of nimbolide, (I), and (b) isonimbolide, (II), with the atom-numbering schemes. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted.
[Figure 2] Fig. 2. A view of the supramolecular structure of isonimbolide, showing the R44(24) motif. The suffixes *, $, # and & denote symmetry positions (1 − x, y + 1/2, 1/2 − z), (3/2 − x, 1 − y, z − 1/2), (x, y, z) and (x, y − 1, z), respectively.
(I) (4α,5α,6α,7α,15β,17α)-7,15:21,23-diepoxy-6 -hydroxy-4,8-dimethyl-1-oxo-18,24-dinor-11,12-secochola-2,13,20,22-tetraene- 4,11-dicarboxylic acid γ-lactone methyl ester top
Crystal data top
C27H30O7Dx = 1.332 Mg m3
Mr = 466.51Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 12.115 (3) Åθ = 15–30°
b = 12.225 (4) ŵ = 0.79 mm1
c = 15.710 (3) ÅT = 293 K
V = 2326.8 (10) Å3Rod, colourless
Z = 40.40 × 0.25 × 0.15 mm
F(000) = 992
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.119
Radiation source: fine-focus sealed tubeθmax = 75.2°, θmin = 4.6°
Graphite monochromatorh = 1515
non–profiled ω/2θ scansk = 515
2806 measured reflectionsl = 1019
2695 independent reflections3 standard reflections every 200 reflections
1958 reflections with I > 2σ(I) intensity decay: 4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.1148P)2 + 0.6918P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.015
2695 reflectionsΔρmax = 0.41 e Å3
355 parametersΔρmin = 0.29 e Å3
108 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (6)
Crystal data top
C27H30O7V = 2326.8 (10) Å3
Mr = 466.51Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 12.115 (3) ŵ = 0.79 mm1
b = 12.225 (4) ÅT = 293 K
c = 15.710 (3) Å0.40 × 0.25 × 0.15 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.119
2806 measured reflections3 standard reflections every 200 reflections
2695 independent reflections intensity decay: 4%
1958 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.059108 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.00Δρmax = 0.41 e Å3
2695 reflectionsΔρmin = 0.29 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6613 (3)0.3608 (4)0.9991 (2)0.0863 (13)
O60.9127 (3)0.2687 (3)0.6940 (2)0.0615 (9)
O70.6887 (3)0.2937 (2)0.6557 (2)0.0534 (8)
O120.4232 (3)0.3780 (3)0.8542 (3)0.0766 (12)
O270.3838 (3)0.5555 (3)0.8562 (3)0.0842 (13)
O280.9928 (4)0.1214 (4)0.7530 (4)0.0926 (14)
C10.7359 (4)0.3384 (4)0.9499 (3)0.0556 (12)
C20.8079 (5)0.2456 (5)0.9693 (4)0.0775 (17)
H20.79320.20761.01930.093*
C30.8927 (5)0.2098 (5)0.9223 (4)0.0775 (17)
H30.93160.14760.93840.093*
C40.9240 (4)0.2706 (4)0.8439 (3)0.0569 (12)
C50.8214 (3)0.3291 (4)0.8117 (3)0.0437 (9)
H50.76880.26950.80180.052*
C60.8519 (4)0.3645 (4)0.7247 (3)0.0501 (10)
H60.90060.42840.72710.060*
C70.7492 (4)0.3904 (4)0.6733 (3)0.0467 (10)
H70.77110.42440.61940.056*
C80.6717 (4)0.4708 (3)0.7228 (3)0.0435 (9)
C90.6521 (3)0.4323 (3)0.8180 (3)0.0408 (9)
H90.61380.36200.81310.049*
C100.7588 (3)0.4066 (3)0.8702 (3)0.0453 (10)
C110.5697 (4)0.5081 (4)0.8637 (3)0.0545 (11)
H11A0.58930.51230.92340.065*
H11B0.57600.58110.83990.065*
C120.4528 (4)0.4711 (4)0.8563 (3)0.0520 (11)
C130.4936 (4)0.4961 (4)0.6254 (3)0.0512 (11)
C140.5700 (4)0.4428 (3)0.6726 (3)0.0435 (9)
C150.5739 (4)0.3234 (3)0.6518 (3)0.0460 (10)
H150.53140.28150.69370.055*
C160.5182 (4)0.3180 (4)0.5647 (3)0.0541 (11)
H16A0.47840.24970.55750.065*
H16B0.57180.32550.51920.065*
C170.4379 (4)0.4171 (4)0.5670 (3)0.0543 (11)
H170.43390.44940.51000.065*
C180.4620 (5)0.6132 (4)0.6271 (4)0.0724 (16)
H18A0.40530.62630.58570.109*
H18B0.52530.65740.61400.109*
H18C0.43510.63190.68270.109*
C190.8220 (4)0.5086 (4)0.9002 (3)0.0589 (12)
H19A0.85430.54460.85190.088*
H19B0.87920.48720.93910.088*
H19C0.77200.55770.92830.088*
C200.3226 (4)0.3867 (5)0.5954 (3)0.0637 (13)
C23A0.1478 (17)0.3371 (19)0.6006 (10)0.102 (5)0.526 (11)
H23A0.07620.32480.58150.122*0.526 (11)
O21A0.1807 (8)0.3242 (11)0.6807 (7)0.093 (3)0.526 (11)
C21A0.2896 (10)0.3499 (14)0.6702 (9)0.100 (4)0.526 (11)
H21A0.33940.34160.71480.120*0.526 (11)
C22A0.2295 (15)0.3696 (18)0.5522 (14)0.133 (6)0.526 (11)
H22A0.22320.37960.49370.160*0.526 (11)
C23B0.1617 (18)0.3047 (14)0.6142 (12)0.082 (4)0.474 (11)
H23B0.11020.24840.61660.098*0.474 (11)
O21B0.1629 (12)0.3981 (15)0.6599 (11)0.130 (4)0.474 (11)
C21B0.2716 (13)0.4394 (17)0.6579 (12)0.119 (6)0.474 (11)
H21B0.30150.49280.69330.143*0.474 (11)
C22B0.2502 (12)0.3112 (12)0.5652 (12)0.089 (4)0.474 (11)
H22B0.26130.26960.51640.107*0.474 (11)
C27A0.2691 (19)0.535 (3)0.826 (5)0.105 (12)0.39 (7)
H27A0.22850.60220.82520.158*0.39 (7)
H27B0.23350.48360.86300.158*0.39 (7)
H27C0.27160.50510.76910.158*0.39 (7)
C27B0.2683 (14)0.526 (2)0.874 (3)0.101 (7)0.61 (7)
H27D0.22320.59070.87260.151*0.61 (7)
H27E0.26360.49350.92980.151*0.61 (7)
H27F0.24270.47490.83240.151*0.61 (7)
C280.9466 (4)0.2068 (4)0.7628 (4)0.0643 (14)
C291.0287 (4)0.3406 (5)0.8603 (4)0.0705 (15)
H29A1.04910.37820.80900.106*
H29B1.08820.29390.87790.106*
H29C1.01370.39310.90430.106*
C300.7140 (5)0.5881 (4)0.7115 (3)0.0589 (13)
H30A0.66900.63720.74430.088*
H30B0.71030.60810.65250.088*
H30C0.78900.59260.73070.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.073 (3)0.123 (4)0.063 (2)0.012 (3)0.017 (2)0.022 (2)
O60.0392 (15)0.072 (2)0.074 (2)0.0050 (17)0.0022 (16)0.0179 (19)
O70.0451 (16)0.0459 (15)0.069 (2)0.0018 (14)0.0057 (16)0.0127 (16)
O120.062 (2)0.0531 (19)0.115 (3)0.0067 (19)0.016 (2)0.013 (2)
O270.0481 (19)0.0529 (19)0.151 (4)0.0083 (16)0.011 (3)0.001 (3)
O280.062 (2)0.075 (3)0.140 (4)0.021 (2)0.001 (3)0.019 (3)
C10.048 (2)0.069 (3)0.050 (3)0.004 (2)0.005 (2)0.005 (2)
C20.063 (3)0.090 (4)0.080 (4)0.007 (3)0.003 (3)0.037 (3)
C30.060 (3)0.076 (4)0.096 (4)0.007 (3)0.015 (3)0.032 (3)
C40.039 (2)0.060 (3)0.071 (3)0.007 (2)0.004 (2)0.008 (2)
C50.0322 (19)0.046 (2)0.053 (2)0.0010 (18)0.0033 (18)0.0026 (19)
C60.039 (2)0.049 (2)0.063 (3)0.0015 (19)0.004 (2)0.007 (2)
C70.044 (2)0.051 (2)0.045 (2)0.001 (2)0.0013 (19)0.0022 (19)
C80.042 (2)0.039 (2)0.049 (2)0.0022 (18)0.0015 (19)0.0011 (18)
C90.0343 (18)0.0388 (18)0.049 (2)0.0008 (17)0.0047 (17)0.0063 (17)
C100.038 (2)0.046 (2)0.052 (2)0.0025 (19)0.0014 (19)0.002 (2)
C110.051 (2)0.052 (2)0.061 (3)0.007 (2)0.004 (2)0.010 (2)
C120.048 (2)0.049 (2)0.059 (3)0.004 (2)0.010 (2)0.008 (2)
C130.051 (2)0.047 (2)0.055 (2)0.001 (2)0.007 (2)0.007 (2)
C140.042 (2)0.0414 (19)0.047 (2)0.0003 (19)0.0052 (19)0.0003 (18)
C150.044 (2)0.041 (2)0.053 (2)0.0004 (19)0.004 (2)0.0007 (19)
C160.058 (3)0.054 (3)0.050 (2)0.005 (2)0.002 (2)0.005 (2)
C170.051 (2)0.063 (3)0.048 (2)0.002 (2)0.008 (2)0.007 (2)
C180.082 (4)0.053 (3)0.082 (4)0.012 (3)0.022 (3)0.011 (3)
C190.053 (3)0.060 (3)0.063 (3)0.008 (3)0.007 (2)0.009 (2)
C200.048 (3)0.084 (4)0.059 (3)0.001 (3)0.007 (2)0.013 (3)
C23A0.061 (7)0.147 (10)0.098 (8)0.035 (8)0.005 (6)0.026 (8)
O21A0.073 (5)0.113 (7)0.094 (6)0.016 (6)0.014 (5)0.004 (6)
C21A0.062 (6)0.123 (10)0.115 (8)0.001 (7)0.001 (7)0.043 (8)
C22A0.112 (10)0.179 (13)0.109 (9)0.015 (11)0.005 (9)0.016 (11)
C23B0.075 (8)0.089 (8)0.081 (8)0.012 (7)0.017 (7)0.008 (7)
O21B0.096 (7)0.145 (9)0.151 (8)0.018 (8)0.032 (7)0.026 (8)
C21B0.077 (8)0.137 (12)0.143 (11)0.029 (10)0.034 (9)0.051 (11)
C22B0.078 (8)0.068 (7)0.120 (10)0.020 (7)0.042 (7)0.032 (8)
C27A0.033 (8)0.066 (11)0.22 (3)0.018 (7)0.027 (16)0.01 (2)
C27B0.041 (6)0.101 (12)0.16 (2)0.002 (6)0.035 (9)0.009 (14)
C280.032 (2)0.064 (3)0.097 (4)0.011 (2)0.006 (3)0.011 (3)
C290.039 (2)0.087 (4)0.085 (4)0.001 (3)0.014 (3)0.002 (3)
C300.063 (3)0.043 (2)0.071 (3)0.010 (2)0.005 (3)0.009 (2)
Geometric parameters (Å, º) top
O1—C11.220 (6)C15—H150.9800
O6—C281.382 (7)C16—C171.555 (7)
O6—C61.464 (5)C16—H16A0.9700
O7—C71.418 (5)C16—H16B0.9700
O7—C151.439 (5)C17—C201.513 (7)
O12—C121.193 (6)C17—H170.9800
O27—C121.328 (6)C18—H18A0.9600
O27—C27B1.473 (11)C18—H18B0.9600
O27—C27A1.492 (16)C18—H18C0.9600
O28—C281.195 (6)C19—H19A0.9600
C1—C21.463 (8)C19—H19B0.9600
C1—C101.530 (7)C19—H19C0.9600
C2—C31.339 (8)C20—C21A1.320 (13)
C2—H20.9300C20—C21B1.328 (14)
C3—C41.488 (8)C20—C22A1.333 (16)
C3—H30.9300C20—C22B1.359 (13)
C4—C281.518 (8)C23A—C22A1.310 (16)
C4—C51.521 (6)C23A—O21A1.330 (13)
C4—C291.552 (7)C23A—H23A0.9300
C5—C61.480 (6)O21A—C21A1.367 (13)
C5—C101.522 (6)C21A—H21A0.9300
C5—H50.9800C22A—H22A0.9300
C6—C71.518 (6)C23B—C22B1.322 (16)
C6—H60.9800C23B—O21B1.349 (14)
C7—C81.565 (6)C23B—H23B0.9300
C7—H70.9800O21B—C21B1.411 (15)
C8—C141.502 (6)C21B—H21B0.9300
C8—C301.533 (6)C22B—H22B0.9300
C8—C91.587 (6)C27A—H27A0.9600
C9—C111.540 (6)C27A—H27B0.9600
C9—C101.562 (6)C27A—H27C0.9600
C9—H90.9800C27B—H27D0.9600
C10—C191.537 (6)C27B—H27E0.9600
C11—C121.492 (7)C27B—H27F0.9600
C11—H11A0.9700C29—H29A0.9600
C11—H11B0.9700C29—H29B0.9600
C13—C141.353 (6)C29—H29C0.9600
C13—C181.483 (6)C30—H30A0.9600
C13—C171.492 (7)C30—H30B0.9600
C14—C151.496 (6)C30—H30C0.9600
C15—C161.527 (6)
C28—O6—C6109.2 (4)C15—C16—H16A111.2
C7—O7—C15107.3 (3)C17—C16—H16A111.2
C12—O27—C27B114.1 (13)C15—C16—H16B111.2
C12—O27—C27A117.0 (13)C17—C16—H16B111.2
O1—C1—C2118.9 (5)H16A—C16—H16B109.1
O1—C1—C10122.0 (5)C13—C17—C20113.3 (4)
C2—C1—C10119.0 (4)C13—C17—C16103.6 (4)
C3—C2—C1126.6 (5)C20—C17—C16113.1 (4)
C3—C2—H2116.7C13—C17—H17108.9
C1—C2—H2116.7C20—C17—H17108.9
C2—C3—C4119.3 (5)C16—C17—H17108.9
C2—C3—H3120.4C13—C18—H18A109.5
C4—C3—H3120.4C13—C18—H18B109.5
C3—C4—C28118.9 (5)H18A—C18—H18B109.5
C3—C4—C5107.6 (4)C13—C18—H18C109.5
C28—C4—C596.3 (4)H18A—C18—H18C109.5
C3—C4—C29110.3 (5)H18B—C18—H18C109.5
C28—C4—C29106.0 (4)C10—C19—H19A109.5
C5—C4—C29117.7 (4)C10—C19—H19B109.5
C6—C5—C4103.9 (4)H19A—C19—H19B109.5
C6—C5—C10120.0 (4)C10—C19—H19C109.5
C4—C5—C10119.9 (4)H19A—C19—H19C109.5
C6—C5—H5103.5H19B—C19—H19C109.5
C4—C5—H5103.5C21A—C20—C22A98.3 (12)
C10—C5—H5103.5C21B—C20—C22B106.7 (10)
O6—C6—C5101.3 (4)C21A—C20—C17128.7 (7)
O6—C6—C7113.8 (4)C21B—C20—C17121.9 (8)
C5—C6—C7110.3 (4)C22A—C20—C17132.1 (11)
O6—C6—H6110.3C22B—C20—C17131.3 (8)
C5—C6—H6110.3C22A—C23A—O21A111.1 (17)
C7—C6—H6110.3C22A—C23A—H23A124.5
O7—C7—C6110.7 (4)O21A—C23A—H23A124.5
O7—C7—C8108.1 (3)C23A—O21A—C21A98.5 (13)
C6—C7—C8111.0 (3)C20—C21A—O21A118.6 (12)
O7—C7—H7109.0C20—C21A—H21A120.7
C6—C7—H7109.0O21A—C21A—H21A120.7
C8—C7—H7109.0C23A—C22A—C20113.0 (17)
C14—C8—C30115.2 (4)C23A—C22A—H22A123.5
C14—C8—C795.0 (3)C20—C22A—H22A123.5
C30—C8—C7109.3 (4)C22B—C23B—O21B104.5 (17)
C14—C8—C9107.7 (3)C22B—C23B—H23B127.7
C30—C8—C9115.9 (4)O21B—C23B—H23B127.7
C7—C8—C9111.8 (3)C23B—O21B—C21B107.5 (16)
C11—C9—C10114.4 (3)C20—C21B—O21B106.1 (12)
C11—C9—C8111.0 (4)C20—C21B—H21B127.0
C10—C9—C8115.5 (3)O21B—C21B—H21B127.0
C11—C9—H9104.9C23B—C22B—C20111.1 (15)
C10—C9—H9104.9C23B—C22B—H22B124.4
C8—C9—H9104.9C20—C22B—H22B124.4
C5—C10—C1104.2 (4)O27—C27A—H27A109.5
C5—C10—C19116.2 (4)O27—C27A—H27B109.5
C1—C10—C19106.4 (4)H27A—C27A—H27B109.5
C5—C10—C9102.7 (3)O27—C27A—H27C109.5
C1—C10—C9112.9 (4)H27A—C27A—H27C109.5
C19—C10—C9114.2 (4)H27B—C27A—H27C109.5
C12—C11—C9113.4 (4)O27—C27B—H27D109.5
C12—C11—H11A108.9O27—C27B—H27E109.5
C9—C11—H11A108.9H27D—C27B—H27E109.5
C12—C11—H11B108.9O27—C27B—H27F109.5
C9—C11—H11B108.9H27D—C27B—H27F109.5
H11A—C11—H11B107.7H27E—C27B—H27F109.5
O12—C12—O27123.5 (5)O28—C28—O6121.1 (6)
O12—C12—C11125.2 (5)O28—C28—C4129.9 (6)
O27—C12—C11111.2 (4)O6—C28—C4108.8 (4)
C14—C13—C18129.2 (5)C4—C29—H29A109.5
C14—C13—C17109.6 (4)C4—C29—H29B109.5
C18—C13—C17121.3 (4)H29A—C29—H29B109.5
C13—C14—C15111.8 (4)C4—C29—H29C109.5
C13—C14—C8137.7 (4)H29A—C29—H29C109.5
C15—C14—C8108.1 (4)H29B—C29—H29C109.5
O7—C15—C14105.5 (4)C8—C30—H30A109.5
O7—C15—C16117.0 (4)C8—C30—H30B109.5
C14—C15—C16103.0 (4)H30A—C30—H30B109.5
O7—C15—H15110.3C8—C30—H30C109.5
C14—C15—H15110.3H30A—C30—H30C109.5
C16—C15—H15110.3H30B—C30—H30C109.5
C15—C16—C17102.8 (4)
O1—C1—C2—C3179.8 (7)C27B—O27—C12—C11163 (2)
C10—C1—C2—C32.4 (9)C27A—O27—C12—C11164 (3)
C1—C2—C3—C43.2 (10)C9—C11—C12—O1234.1 (8)
C2—C3—C4—C28134.2 (6)C9—C11—C12—O27148.8 (5)
C2—C3—C4—C526.3 (8)C18—C13—C14—C15178.7 (5)
C2—C3—C4—C29103.1 (6)C17—C13—C14—C150.3 (6)
C3—C4—C5—C6166.9 (4)C18—C13—C14—C821.8 (10)
C28—C4—C5—C643.8 (4)C17—C13—C14—C8159.1 (5)
C29—C4—C5—C667.9 (5)C30—C8—C14—C139.9 (8)
C3—C4—C5—C1055.6 (6)C7—C8—C14—C13124.0 (6)
C28—C4—C5—C10178.6 (4)C9—C8—C14—C13121.2 (6)
C29—C4—C5—C1069.6 (6)C30—C8—C14—C15150.0 (4)
C28—O6—C6—C519.6 (4)C7—C8—C14—C1535.9 (4)
C28—O6—C6—C7138.0 (4)C9—C8—C14—C1578.9 (4)
C4—C5—C6—O640.4 (4)C7—O7—C15—C142.8 (5)
C10—C5—C6—O6177.9 (4)C7—O7—C15—C16110.9 (4)
C4—C5—C6—C7161.4 (4)C13—C14—C15—O7142.2 (4)
C10—C5—C6—C761.2 (5)C8—C14—C15—O723.4 (5)
C15—O7—C7—C6148.7 (4)C13—C14—C15—C1619.1 (5)
C15—O7—C7—C827.0 (5)C8—C14—C15—C16146.5 (4)
O6—C6—C7—O744.2 (5)O7—C15—C16—C17143.7 (4)
C5—C6—C7—O768.9 (5)C14—C15—C16—C1728.6 (5)
O6—C6—C7—C8164.2 (3)C14—C13—C17—C20104.7 (5)
C5—C6—C7—C851.1 (5)C18—C13—C17—C2074.4 (6)
O7—C7—C8—C1438.3 (4)C14—C13—C17—C1618.3 (5)
C6—C7—C8—C14159.9 (4)C18—C13—C17—C16162.6 (5)
O7—C7—C8—C30157.3 (4)C15—C16—C17—C1328.8 (5)
C6—C7—C8—C3081.2 (5)C15—C16—C17—C2094.3 (5)
O7—C7—C8—C973.1 (4)C13—C17—C20—C21A52.4 (12)
C6—C7—C8—C948.5 (5)C16—C17—C20—C21A65.2 (12)
C14—C8—C9—C1173.1 (4)C13—C17—C20—C21B10.3 (13)
C30—C8—C9—C1157.7 (5)C16—C17—C20—C21B127.9 (13)
C7—C8—C9—C11176.2 (3)C13—C17—C20—C22A141.2 (14)
C14—C8—C9—C10154.7 (3)C16—C17—C20—C22A101.2 (14)
C30—C8—C9—C1074.6 (5)C13—C17—C20—C22B172.9 (12)
C7—C8—C9—C1051.5 (5)C16—C17—C20—C22B55.3 (13)
C6—C5—C10—C1176.0 (4)C22A—C23A—O21A—C21A2 (2)
C4—C5—C10—C153.2 (5)C22A—C20—C21A—O21A8.1 (15)
C6—C5—C10—C1967.3 (5)C17—C20—C21A—O21A177.9 (10)
C4—C5—C10—C1963.4 (5)C23A—O21A—C21A—C207 (2)
C6—C5—C10—C958.1 (5)O21A—C23A—C22A—C203 (3)
C4—C5—C10—C9171.1 (4)C21A—C20—C22A—C23A6.4 (17)
O1—C1—C10—C5157.9 (5)C17—C20—C22A—C23A175.7 (13)
C2—C1—C10—C524.3 (6)C22B—C23B—O21B—C21B20 (2)
O1—C1—C10—C1978.8 (6)C22B—C20—C21B—O21B4.2 (16)
C2—C1—C10—C1999.0 (5)C17—C20—C21B—O21B173.3 (11)
O1—C1—C10—C947.2 (6)C23B—O21B—C21B—C2015 (2)
C2—C1—C10—C9135.0 (5)O21B—C23B—C22B—C2018 (2)
C11—C9—C10—C5178.4 (4)C21B—C20—C22B—C23B8.7 (16)
C8—C9—C10—C551.0 (4)C17—C20—C22B—C23B174.1 (11)
C11—C9—C10—C166.8 (5)C6—O6—C28—O28176.0 (4)
C8—C9—C10—C1162.6 (4)C6—O6—C28—C48.9 (5)
C11—C9—C10—C1954.9 (5)C3—C4—C28—O2839.2 (8)
C8—C9—C10—C1975.8 (5)C5—C4—C28—O28153.3 (5)
C10—C9—C11—C12136.0 (4)C29—C4—C28—O2885.6 (7)
C8—C9—C11—C1291.1 (5)C3—C4—C28—O6146.3 (5)
C27B—O27—C12—O1214 (2)C5—C4—C28—O632.3 (4)
C27A—O27—C12—O1219 (3)C29—C4—C28—O688.9 (4)
(II) (4α,5α,6α,7α,15α)-7,15:21,23-diepoxy-6-hydroxy- 4,8-dimethyl-1-oxo-18,24-dinor-11,12-secochola-2,16,20,22-tetraene-4,11- dicarboxylic acid γ-lactone methyl ester top
Crystal data top
C27H30O7Dx = 1.325 Mg m3
Mr = 466.51Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 9.026 (2) Åθ = 5–12°
b = 14.009 (18) ŵ = 0.10 mm1
c = 18.495 (5) ÅT = 293 K
V = 2339 (3) Å3Rod, colourless
Z = 40.40 × 0.25 × 0.20 mm
F(000) = 992
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.019
Radiation source: fine-focus sealed tubeθmax = 30.6°, θmin = 2.2°
Graphite monochromatorh = 012
non–profiled ω/2θ scansk = 019
3895 measured reflectionsl = 026
3864 independent reflections3 standard reflections every 200 reflections
1434 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full with fixed elements per cycleHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.198 w = 1/[σ2(Fo2) + (0.0844P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
3864 reflectionsΔρmax = 0.23 e Å3
308 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Crystal data top
C27H30O7V = 2339 (3) Å3
Mr = 466.51Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.026 (2) ŵ = 0.10 mm1
b = 14.009 (18) ÅT = 293 K
c = 18.495 (5) Å0.40 × 0.25 × 0.20 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.019
3895 measured reflections3 standard reflections every 200 reflections
3864 independent reflections intensity decay: 3%
1434 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 0.98Δρmax = 0.23 e Å3
3864 reflectionsΔρmin = 0.23 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6506 (6)0.0539 (4)0.2753 (3)0.0511 (14)
C20.6964 (7)0.0524 (4)0.3517 (3)0.0575 (16)
H20.73720.00400.36930.069*
C30.6839 (7)0.1261 (4)0.3983 (3)0.0557 (15)
H30.71970.12080.44530.067*
C40.6124 (7)0.2157 (4)0.3736 (3)0.0492 (14)
C50.6326 (6)0.2219 (3)0.2923 (2)0.0392 (12)
H50.74050.21960.28660.047*
C60.5963 (7)0.3239 (3)0.2751 (2)0.0436 (13)
H60.48870.33370.27470.052*
C70.6613 (6)0.3497 (3)0.2035 (3)0.0454 (13)
H70.62560.41290.18890.054*
C80.6250 (6)0.2757 (3)0.1430 (2)0.0431 (13)
C90.6489 (6)0.1696 (3)0.1678 (3)0.0449 (13)
H90.75610.16330.17460.054*
C100.5795 (6)0.1434 (4)0.2431 (3)0.0453 (13)
C110.6101 (7)0.0986 (4)0.1061 (3)0.0616 (17)
H11A0.51570.06910.11770.074*
H11B0.59640.13500.06200.074*
C120.7183 (9)0.0214 (5)0.0912 (3)0.069 (2)
C150.7206 (8)0.3623 (4)0.0217 (3)0.0624 (17)
H13A0.77450.33960.02020.075*
H13B0.61560.36310.01070.075*
C140.7524 (7)0.2996 (4)0.0881 (3)0.0492 (14)
H140.79860.23990.07210.059*
C130.8669 (6)0.3577 (4)0.1334 (3)0.0477 (13)
C170.8515 (6)0.4584 (4)0.1046 (3)0.0483 (13)
C160.7733 (7)0.4593 (4)0.0440 (3)0.0591 (16)
H170.75320.51460.01790.071*
C190.4102 (7)0.1268 (5)0.2428 (4)0.0654 (17)
H19A0.36180.18070.22110.098*
H19B0.37590.11900.29150.098*
H19C0.38800.07030.21540.098*
C200.9101 (6)0.5411 (4)0.1430 (3)0.0521 (15)
C210.9596 (7)0.5456 (4)0.2124 (3)0.0605 (16)
H210.96780.49300.24280.073*
C220.9188 (7)0.6382 (4)0.1174 (3)0.0566 (15)
H220.89510.65970.07120.068*
C230.9674 (7)0.6912 (4)0.1725 (4)0.0692 (18)
H230.98030.75700.17070.083*
C270.9682 (9)0.0301 (6)0.0908 (4)0.096 (2)
H27A1.06380.00680.10530.144*
H27B0.96930.04390.04000.144*
H27C0.94540.08720.11730.144*
C280.6828 (7)0.3113 (4)0.3930 (3)0.0531 (15)
C290.4535 (7)0.2206 (4)0.4051 (3)0.0668 (18)
H29A0.40270.16180.39540.100*
H29B0.40070.27250.38310.100*
H29C0.45860.23060.45640.100*
C300.4696 (7)0.2979 (5)0.1143 (3)0.0609 (16)
H30A0.44410.25290.07720.091*
H30B0.46790.36130.09460.091*
H30C0.39930.29350.15310.091*
C181.0245 (7)0.3206 (4)0.1310 (3)0.0647 (18)
H31A1.08630.35960.16120.097*
H31B1.06030.32290.08210.097*
H31C1.02670.25590.14810.097*
O10.6672 (5)0.0196 (3)0.2390 (2)0.0720 (12)
O120.6786 (8)0.0550 (4)0.0648 (3)0.114 (2)
O70.8194 (4)0.3509 (2)0.20789 (16)0.0462 (9)
O60.6638 (4)0.3739 (2)0.33638 (17)0.0521 (10)
O210.9957 (5)0.6362 (3)0.2319 (2)0.0701 (12)
O270.8561 (5)0.0424 (3)0.1059 (2)0.0744 (13)
O280.7461 (6)0.3362 (3)0.44667 (19)0.0703 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (3)0.031 (3)0.072 (4)0.006 (3)0.010 (3)0.004 (3)
C20.059 (4)0.038 (3)0.075 (4)0.003 (3)0.008 (3)0.015 (3)
C30.074 (4)0.047 (3)0.047 (3)0.006 (3)0.005 (3)0.010 (3)
C40.066 (4)0.038 (3)0.043 (3)0.001 (3)0.010 (3)0.002 (2)
C50.047 (3)0.024 (2)0.047 (3)0.000 (2)0.008 (3)0.001 (2)
C60.051 (3)0.037 (3)0.043 (3)0.005 (2)0.004 (3)0.006 (2)
C70.055 (4)0.029 (3)0.052 (3)0.004 (3)0.003 (3)0.001 (2)
C80.054 (3)0.036 (3)0.039 (3)0.004 (3)0.000 (3)0.002 (2)
C90.048 (3)0.034 (3)0.052 (3)0.007 (3)0.006 (3)0.005 (2)
C100.050 (3)0.037 (3)0.048 (3)0.000 (3)0.006 (3)0.000 (3)
C110.070 (4)0.047 (3)0.067 (4)0.004 (3)0.001 (3)0.023 (3)
C120.095 (6)0.051 (4)0.061 (4)0.000 (4)0.007 (4)0.020 (3)
C150.089 (5)0.055 (3)0.043 (3)0.001 (4)0.001 (3)0.004 (3)
C140.074 (4)0.035 (3)0.039 (3)0.004 (3)0.002 (3)0.006 (2)
C130.054 (4)0.051 (3)0.037 (3)0.005 (3)0.009 (3)0.005 (2)
C170.064 (4)0.045 (3)0.036 (3)0.004 (3)0.011 (3)0.007 (2)
C160.077 (4)0.050 (3)0.050 (3)0.000 (3)0.006 (3)0.013 (3)
C190.055 (4)0.062 (4)0.079 (4)0.006 (3)0.000 (3)0.002 (4)
C200.055 (3)0.044 (3)0.057 (3)0.001 (3)0.009 (3)0.007 (3)
C210.080 (4)0.038 (3)0.064 (4)0.002 (3)0.004 (4)0.003 (3)
C220.059 (4)0.051 (3)0.060 (3)0.005 (3)0.004 (3)0.011 (3)
C230.068 (5)0.043 (3)0.096 (5)0.001 (3)0.015 (4)0.015 (4)
C270.102 (6)0.088 (5)0.098 (5)0.041 (5)0.018 (5)0.007 (5)
C280.066 (4)0.051 (3)0.042 (3)0.003 (3)0.011 (3)0.005 (3)
C290.070 (4)0.058 (4)0.072 (4)0.001 (3)0.023 (4)0.009 (3)
C300.062 (4)0.060 (4)0.061 (4)0.006 (3)0.014 (3)0.007 (3)
C180.069 (4)0.057 (4)0.069 (4)0.001 (3)0.013 (4)0.004 (3)
O10.098 (3)0.0340 (19)0.084 (3)0.000 (2)0.001 (3)0.005 (2)
O120.149 (5)0.068 (3)0.124 (4)0.021 (4)0.023 (4)0.048 (3)
O70.057 (2)0.0403 (19)0.0414 (19)0.0050 (19)0.0057 (18)0.0045 (16)
O60.077 (3)0.0366 (18)0.0422 (18)0.003 (2)0.005 (2)0.0057 (16)
O210.082 (3)0.046 (2)0.082 (3)0.005 (2)0.012 (3)0.001 (2)
O270.070 (3)0.062 (3)0.092 (3)0.007 (3)0.003 (3)0.019 (2)
O280.106 (4)0.061 (3)0.044 (2)0.006 (3)0.004 (2)0.0069 (19)
Geometric parameters (Å, º) top
C1—O11.239 (7)C14—C131.559 (8)
C1—C21.472 (9)C14—H140.9800
C1—C101.530 (8)C13—O71.446 (6)
C2—C31.350 (8)C13—C181.514 (8)
C2—H20.9300C13—C171.515 (8)
C3—C41.483 (8)C17—C161.324 (8)
C3—H30.9300C17—C201.458 (8)
C4—C51.516 (7)C16—H170.9300
C4—C281.524 (8)C19—H19A0.9600
C4—C291.550 (9)C19—H19B0.9600
C5—C61.501 (7)C19—H19C0.9600
C5—C101.506 (7)C20—C211.359 (8)
C5—H50.9800C20—C221.443 (8)
C6—O61.466 (6)C21—O211.360 (7)
C6—C71.492 (7)C21—H210.9300
C6—H60.9800C22—C231.335 (9)
C7—O71.429 (7)C22—H220.9300
C7—C81.559 (7)C23—O211.366 (8)
C7—H70.9800C23—H230.9300
C8—C301.532 (8)C27—O271.460 (8)
C8—C91.571 (7)C27—H27A0.9600
C8—C141.570 (8)C27—H27B0.9600
C9—C111.554 (7)C27—H27C0.9600
C9—C101.569 (7)C28—O281.198 (7)
C9—H90.9800C28—O61.377 (6)
C10—C191.545 (8)C29—H29A0.9600
C11—C121.483 (9)C29—H29B0.9600
C11—H11A0.9700C29—H29C0.9600
C11—H11B0.9700C30—H30A0.9600
C12—O121.230 (8)C30—H30B0.9600
C12—O271.307 (8)C30—H30C0.9600
C15—C161.497 (8)C18—H31A0.9600
C15—C141.537 (8)C18—H31B0.9600
C15—H13A0.9700C18—H31C0.9600
C15—H13B0.9700
O1—C1—C2118.4 (5)C15—C14—C8120.1 (5)
O1—C1—C10121.4 (5)C13—C14—C8104.4 (4)
C2—C1—C10120.2 (5)C15—C14—H14109.0
C3—C2—C1125.4 (6)C13—C14—H14109.0
C3—C2—H2117.3C8—C14—H14109.0
C1—C2—H2117.3O7—C13—C18106.5 (5)
C2—C3—C4119.1 (5)O7—C13—C17111.7 (4)
C2—C3—H3120.4C18—C13—C17113.3 (5)
C4—C3—H3120.4O7—C13—C14106.3 (4)
C3—C4—C5107.6 (5)C18—C13—C14115.3 (5)
C3—C4—C28119.3 (5)C17—C13—C14103.7 (4)
C5—C4—C2897.6 (4)C16—C17—C20126.8 (5)
C3—C4—C29108.9 (5)C16—C17—C13110.8 (5)
C5—C4—C29118.8 (5)C20—C17—C13122.3 (5)
C28—C4—C29105.0 (5)C17—C16—C15113.2 (5)
C6—C5—C4103.8 (4)C17—C16—H17123.4
C6—C5—C10119.8 (4)C15—C16—H17123.4
C4—C5—C10121.3 (4)C10—C19—H19A109.5
C6—C5—H5103.0C10—C19—H19B109.5
C4—C5—H5103.0H19A—C19—H19B109.5
C10—C5—H5103.0C10—C19—H19C109.5
O6—C6—C7114.1 (4)H19A—C19—H19C109.5
O6—C6—C5101.5 (4)H19B—C19—H19C109.5
C7—C6—C5109.4 (4)C21—C20—C22104.4 (6)
O6—C6—H6110.5C21—C20—C17128.0 (6)
C7—C6—H6110.5C22—C20—C17127.4 (5)
C5—C6—H6110.5O21—C21—C20111.9 (6)
O7—C7—C6110.2 (5)O21—C21—H21124.1
O7—C7—C8105.0 (4)C20—C21—H21124.1
C6—C7—C8113.2 (4)C23—C22—C20106.9 (6)
O7—C7—H7109.5C23—C22—H22126.5
C6—C7—H7109.5C20—C22—H22126.5
C8—C7—H7109.5C22—C23—O21111.2 (6)
C30—C8—C9114.8 (5)C22—C23—H23124.4
C30—C8—C7107.8 (5)O21—C23—H23124.4
C9—C8—C7112.9 (4)O27—C27—H27A109.5
C30—C8—C14113.8 (4)O27—C27—H27B109.5
C9—C8—C14106.9 (4)H27A—C27—H27B109.5
C7—C8—C1499.7 (4)O27—C27—H27C109.5
C11—C9—C8111.1 (4)H27A—C27—H27C109.5
C11—C9—C10114.3 (4)H27B—C27—H27C109.5
C8—C9—C10115.2 (4)O28—C28—O6120.2 (5)
C11—C9—H9105.0O28—C28—C4130.6 (5)
C8—C9—H9105.0O6—C28—C4109.2 (5)
C10—C9—H9105.0C4—C29—H29A109.5
C5—C10—C1103.2 (4)C4—C29—H29B109.5
C5—C10—C19115.3 (5)H29A—C29—H29B109.5
C1—C10—C19107.0 (5)C4—C29—H29C109.5
C5—C10—C9103.8 (4)H29A—C29—H29C109.5
C1—C10—C9111.7 (4)H29B—C29—H29C109.5
C19—C10—C9115.3 (5)C8—C30—H30A109.5
C12—C11—C9117.1 (6)C8—C30—H30B109.5
C12—C11—H11A108.0H30A—C30—H30B109.5
C9—C11—H11A108.0C8—C30—H30C109.5
C12—C11—H11B108.0H30A—C30—H30C109.5
C9—C11—H11B108.0H30B—C30—H30C109.5
H11A—C11—H11B107.3C13—C18—H31A109.5
O12—C12—O27123.8 (7)C13—C18—H31B109.5
O12—C12—C11121.1 (7)H31A—C18—H31B109.5
O27—C12—C11115.1 (6)C13—C18—H31C109.5
C16—C15—C14103.9 (5)H31A—C18—H31C109.5
C16—C15—H13A111.0H31B—C18—H31C109.5
C14—C15—H13A111.0C7—O7—C13104.1 (4)
C16—C15—H13B111.0C28—O6—C6109.6 (4)
C14—C15—H13B111.0C21—O21—C23105.5 (5)
H13A—C15—H13B109.0C12—O27—C27117.7 (6)
C15—C14—C13104.7 (4)
O1—C1—C2—C3179.2 (6)C9—C11—C12—O2729.0 (9)
C10—C1—C2—C31.3 (9)C16—C15—C14—C1318.0 (6)
C1—C2—C3—C43.1 (10)C16—C15—C14—C898.7 (6)
C2—C3—C4—C526.4 (8)C30—C8—C14—C1514.5 (7)
C2—C3—C4—C28136.1 (6)C9—C8—C14—C15142.3 (5)
C2—C3—C4—C29103.5 (6)C7—C8—C14—C15100.0 (5)
C3—C4—C5—C6165.0 (5)C30—C8—C14—C13131.5 (5)
C28—C4—C5—C640.9 (6)C9—C8—C14—C13100.8 (5)
C29—C4—C5—C670.8 (6)C7—C8—C14—C1316.9 (5)
C3—C4—C5—C1056.5 (7)C15—C14—C13—O7136.3 (5)
C28—C4—C5—C10179.4 (5)C8—C14—C13—O79.3 (6)
C29—C4—C5—C1067.6 (7)C15—C14—C13—C18105.9 (6)
C4—C5—C6—O639.2 (5)C8—C14—C13—C18127.1 (5)
C10—C5—C6—O6178.5 (5)C15—C14—C13—C1718.5 (6)
C4—C5—C6—C7160.0 (5)C8—C14—C13—C17108.6 (4)
C10—C5—C6—C760.7 (7)O7—C13—C17—C16126.5 (5)
O6—C6—C7—O745.1 (6)C18—C13—C17—C16113.2 (6)
C5—C6—C7—O767.8 (5)C14—C13—C17—C1612.5 (6)
O6—C6—C7—C8162.2 (4)O7—C13—C17—C2050.3 (7)
C5—C6—C7—C849.3 (6)C18—C13—C17—C2070.0 (7)
O7—C7—C8—C30158.0 (5)C14—C13—C17—C20164.3 (5)
C6—C7—C8—C3081.8 (6)C20—C17—C16—C15175.7 (6)
O7—C7—C8—C974.2 (6)C13—C17—C16—C150.9 (7)
C6—C7—C8—C946.1 (7)C14—C15—C16—C1711.3 (7)
O7—C7—C8—C1438.9 (5)C16—C17—C20—C21163.2 (7)
C6—C7—C8—C14159.1 (5)C13—C17—C20—C2113.0 (10)
C30—C8—C9—C1155.3 (6)C16—C17—C20—C2212.1 (10)
C7—C8—C9—C11179.5 (5)C13—C17—C20—C22171.7 (6)
C14—C8—C9—C1171.9 (6)C22—C20—C21—O210.9 (7)
C30—C8—C9—C1076.7 (6)C17—C20—C21—O21175.2 (6)
C7—C8—C9—C1047.5 (7)C21—C20—C22—C231.6 (7)
C14—C8—C9—C10156.1 (4)C17—C20—C22—C23174.5 (6)
C6—C5—C10—C1175.0 (5)C20—C22—C23—O211.8 (8)
C4—C5—C10—C152.9 (7)C3—C4—C28—O2836.3 (9)
C6—C5—C10—C1968.7 (7)C5—C4—C28—O28151.4 (7)
C4—C5—C10—C1963.4 (7)C29—C4—C28—O2886.0 (8)
C6—C5—C10—C958.3 (6)C3—C4—C28—O6144.1 (5)
C4—C5—C10—C9169.6 (5)C5—C4—C28—O629.0 (6)
O1—C1—C10—C5159.3 (5)C29—C4—C28—O693.6 (5)
C2—C1—C10—C522.9 (7)C6—C7—O7—C13169.1 (4)
O1—C1—C10—C1978.7 (7)C8—C7—O7—C1346.9 (5)
C2—C1—C10—C1999.1 (6)C18—C13—O7—C7158.0 (4)
O1—C1—C10—C948.3 (7)C17—C13—O7—C777.8 (5)
C2—C1—C10—C9133.9 (5)C14—C13—O7—C734.6 (5)
C11—C9—C10—C5179.9 (5)O28—C28—O6—C6174.7 (6)
C8—C9—C10—C549.4 (6)C4—C28—O6—C65.7 (6)
C11—C9—C10—C169.5 (6)C7—C6—O6—C28138.3 (5)
C8—C9—C10—C1160.0 (5)C5—C6—O6—C2820.7 (6)
C11—C9—C10—C1952.9 (7)C20—C21—O21—C230.2 (7)
C8—C9—C10—C1977.6 (6)C22—C23—O21—C211.3 (7)
C8—C9—C11—C12132.5 (6)O12—C12—O27—C270.8 (10)
C10—C9—C11—C1295.0 (7)C11—C12—O27—C27178.8 (6)
C9—C11—C12—O12153.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O12i0.932.563.466 (8)163
C6—H6···O1ii0.982.503.244 (7)132
C16—H17···O28iii0.932.473.387 (8)169
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+3/2, y+1, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC27H30O7C27H30O7
Mr466.51466.51
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)293293
a, b, c (Å)12.115 (3), 12.225 (4), 15.710 (3)9.026 (2), 14.009 (18), 18.495 (5)
V3)2326.8 (10)2339 (3)
Z44
Radiation typeCu KαMo Kα
µ (mm1)0.790.10
Crystal size (mm)0.40 × 0.25 × 0.150.40 × 0.25 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2806, 2695, 1958 3895, 3864, 1434
Rint0.1190.019
(sin θ/λ)max1)0.6270.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.183, 1.00 0.066, 0.198, 0.98
No. of reflections26953864
No. of parameters355308
No. of restraints1080
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.290.23, 0.23

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 and PARST97 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O12i0.932.563.466 (8)163
C6—H6···O1ii0.982.503.244 (7)132
C16—H17···O28iii0.932.473.387 (8)169
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+3/2, y+1, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds