Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, poly­[bis(2,2′-bi­pyridine)­bis(μ3-hydrogen phosphato)­nitratodi-μ2-oxo-dicopper(II)­vanadium dihydrate], [Cu2(VO2)(HPO4)2(NO3)(C10H8N2)2]·2H2O, (I), and poly­[bis(2,2′-bi­pyridine)­bis(μ3-hydrogen phosphato)­nitratodi-μ2-oxo-dicopper(II)­vanadium phospho­ric acid solvate], [Cu2(VO2)(HPO4)2(NO3)(C10H8N2)2]·H3PO4, (II), were obtained by similar hydro­thermal methods but under different crystallization conditions. The trinuclear entity which serves as the basic unit in both structures presents two independent CuII ions immersed in similar square-pyramidal N2O3 environments plus an octahedral VO6 core and is organized into a one-dimensional polymer, which is essentially identical in the two structures. The compounds are stabilized by different solvates, viz. two crystallization water mol­ecules in (I) and a phospho­ric acid mol­ecule in (II), which provide the main structural differences through the diversity of interchain interactions in which they serve as bridges.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104019687/fa1078sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104019687/fa1078Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104019687/fa1078IIsup3.hkl
Contains datablock II

CCDC references: 254897; 254898

Comment top

Vanadium phosphates have been extensively investigated in recent years due to their catalytic activity (Cheetham et al., 1999), physical properties (mainly magnetic; Moreno et al., 2003), ability as ionic interchangers, etc. Of particular interest is VO2PO4, a layered compound that can undergo intercalation reactions (Shi et al., 2000). A variety of guest species, including pyridine, aniline, amides, amines, carboxylic acid, alcohol and diols (Yang & Lu, 2002) have been inserted between the layers by displacement of a coordinated water molecule. Other guest species, such as alkyl ammonium ions and ferrocene, have been intercalated through partial or complete reduction of VV to VIV (or an even lower oxidation state) in the host structure (Shpeizer et al., 2001; Huang et al., 2001).

Our interest in vanadyl phosphates stems from the possibility of linking their polyhedra in order to create one-, two- or three-dimensional host structures with an organic or organometallic guest compound inside, to which the host can be bound either through strong covalent links or weaker hydrogen-bonded interactions.

Hydrothermal methods offer a feasible synthetic route to this type of compound through the chemical reaction of appropriate reagents in a sealed heated solution kept above ambient temperature and pressure (Feng & Xu, 2001). Under these conditions, the phosphate and vanadate polyhedra are prone to share vertices or edges in order to give rise to chains, planes or three-dimensional structures (Pivan et al., 2001).

In addition, this framework can bind to other systems, such as metal complexes, and thus give rise to compounds with a variety of interesting physical properties. In particular, magnetic coupling of metal centres can be achieved though this kind of architecture (Kahn, 1993; Kahn et al., 1982). For this to happen, it is necessary that the metal centres be coordinated in proximity to one another, and this implies that the ligands involved should have coordinating centres relatively close to one another so as to render this feasible. We present here structural results arising from these ideas for two compounds, [Cu2(HPO4)2(VO2)(NO3)(bpy)2]·Solvate, where bpy is 1,10-bipyridine and Solvate represents 2H2O in (I) and H3PO4 in (II). These are two chemically isostructural systems obtained by hydrothermal methods, which only differ in the solvate molecules stabilizing the structures. \sch

Fig. 1 presents views of both structures, showing the common numbering scheme. The elemental unit is a trinuclear entity centred on two CuII ions and one vanadyl group, coordinated by two bpy, two phosphate and one nitrate ligand. The two structures are stabilized by different solvate units [water in (I) and phosphoric acid in (II)]. Each independent Cu atom (A and B) is surrounded by a five-coordinate environment provided by two N atoms from the chelating bpy unit and three O atoms coming from two symmetry-related phosphate units and the vanadyl group.

The Cu coordination polyhedron has the shape of a square pyramid, where the Cu—Ovanadyl bond occupies the apical position and the remainder establish the distorted square base.

The vanadyl group is immersed in an irregular octahedral environment, where the original geometry of the VO2 entity is preserved, as shown by the extremely short V—O distances and the almost tetrahedral O1—V1—O2 angle. This is somewhat compensated by the chelating nitrate, with a small angle and two rather long V—O distances trans to atoms O1 and O2, in what could be considered the equatorial plane of the octahedron. Two phosphate atoms, O1A and O1B, complete the coordination, filling the apical positions at an intermediate distance from the cation. Besides the usual selected distances and angles provided by Tables 1 and 3, Table 5 gives additional information regarding the coordination polyhedra.

All the phosphate groups, as well as the phosphoric acid molecule in (II), have regular geometries. The former present a very clear distinction between P—Ocoord and P—OH bond lengths, the non-coordinated one being longer by a percentage ranging from 5% to 9%. A similar situation arises with the solvate unit, in which the PO bond is shorter than the mean of the P—OH bonds by a similar amount (ca 5%), as well as with the nitrate (NO < N—Ocoord by ca 2.5–3%) (See Tables 1 and 3 for details).

The PO4H units act as active coordination agents, giving rise to strongly coupled chains of polyhedra. Their elemental constituents are the dimeric units (A and B) which build up around two independent symmetry centres in P1 [A at (1/2,1/2,0) and B at (1/2,-1,1/2) for (I), and A at (1,1,0) and B at (1,1,1/2) for (II)] and which result in very similar Cu—O—P—O-(Cu'-O'-P'-O') loops. The V atom, in turn, has a twofold binding to each of the independent CuII ions, through one of the vanadyl O atoms on one side, and through a longer O—P—O bridge on the other. The intercationic distances arising from this arrangement are rather large: Cu1A···Cu1A(−1 − x, −1 − y, −z) 5.077 (1) Å, Cu1B···Cu1B(−1 − x, −3 − y, −1 − z) 5.013 (1) Å, V1···Cu1A 3.634 (1) Å and V1···Cu1B(−1 − x, −3 − y, −1 − z) 3.578 (1) Å for (I), and Cu1A···Cu1A(2 − x, 2 − y, −z) 5.073 (1) Å, Cu1B···Cu1B(2 − x, 2 − y, 1 − z) 5.061 (1) Å, V1···Cu1A 3.688 (1) Å and V1···Cu1B(2 − x, 2 − y, 1 − z) 3.618 (1) Å for (II).

The resulting chains, flattened into the shape of strips with the aromatic groups protruding outward on the `wide' side, are fairly isostructural, as can be assessed by inspection of Fig. 2, where both structures have been superimposed, leading to a mean deviation of 0.32 (1) Å for all common atoms, which reduces to 0.05 (1) Å when only the cations are considered.

The main differences between the two structures are due to the inter-chain interactions, which arise from two well differentiated effects. On one hand, the stronger hydrogen-bonding interactions mediated by the active donor solvates [H2O in (I) and PO4H3 in (II)] link the chains through their `narrow' dimension into hydrogen-bonded planes parallel to (011) in (I) and to (100) in (II) (see Tables 2 and 4, and Fig. 3). These hydrogen-bonded planes, in turn, interact with each other through weaker ππ contacts between interleaving bpy groups of neighbouring planes, at a graphitic distance (ca 3.4 Å) from each other (Table 6, Fig. 4). In spite of the strength of the forces involved, the second type of interaction leads to shorter intercationic distances (out-of-plane-Cu···Cu < 5.7 Å, versus in-plane-Cu···Cu > 9.5 Å).

Summarizing, we have generated two different, though basically isostructural, compounds from the same solution subject to hydrothermal treatment. They present the same polymeric one-dimensional motif and the structures differ only in the way in which the chains interact with each other through the different hydrogen-bonding schemes mediated by the different solvent molecules present.

Experimental top

Both compounds were obtained via hydrothermal synthesis, as follows. A mixture of V2O5 (0.84 mmol), 2,2'-bipyridine (0.85 mmol), Cu(NO3)2·3H2O (1.68 mmol), zinc powder (1.62 mmol) and H3PO4 (5 ml, 1.48 M) was sealed in a Teflon-lined acid digestion bomb and heated at 390 K for 3 d under autogenous pressure, followed by slow cooling at 20 K h−1 to room temperature. The immediate product of the reaction consisted of green prismatic crystals of (II). Left unattended for several weeks, the remaining mother liquor yielded a crop of similarly shaped and coloured crystals, corresponding to compound (I).

Refinement top

H atoms attached to C atoms and unambiguously defined by stereochemistry were placed in calculated positions (C—H = 0.93 Å) and allowed to ride, with Uiso(H) = 1.2Ueq(C). Please check added text. Those attached to O atoms were located in late-stage difference maps and refined with restrained distances O—H = 0.82 (1) and H···H = 1.36 (2) Å. Full use of the CCDC package was made for searching in the Cambridge Structural Database (Allen, 2002).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. Molecular diagrams showing the numbering scheme used, as well as the way in which chains are formed, for (a) compound (I) and (b) compound (II). Full ellipsoids denote the independent unit, with full bonds corresponding to the backbone and empty bonds to the solvent molecules. Empty ellipsoids represent the symmetry-generated part of the structure. Displacement ellipsoids are drawn at the 40% level. H atoms attached to C atoms have been omitted for clarity.
[Figure 2] Fig. 2. Superimposed drawings of the two backbones of (I) and (II), showing their isostructural character.
[Figure 3] Fig. 3. Polyhedral diagram showing a lateral view of the chains, and the manner in which they attach to each other through a diversity of hydrogen-bonding interactions mediated by the different solvents. (a) Compound (I). (b) Compound (II).
[Figure 4] Fig. 4. Polyhedral diagrams showing the linking of the hydrogen-bonded planes through weaker ππ interactions between interleaved bpy groups of neighbouring planes. (a) Compound (I). (b) Compound (II).
(I) Poly[bis(2,2'-bipyridyl)bis(µ3-hydrogen phosphato)nitrato-di-µ2oxo-dicopper(II)vanadium dihydrate] top
Crystal data top
[Cu2V(HPO4)2(NO3)O2(C10H8N2)2]·2H2OZ = 2
Mr = 812.39F(000) = 816
Triclinic, P1Dx = 1.978 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5927 (13) ÅCell parameters from 2933 reflections
b = 12.0359 (15) Åθ = 5.0–54.2°
c = 12.1655 (15) ŵ = 2.08 mm1
α = 107.090 (2)°T = 293 K
β = 110.399 (2)°Prism, green
γ = 93.876 (2)°0.28 × 0.24 × 0.16 mm
V = 1364.3 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4697 independent reflections
Radiation source: fine-focus sealed tube3098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 912
Tmin = 0.57, Tmax = 0.72k = 1412
5669 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 0.83 w = 1/[σ2(Fo2) + (0.0234P)2]
where P = (Fo2 + 2Fc2)/3
4697 reflections(Δ/σ)max = 0.012
424 parametersΔρmax = 0.53 e Å3
8 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu2V(HPO4)2(NO3)O2(C10H8N2)2]·2H2Oγ = 93.876 (2)°
Mr = 812.39V = 1364.3 (3) Å3
Triclinic, P1Z = 2
a = 10.5927 (13) ÅMo Kα radiation
b = 12.0359 (15) ŵ = 2.08 mm1
c = 12.1655 (15) ÅT = 293 K
α = 107.090 (2)°0.28 × 0.24 × 0.16 mm
β = 110.399 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4697 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3098 reflections with I > 2σ(I)
Tmin = 0.57, Tmax = 0.72Rint = 0.047
5669 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0438 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 0.83Δρmax = 0.53 e Å3
4697 reflectionsΔρmin = 0.45 e Å3
424 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu1A0.49668 (6)0.46008 (6)0.19268 (5)0.02646 (17)
Cu1B0.46239 (6)0.95434 (6)0.67567 (5)0.02608 (17)
V10.38098 (8)0.73936 (8)0.20562 (8)0.0266 (2)
P1A0.31099 (13)0.51393 (12)0.04277 (12)0.0250 (3)
P1B0.30809 (13)0.94874 (13)0.39950 (12)0.0263 (3)
O1A0.3509 (3)0.6459 (3)0.0339 (3)0.0295 (8)
O2A0.3615 (3)0.4863 (3)0.1470 (3)0.0330 (9)
O3A0.1481 (3)0.4825 (4)0.1159 (3)0.0391 (10)
H3A0.115 (5)0.460 (5)0.073 (4)0.047*
O4A0.3463 (3)0.4390 (3)0.0388 (3)0.0273 (8)
O1B0.3303 (3)0.8246 (3)0.3426 (3)0.0279 (8)
O2B0.3951 (3)1.0439 (3)0.3861 (3)0.0292 (8)
O3B0.1556 (3)0.9567 (4)0.3253 (3)0.0397 (10)
H3B0.098 (4)0.903 (3)0.315 (5)0.048*
O4B0.3219 (3)0.9704 (3)0.5327 (3)0.0299 (9)
O1D0.1652 (3)0.6367 (3)0.1450 (3)0.0379 (9)
O2D0.1778 (4)0.7890 (3)0.0899 (3)0.0389 (10)
O3D0.0207 (4)0.6813 (4)0.0378 (4)0.0613 (13)
N1A0.6332 (4)0.4173 (4)0.3305 (3)0.0277 (10)
N2A0.3722 (4)0.4104 (4)0.2680 (3)0.0265 (10)
N1B0.5802 (4)0.9081 (4)0.8175 (3)0.0264 (10)
N2B0.3204 (4)0.9151 (4)0.7394 (3)0.0257 (10)
N1D0.1042 (5)0.7019 (4)0.0892 (4)0.0341 (11)
C1A0.7661 (5)0.4220 (5)0.3549 (4)0.0342 (14)
H1AA0.80390.45340.30950.041*
C2A0.8505 (5)0.3825 (5)0.4446 (5)0.0401 (15)
H2AA0.94290.38580.45830.048*
C3A0.7955 (6)0.3381 (5)0.5135 (5)0.0436 (16)
H3AA0.85050.31150.57510.052*
C4A0.6579 (6)0.3334 (5)0.4901 (5)0.0367 (14)
H4AA0.61860.30410.53580.044*
C5A0.5793 (5)0.3732 (4)0.3974 (4)0.0286 (13)
C6A0.4308 (5)0.3708 (5)0.3635 (4)0.0284 (13)
C7A0.3550 (5)0.3312 (5)0.4221 (5)0.0356 (14)
H7AA0.39610.30230.48640.043*
C8A0.2175 (6)0.3357 (5)0.3828 (5)0.0433 (16)
H8AA0.16470.31060.42120.052*
C9A0.1580 (5)0.3774 (5)0.2866 (5)0.0375 (14)
H9AA0.06520.38100.25930.045*
C10A0.2391 (6)0.4136 (5)0.2320 (5)0.0367 (14)
H10A0.19900.44170.16680.044*
C1B0.7147 (5)0.9104 (5)0.8540 (5)0.0352 (14)
H1BA0.76170.93850.81280.042*
C2B0.7870 (6)0.8726 (5)0.9506 (5)0.0393 (15)
H2BA0.88070.87420.97290.047*
C3B0.7191 (6)0.8328 (5)1.0129 (5)0.0385 (15)
H3BA0.76610.80721.07830.046*
C4B0.5808 (5)0.8310 (5)0.9779 (4)0.0336 (13)
H4BA0.53290.80391.01910.040*
C5B0.5134 (5)0.8701 (4)0.8805 (4)0.0268 (12)
C6B0.3651 (5)0.8744 (4)0.8355 (4)0.0238 (12)
C7B0.2774 (5)0.8427 (5)0.8879 (5)0.0354 (14)
H7BA0.30960.81440.95400.042*
C8B0.1426 (6)0.8536 (5)0.8410 (5)0.0387 (14)
H8BA0.08250.83250.87490.046*
C9B0.0973 (5)0.8959 (5)0.7440 (5)0.0389 (15)
H9BA0.00650.90470.71180.047*
C10B0.1883 (5)0.9249 (5)0.6953 (5)0.0351 (14)
H10B0.15700.95270.62880.042*
O10.4734 (3)0.6575 (3)0.2753 (3)0.0305 (9)
O20.4872 (3)0.8489 (3)0.2158 (3)0.0307 (9)
O1W0.2404 (5)0.7931 (5)0.3923 (5)0.0701 (14)
H1WA0.303 (5)0.753 (4)0.325 (3)0.084*
H1WB0.263 (6)0.858 (3)0.414 (5)0.084*
O2W0.0369 (5)0.7826 (4)0.3052 (5)0.0695 (14)
H2WA0.088 (5)0.800 (5)0.343 (5)0.083*
H2WB0.063 (6)0.714 (2)0.259 (5)0.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu1A0.0317 (4)0.0288 (4)0.0250 (3)0.0077 (3)0.0143 (3)0.0134 (3)
Cu1B0.0332 (4)0.0272 (4)0.0260 (4)0.0087 (3)0.0166 (3)0.0136 (3)
V10.0318 (5)0.0262 (5)0.0261 (5)0.0080 (4)0.0139 (4)0.0112 (4)
P1A0.0261 (7)0.0277 (8)0.0236 (7)0.0044 (6)0.0108 (6)0.0111 (6)
P1B0.0287 (8)0.0324 (9)0.0252 (7)0.0110 (6)0.0142 (6)0.0147 (7)
O1A0.037 (2)0.025 (2)0.0262 (19)0.0086 (16)0.0109 (16)0.0097 (17)
O2A0.038 (2)0.043 (3)0.0233 (19)0.0079 (18)0.0170 (17)0.0126 (18)
O3A0.027 (2)0.057 (3)0.034 (2)0.0054 (19)0.0110 (17)0.017 (2)
O4A0.036 (2)0.024 (2)0.0233 (18)0.0052 (16)0.0099 (16)0.0118 (16)
O1B0.039 (2)0.027 (2)0.0268 (19)0.0143 (16)0.0184 (16)0.0123 (17)
O2B0.035 (2)0.033 (2)0.033 (2)0.0123 (17)0.0224 (17)0.0187 (18)
O3B0.033 (2)0.054 (3)0.045 (2)0.0202 (19)0.018 (2)0.028 (2)
O4B0.036 (2)0.037 (2)0.0233 (18)0.0094 (17)0.0167 (16)0.0133 (17)
O1D0.039 (2)0.041 (3)0.042 (2)0.0104 (19)0.0174 (19)0.023 (2)
O2D0.048 (2)0.040 (3)0.035 (2)0.0052 (19)0.0204 (19)0.0165 (19)
O3D0.028 (2)0.076 (4)0.069 (3)0.008 (2)0.006 (2)0.026 (3)
N1A0.035 (3)0.028 (3)0.024 (2)0.011 (2)0.013 (2)0.012 (2)
N2A0.026 (2)0.025 (3)0.026 (2)0.0055 (19)0.010 (2)0.006 (2)
N1B0.033 (3)0.025 (3)0.028 (2)0.0086 (19)0.017 (2)0.012 (2)
N2B0.035 (3)0.025 (3)0.022 (2)0.009 (2)0.015 (2)0.011 (2)
N1D0.033 (3)0.038 (3)0.031 (3)0.007 (2)0.013 (2)0.008 (2)
C1A0.036 (3)0.038 (4)0.026 (3)0.007 (3)0.012 (3)0.008 (3)
C2A0.037 (3)0.043 (4)0.039 (3)0.015 (3)0.012 (3)0.015 (3)
C3A0.048 (4)0.041 (4)0.035 (3)0.012 (3)0.006 (3)0.016 (3)
C4A0.053 (4)0.029 (4)0.030 (3)0.011 (3)0.015 (3)0.013 (3)
C5A0.043 (3)0.022 (3)0.023 (3)0.010 (2)0.015 (3)0.008 (2)
C6A0.038 (3)0.025 (3)0.020 (3)0.006 (2)0.009 (2)0.008 (2)
C7A0.046 (4)0.036 (4)0.035 (3)0.010 (3)0.021 (3)0.020 (3)
C8A0.054 (4)0.039 (4)0.045 (4)0.001 (3)0.033 (3)0.012 (3)
C9A0.037 (3)0.037 (4)0.041 (3)0.003 (3)0.018 (3)0.013 (3)
C10A0.051 (4)0.028 (3)0.030 (3)0.006 (3)0.015 (3)0.008 (3)
C1B0.043 (4)0.032 (4)0.034 (3)0.009 (3)0.020 (3)0.010 (3)
C2B0.047 (4)0.038 (4)0.035 (3)0.016 (3)0.014 (3)0.016 (3)
C3B0.057 (4)0.032 (4)0.027 (3)0.018 (3)0.011 (3)0.016 (3)
C4B0.041 (3)0.035 (4)0.032 (3)0.014 (3)0.016 (3)0.019 (3)
C5B0.046 (3)0.018 (3)0.024 (3)0.010 (2)0.019 (3)0.011 (2)
C6B0.031 (3)0.019 (3)0.026 (3)0.006 (2)0.018 (2)0.007 (2)
C7B0.046 (4)0.039 (4)0.032 (3)0.013 (3)0.022 (3)0.018 (3)
C8B0.048 (4)0.033 (4)0.046 (4)0.009 (3)0.028 (3)0.017 (3)
C9B0.037 (3)0.039 (4)0.050 (4)0.009 (3)0.021 (3)0.022 (3)
C10B0.038 (3)0.037 (4)0.037 (3)0.010 (3)0.016 (3)0.019 (3)
O10.038 (2)0.032 (2)0.0261 (19)0.0148 (17)0.0130 (17)0.0140 (17)
O20.036 (2)0.029 (2)0.032 (2)0.0052 (16)0.0196 (17)0.0086 (17)
O1W0.058 (3)0.075 (4)0.082 (4)0.020 (3)0.027 (3)0.032 (3)
O2W0.057 (3)0.066 (4)0.083 (4)0.010 (3)0.035 (3)0.013 (3)
Geometric parameters (Å, º) top
Cu1A—O2Ai1.909 (3)C1A—H1AA0.9300
Cu1A—O4A1.922 (3)C2A—C3A1.374 (7)
Cu1A—N2A1.999 (4)C2A—H2AA0.9300
Cu1A—N1A2.021 (4)C3A—C4A1.379 (7)
Cu1A—O12.360 (3)C3A—H3AA0.9300
Cu1B—O2Bii1.908 (3)C4A—C5A1.381 (6)
Cu1B—O4B1.926 (3)C4A—H4AA0.9300
Cu1B—N1B2.001 (4)C5A—C6A1.476 (7)
Cu1B—N2B2.004 (4)C6A—C7A1.390 (6)
Cu1B—O2ii2.267 (3)C7A—C8A1.376 (7)
V1—O21.620 (3)C7A—H7AA0.9300
V1—O11.640 (3)C8A—C9A1.375 (7)
V1—O1B1.952 (3)C8A—H8AA0.9300
V1—O1A1.959 (3)C9A—C10A1.373 (7)
V1—O1D2.281 (3)C9A—H9AA0.9300
V1—O2D2.351 (4)C10A—H10A0.9300
P1A—O4A1.500 (3)C1B—C2B1.381 (6)
P1A—O2A1.501 (3)C1B—H1BA0.9300
P1A—O1A1.528 (3)C2B—C3B1.367 (7)
P1A—O3A1.599 (4)C2B—H2BA0.9300
P1B—O2B1.503 (3)C3B—C4B1.373 (7)
P1B—O4B1.515 (3)C3B—H3BA0.9300
P1B—O1B1.523 (3)C4B—C5B1.385 (6)
P1B—O3B1.577 (4)C4B—H4BA0.9300
O3A—H3A0.82 (4)C5B—C6B1.483 (7)
O3B—H3B0.81 (4)C6B—C7B1.386 (6)
O1D—N1D1.253 (5)C7B—C8B1.372 (7)
O2D—N1D1.259 (5)C7B—H7BA0.9300
O3D—N1D1.221 (5)C8B—C9B1.368 (7)
N1A—C1A1.327 (6)C8B—H8BA0.9300
N1A—C5A1.344 (6)C9B—C10B1.370 (6)
N2A—C10A1.330 (6)C9B—H9BA0.9300
N2A—C6A1.350 (6)C10B—H10B0.9300
N1B—C1B1.332 (6)O2—Cu1Bii2.267 (3)
N1B—C5B1.355 (6)O1W—H1WA0.83 (4)
N2B—C10B1.341 (6)O1W—H1WB0.83 (4)
N2B—C6B1.346 (5)O2W—H2WA0.83 (4)
C1A—C2A1.378 (7)O2W—H2WB0.82 (4)
O2Ai—Cu1A—O4A96.83 (13)C6B—N2B—Cu1B115.2 (3)
O2Ai—Cu1A—N2A170.68 (14)O3D—N1D—O1D120.9 (5)
O4A—Cu1A—N2A92.42 (14)O3D—N1D—O2D122.3 (5)
O2Ai—Cu1A—N1A91.52 (15)O1D—N1D—O2D116.8 (4)
O4A—Cu1A—N1A158.98 (16)N1A—C1A—C2A122.9 (5)
N2A—Cu1A—N1A80.14 (16)N1A—C1A—H1AA118.5
O2Ai—Cu1A—O190.03 (13)C2A—C1A—H1AA118.5
O4A—Cu1A—O190.76 (12)C3A—C2A—C1A118.7 (5)
N2A—Cu1A—O188.72 (14)C3A—C2A—H2AA120.6
N1A—Cu1A—O1108.56 (14)C1A—C2A—H2AA120.6
O2Bii—Cu1B—O4B95.86 (13)C2A—C3A—C4A119.1 (5)
O2Bii—Cu1B—N1B91.26 (15)C2A—C3A—H3AA120.4
O4B—Cu1B—N1B168.04 (15)C4A—C3A—H3AA120.4
O2Bii—Cu1B—N2B166.80 (16)C3A—C4A—C5A118.8 (5)
O4B—Cu1B—N2B90.38 (14)C3A—C4A—H4AA120.6
N1B—Cu1B—N2B80.78 (16)C5A—C4A—H4AA120.6
O2Bii—Cu1B—O2ii95.54 (13)N1A—C5A—C4A122.1 (5)
O4B—Cu1B—O2ii93.38 (13)N1A—C5A—C6A114.5 (4)
N1B—Cu1B—O2ii95.49 (14)C4A—C5A—C6A123.3 (5)
N2B—Cu1B—O2ii95.69 (14)N2A—C6A—C7A121.6 (5)
O2—V1—O1106.87 (17)N2A—C6A—C5A114.1 (4)
O2—V1—O1B97.03 (15)C7A—C6A—C5A124.2 (5)
O1—V1—O1B97.37 (14)C8A—C7A—C6A118.4 (5)
O2—V1—O1A95.48 (15)C8A—C7A—H7AA120.8
O1—V1—O1A97.87 (15)C6A—C7A—H7AA120.8
O1B—V1—O1A156.54 (13)C7A—C8A—C9A120.1 (5)
O2—V1—O1D152.42 (15)C7A—C8A—H8AA120.0
O1—V1—O1D100.71 (15)C9A—C8A—H8AA120.0
O1B—V1—O1D78.85 (13)C10A—C9A—C8A118.3 (5)
O1A—V1—O1D80.87 (13)C10A—C9A—H9AA120.8
O2—V1—O2D97.45 (15)C8A—C9A—H9AA120.8
O1—V1—O2D155.61 (15)N2A—C10A—C9A123.1 (5)
O1B—V1—O2D81.07 (12)N2A—C10A—H10A118.5
O1A—V1—O2D77.68 (13)C9A—C10A—H10A118.5
O1D—V1—O2D55.00 (12)N1B—C1B—C2B122.6 (5)
O4A—P1A—O2A115.7 (2)N1B—C1B—H1BA118.7
O4A—P1A—O1A111.67 (18)C2B—C1B—H1BA118.7
O2A—P1A—O1A111.39 (19)C3B—C2B—C1B119.1 (5)
O4A—P1A—O3A106.84 (19)C3B—C2B—H2BA120.4
O2A—P1A—O3A102.49 (19)C1B—C2B—H2BA120.4
O1A—P1A—O3A108.0 (2)C2B—C3B—C4B119.3 (5)
O2B—P1B—O4B113.38 (19)C2B—C3B—H3BA120.3
O2B—P1B—O1B113.39 (19)C4B—C3B—H3BA120.3
O4B—P1B—O1B110.29 (19)C3B—C4B—C5B119.1 (5)
O2B—P1B—O3B104.8 (2)C3B—C4B—H4BA120.4
O4B—P1B—O3B106.1 (2)C5B—C4B—H4BA120.4
O1B—P1B—O3B108.3 (2)N1B—C5B—C4B121.7 (5)
P1A—O1A—V1134.8 (2)N1B—C5B—C6B114.1 (4)
P1A—O2A—Cu1Ai142.0 (2)C4B—C5B—C6B124.2 (4)
P1A—O3A—H3A108 (4)N2B—C6B—C7B121.3 (4)
P1A—O4A—Cu1A132.4 (2)N2B—C6B—C5B114.5 (4)
P1B—O1B—V1138.0 (2)C7B—C6B—C5B124.2 (5)
P1B—O2B—Cu1Bii134.2 (2)C8B—C7B—C6B119.2 (5)
P1B—O3B—H3B115 (4)C8B—C7B—H7BA120.4
P1B—O4B—Cu1B133.0 (2)C6B—C7B—H7BA120.4
N1D—O1D—V195.8 (3)C9B—C8B—C7B119.6 (5)
N1D—O2D—V192.4 (3)C9B—C8B—H8BA120.2
C1A—N1A—C5A118.3 (4)C7B—C8B—H8BA120.2
C1A—N1A—Cu1A126.4 (3)C8B—C9B—C10B118.6 (5)
C5A—N1A—Cu1A115.1 (3)C8B—C9B—H9BA120.7
C10A—N2A—C6A118.6 (4)C10B—C9B—H9BA120.7
C10A—N2A—Cu1A125.5 (4)N2B—C10B—C9B122.9 (5)
C6A—N2A—Cu1A115.9 (3)N2B—C10B—H10B118.5
C1B—N1B—C5B118.2 (4)C9B—C10B—H10B118.5
C1B—N1B—Cu1B126.6 (3)V1—O1—Cu1A129.75 (16)
C5B—N1B—Cu1B115.2 (3)V1—O2—Cu1Bii133.36 (18)
C10B—N2B—C6B118.3 (4)H1WA—O1W—H1WB106 (3)
C10B—N2B—Cu1B126.4 (3)H2WA—O2W—H2WB109 (3)
Symmetry codes: (i) x1, y1, z; (ii) x1, y2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O3Diii0.82 (4)2.14 (5)2.871 (5)150 (5)
O3B—H3B···O2W0.81 (4)1.91 (5)2.718 (5)175 (6)
O1W—H1WA···O1iv0.83 (4)2.35 (5)2.973 (6)132 (6)
O1W—H1WB···O4Bv0.83 (4)2.18 (5)3.006 (6)179 (7)
O2W—H2WA···O1W0.83 (4)1.91 (5)2.708 (7)162 (5)
O2W—H2WB···O3Aiii0.82 (4)2.37 (5)3.186 (6)177 (7)
Symmetry codes: (iii) x, y1, z; (iv) x+1, y, z; (v) x, y2, z1.
(II) Poly[bis(2,2'-bipyridyl)bis(µ3-hydrogen phosphato)nitrato-di-µ2oxo-dicopper(II)vanadium phosphoric acid solvate] top
Crystal data top
[Cu2V(HPO4)2(NO3)O2(C10H8N2)2]·H3PO4Z = 2
Mr = 874.35F(000) = 876
Triclinic, P1Dx = 2.102 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8343 (13) ÅCell parameters from 2467 reflections
b = 10.4632 (14) Åθ = 5.8–51.3°
c = 14.3210 (19) ŵ = 2.13 mm1
α = 72.070 (2)°T = 299 K
β = 89.900 (2)°Prism, green
γ = 80.651 (2)°0.32 × 0.24 × 0.18 mm
V = 1381.6 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4812 independent reflections
Radiation source: fine-focus sealed tube2471 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.55, Tmax = 0.68k = 1211
8625 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.0666P)2]
where P = (Fo2 + 2Fc2)/3
4812 reflections(Δ/σ)max = 0.016
448 parametersΔρmax = 0.76 e Å3
11 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Cu2V(HPO4)2(NO3)O2(C10H8N2)2]·H3PO4γ = 80.651 (2)°
Mr = 874.35V = 1381.6 (3) Å3
Triclinic, P1Z = 2
a = 9.8343 (13) ÅMo Kα radiation
b = 10.4632 (14) ŵ = 2.13 mm1
c = 14.3210 (19) ÅT = 299 K
α = 72.070 (2)°0.32 × 0.24 × 0.18 mm
β = 89.900 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4812 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2471 reflections with I > 2σ(I)
Tmin = 0.55, Tmax = 0.68Rint = 0.076
8625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04711 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.76 e Å3
4812 reflectionsΔρmin = 0.83 e Å3
448 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu1A1.23190 (11)1.01432 (11)0.06983 (8)0.0192 (3)
Cu1B1.23268 (11)1.01758 (11)0.56558 (8)0.0189 (3)
V10.96825 (15)1.12069 (16)0.22687 (11)0.0177 (4)
P1A0.9375 (2)1.1882 (2)0.00838 (17)0.0160 (5)
P1B0.9657 (2)1.1911 (2)0.43429 (17)0.0170 (6)
P1C1.0903 (3)0.6371 (3)0.33084 (18)0.0235 (6)
O1A0.8878 (6)1.1447 (6)0.0944 (4)0.0208 (15)
O2A0.8521 (6)1.1419 (6)0.0767 (4)0.0205 (14)
O3A0.8994 (6)1.3483 (6)0.0487 (5)0.0276 (16)
H3A0.969 (2)1.3789 (15)0.074 (5)0.033*
O4A1.0910 (5)1.1477 (6)0.0139 (4)0.0202 (15)
O1B1.0205 (6)1.1752 (6)0.3391 (4)0.0217 (15)
O2B0.8478 (6)1.1172 (6)0.4704 (4)0.0243 (15)
O3B0.9062 (6)1.3513 (6)0.4090 (4)0.0220 (15)
H3B0.887 (8)1.364 (2)0.4614 (14)0.026*
O4B1.0811 (6)1.1637 (6)0.5124 (4)0.0236 (15)
O1C0.9545 (6)0.7397 (7)0.3121 (6)0.0379 (18)
H1C0.966 (2)0.816 (3)0.310 (7)0.045*
O2C1.1502 (7)0.5888 (6)0.4324 (4)0.0334 (17)
O3C1.0526 (7)0.5233 (7)0.2948 (5)0.0335 (17)
H3C1.001 (8)0.479 (6)0.332 (4)0.040*
O4C1.1983 (6)0.6978 (7)0.2599 (5)0.0317 (17)
H4C1.164 (2)0.764 (6)0.215 (4)0.038*
O1D1.0136 (6)1.3273 (6)0.1528 (4)0.0246 (15)
O2D0.8063 (6)1.3278 (7)0.1988 (5)0.0319 (17)
O3D0.8722 (7)1.5213 (7)0.1215 (5)0.0394 (19)
O11.1138 (6)1.0292 (6)0.2165 (4)0.0260 (16)
O20.8658 (6)1.0153 (6)0.2843 (4)0.0252 (16)
N1A1.4170 (7)0.8949 (7)0.1153 (5)0.0187 (17)
N2A1.3409 (7)1.1513 (7)0.0804 (5)0.0199 (18)
N1B1.4109 (7)0.8881 (7)0.6153 (5)0.0187 (18)
N2B1.3517 (7)1.1535 (7)0.5794 (5)0.0174 (17)
N1D0.8962 (8)1.3960 (9)0.1570 (6)0.027 (2)
C1A1.4493 (9)0.7623 (9)0.1296 (6)0.022 (2)
H1AA1.38110.71600.11840.027*
C2A1.5790 (10)0.6905 (10)0.1603 (7)0.029 (2)
H2AA1.59760.59710.17030.035*
C3A1.6808 (9)0.7571 (10)0.1762 (7)0.027 (2)
H3AA1.76940.70980.19750.033*
C4A1.6506 (9)0.8923 (10)0.1605 (7)0.025 (2)
H4AA1.71860.94000.17000.030*
C5A1.5181 (9)0.9597 (9)0.1302 (6)0.018 (2)
C6A1.4730 (8)1.1061 (9)0.1114 (6)0.020 (2)
C7A1.5569 (10)1.1934 (10)0.1213 (7)0.030 (2)
H7AA1.64941.16060.14100.036*
C8A1.5053 (10)1.3300 (10)0.1025 (7)0.031 (3)
H8AA1.56261.38930.10960.037*
C9A1.3698 (10)1.3774 (10)0.0734 (7)0.032 (3)
H9AA1.33141.46860.06170.039*
C10A1.2912 (9)1.2832 (10)0.0620 (6)0.024 (2)
H10B1.19911.31420.04030.029*
C1B1.4298 (10)0.7514 (10)0.6316 (7)0.028 (2)
H1BA1.35540.71250.62010.034*
C2B1.5566 (10)0.6668 (11)0.6649 (7)0.034 (3)
H2BA1.56780.57320.67660.040*
C3B1.6642 (11)0.7289 (11)0.6797 (7)0.036 (3)
H3BA1.75090.67650.70050.043*
C4B1.6451 (10)0.8707 (11)0.6638 (7)0.033 (3)
H4BA1.71840.91110.67510.040*
C5B1.5173 (9)0.9491 (10)0.6313 (6)0.021 (2)
C6B1.4841 (9)1.0995 (9)0.6135 (6)0.021 (2)
C7B1.5735 (9)1.1812 (11)0.6269 (7)0.029 (2)
H7BA1.66361.14270.65070.035*
C8B1.5315 (10)1.3168 (10)0.6060 (7)0.029 (2)
H8BA1.59201.37270.61410.035*
C9B1.4011 (10)1.3688 (10)0.5734 (7)0.029 (2)
H9BA1.36981.46180.55970.035*
C10B1.3140 (10)1.2881 (9)0.5602 (6)0.024 (2)
H10A1.22391.32760.53670.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu1A0.0125 (6)0.0231 (7)0.0225 (7)0.0049 (5)0.0025 (5)0.0071 (5)
Cu1B0.0138 (6)0.0232 (7)0.0215 (6)0.0067 (5)0.0018 (5)0.0075 (5)
V10.0151 (8)0.0212 (9)0.0184 (9)0.0046 (7)0.0010 (7)0.0077 (7)
P1A0.0140 (12)0.0180 (13)0.0167 (13)0.0036 (10)0.0011 (10)0.0058 (11)
P1B0.0168 (13)0.0177 (13)0.0165 (13)0.0042 (10)0.0028 (10)0.0048 (11)
P1C0.0254 (14)0.0231 (15)0.0243 (15)0.0063 (12)0.0028 (11)0.0096 (12)
O1A0.018 (3)0.029 (4)0.021 (4)0.010 (3)0.002 (3)0.012 (3)
O2A0.019 (3)0.026 (4)0.017 (3)0.007 (3)0.007 (3)0.006 (3)
O3A0.021 (4)0.022 (4)0.033 (4)0.005 (3)0.001 (3)0.001 (3)
O4A0.008 (3)0.026 (4)0.025 (4)0.002 (3)0.000 (3)0.007 (3)
O1B0.021 (3)0.027 (4)0.022 (4)0.007 (3)0.002 (3)0.012 (3)
O2B0.019 (3)0.027 (4)0.034 (4)0.014 (3)0.001 (3)0.015 (3)
O3B0.029 (4)0.019 (4)0.016 (3)0.000 (3)0.004 (3)0.005 (3)
O4B0.023 (4)0.025 (4)0.024 (4)0.006 (3)0.010 (3)0.008 (3)
O1C0.027 (4)0.027 (4)0.063 (5)0.000 (3)0.003 (4)0.022 (4)
O2C0.045 (4)0.039 (4)0.018 (4)0.007 (3)0.005 (3)0.012 (3)
O3C0.043 (5)0.027 (4)0.038 (4)0.011 (3)0.010 (3)0.019 (4)
O4C0.026 (4)0.039 (5)0.021 (4)0.009 (3)0.002 (3)0.005 (3)
O1D0.022 (4)0.023 (4)0.029 (4)0.000 (3)0.002 (3)0.009 (3)
O2D0.021 (4)0.037 (4)0.039 (4)0.008 (3)0.004 (3)0.013 (4)
O3D0.042 (5)0.020 (4)0.047 (5)0.004 (3)0.011 (4)0.002 (4)
O10.020 (3)0.034 (4)0.026 (4)0.002 (3)0.001 (3)0.014 (3)
O20.028 (4)0.039 (4)0.015 (4)0.018 (3)0.004 (3)0.011 (3)
N1A0.015 (4)0.014 (4)0.029 (5)0.006 (3)0.000 (3)0.007 (4)
N2A0.015 (4)0.020 (5)0.021 (4)0.003 (3)0.004 (3)0.001 (4)
N1B0.016 (4)0.022 (5)0.015 (4)0.002 (3)0.003 (3)0.003 (4)
N2B0.019 (4)0.024 (5)0.013 (4)0.012 (4)0.000 (3)0.006 (4)
N1D0.024 (5)0.041 (6)0.018 (5)0.005 (4)0.004 (4)0.010 (4)
C1A0.013 (5)0.027 (6)0.030 (6)0.006 (4)0.003 (4)0.013 (5)
C2A0.030 (6)0.027 (6)0.032 (6)0.001 (5)0.007 (5)0.013 (5)
C3A0.016 (5)0.040 (7)0.024 (6)0.003 (5)0.002 (4)0.010 (5)
C4A0.012 (5)0.034 (6)0.033 (6)0.003 (4)0.006 (4)0.017 (5)
C5A0.022 (5)0.020 (5)0.013 (5)0.005 (4)0.002 (4)0.006 (4)
C6A0.008 (4)0.036 (6)0.018 (5)0.005 (4)0.001 (4)0.011 (4)
C7A0.017 (5)0.039 (7)0.031 (6)0.001 (5)0.002 (4)0.011 (5)
C8A0.023 (6)0.041 (7)0.032 (6)0.020 (5)0.003 (5)0.012 (5)
C9A0.028 (6)0.031 (6)0.035 (6)0.002 (5)0.005 (5)0.007 (5)
C10A0.008 (5)0.042 (7)0.022 (6)0.009 (5)0.003 (4)0.007 (5)
C1B0.033 (6)0.025 (6)0.028 (6)0.002 (5)0.004 (5)0.013 (5)
C2B0.027 (6)0.036 (7)0.032 (6)0.006 (5)0.003 (5)0.008 (5)
C3B0.031 (6)0.042 (7)0.030 (6)0.008 (5)0.002 (5)0.013 (6)
C4B0.016 (5)0.053 (8)0.027 (6)0.004 (5)0.002 (4)0.009 (6)
C5B0.016 (5)0.035 (6)0.014 (5)0.012 (4)0.001 (4)0.009 (5)
C6B0.021 (5)0.032 (6)0.009 (5)0.003 (4)0.000 (4)0.005 (4)
C7B0.017 (5)0.046 (6)0.029 (5)0.015 (4)0.003 (4)0.013 (5)
C8B0.027 (6)0.029 (6)0.033 (6)0.009 (5)0.000 (5)0.008 (5)
C9B0.036 (6)0.029 (6)0.034 (6)0.017 (5)0.006 (5)0.019 (5)
C10B0.033 (6)0.019 (6)0.018 (5)0.003 (5)0.003 (4)0.002 (4)
Geometric parameters (Å, º) top
Cu1A—O4A1.911 (5)N2A—C6A1.334 (10)
Cu1A—O2Ai1.925 (6)N1B—C1B1.358 (11)
Cu1A—N2A1.965 (7)N1B—C5B1.365 (10)
Cu1A—N1A2.016 (7)N2B—C10B1.338 (10)
Cu1A—O12.432 (6)N2B—C6B1.358 (10)
Cu1B—O4B1.920 (6)C1A—C2A1.368 (12)
Cu1B—O2Bii1.921 (6)C1A—H1AA0.9300
Cu1B—N1B2.013 (7)C2A—C3A1.366 (12)
Cu1B—N2B2.036 (7)C2A—H2AA0.9300
Cu1B—O2ii2.307 (6)C3A—C4A1.345 (12)
V1—O11.622 (6)C3A—H3AA0.9300
V1—O21.645 (6)C4A—C5A1.378 (11)
V1—O1B1.958 (6)C4A—H4AA0.9300
V1—O1A1.983 (6)C5A—C6A1.463 (12)
V1—O1D2.213 (6)C6A—C7A1.364 (12)
V1—O2D2.395 (7)C7A—C8A1.378 (13)
P1A—O4A1.509 (6)C7A—H7AA0.9300
P1A—O1A1.507 (6)C8A—C9A1.362 (12)
P1A—O2A1.524 (6)C8A—H8AA0.9300
P1A—O3A1.575 (6)C9A—C10A1.394 (12)
P1B—O2B1.501 (6)C9A—H9AA0.9300
P1B—O1B1.512 (6)C10A—H10B0.9300
P1B—O4B1.524 (6)C1B—C2B1.396 (12)
P1B—O3B1.609 (6)C1B—H1BA0.9300
P1C—O2C1.473 (6)C2B—C3B1.377 (13)
P1C—O3C1.531 (6)C2B—H2BA0.9300
P1C—O1C1.539 (7)C3B—C4B1.410 (13)
P1C—O4C1.543 (6)C3B—H3BA0.9300
O3A—H3A0.84 (4)C4B—C5B1.379 (12)
O3B—H3B0.82 (4)C4B—H4BA0.9300
O1C—H1C0.81 (4)C5B—C6B1.495 (12)
O3C—H3C0.82 (4)C6B—C7B1.373 (12)
O4C—H4C0.82 (4)C7B—C8B1.350 (13)
O1D—N1D1.269 (9)C7B—H7BA0.9300
O2D—N1D1.260 (9)C8B—C9B1.333 (12)
O3D—N1D1.234 (9)C8B—H8BA0.9300
N1A—C1A1.322 (11)C9B—C10B1.348 (12)
N1A—C5A1.343 (10)C9B—H9BA0.9300
N2A—C10A1.331 (11)C10B—H10A0.9300
O4A—Cu1A—O2Ai96.7 (2)C10A—N2A—Cu1A124.7 (6)
O4A—Cu1A—N2A93.2 (3)C6A—N2A—Cu1A116.7 (6)
O2Ai—Cu1A—N2A170.0 (3)C1B—N1B—C5B120.6 (8)
O4A—Cu1A—N1A159.9 (3)C1B—N1B—Cu1B125.1 (6)
O2Ai—Cu1A—N1A91.2 (3)C5B—N1B—Cu1B114.3 (6)
N2A—Cu1A—N1A79.9 (3)C10B—N2B—C6B116.9 (8)
O4A—Cu1A—O191.8 (2)C10B—N2B—Cu1B127.6 (6)
O2Ai—Cu1A—O188.2 (2)C6B—N2B—Cu1B115.5 (6)
N2A—Cu1A—O190.1 (2)O3D—N1D—O2D122.6 (8)
N1A—Cu1A—O1107.0 (2)O3D—N1D—O1D121.7 (8)
O4B—Cu1B—O2Bii95.4 (2)O2D—N1D—O1D115.7 (8)
O4B—Cu1B—N1B170.7 (3)N1A—C1A—C2A122.7 (9)
O2Bii—Cu1B—N1B92.5 (3)N1A—C1A—H1AA118.6
O4B—Cu1B—N2B90.3 (3)C2A—C1A—H1AA118.6
O2Bii—Cu1B—N2B166.1 (3)C1A—C2A—C3A119.4 (9)
N1B—Cu1B—N2B81.0 (3)C1A—C2A—H2AA120.3
O4B—Cu1B—O2ii87.3 (2)C3A—C2A—H2AA120.3
O2Bii—Cu1B—O2ii96.1 (2)C4A—C3A—C2A118.8 (9)
N1B—Cu1B—O2ii96.8 (2)C4A—C3A—H3AA120.6
N2B—Cu1B—O2ii96.9 (2)C2A—C3A—H3AA120.6
O1—V1—O2107.4 (3)C3A—C4A—C5A119.5 (9)
O1—V1—O1B98.9 (3)C3A—C4A—H4AA120.3
O2—V1—O1B97.3 (3)C5A—C4A—H4AA120.3
O1—V1—O1A96.5 (3)N1A—C5A—C4A122.1 (8)
O2—V1—O1A94.1 (3)N1A—C5A—C6A113.5 (8)
O1B—V1—O1A157.0 (2)C4A—C5A—C6A124.4 (8)
O1—V1—O1D100.1 (3)N2A—C6A—C7A121.0 (9)
O2—V1—O1D152.5 (3)N2A—C6A—C5A114.7 (8)
O1B—V1—O1D78.5 (2)C7A—C6A—C5A124.3 (8)
O1A—V1—O1D82.2 (2)C6A—C7A—C8A120.4 (9)
O1—V1—O2D155.1 (3)C6A—C7A—H7AA119.8
O2—V1—O2D97.3 (3)C8A—C7A—H7AA119.8
O1B—V1—O2D80.2 (2)C9A—C8A—C7A119.5 (9)
O1A—V1—O2D78.7 (2)C9A—C8A—H8AA120.3
O1D—V1—O2D55.2 (2)C7A—C8A—H8AA120.3
O4A—P1A—O1A113.7 (3)C8A—C9A—C10A117.0 (9)
O4A—P1A—O2A113.3 (3)C8A—C9A—H9AA121.5
O1A—P1A—O2A110.2 (3)C10A—C9A—H9AA121.5
O4A—P1A—O3A108.7 (3)N2A—C10A—C9A123.5 (8)
O1A—P1A—O3A107.0 (3)N2A—C10A—H10B118.3
O2A—P1A—O3A103.2 (3)C9A—C10A—H10B118.3
O2B—P1B—O1B114.4 (3)N1B—C1B—C2B122.5 (9)
O2B—P1B—O4B113.7 (3)N1B—C1B—H1BA118.7
O1B—P1B—O4B111.9 (3)C2B—C1B—H1BA118.7
O2B—P1B—O3B106.7 (3)C3B—C2B—C1B116.7 (10)
O1B—P1B—O3B104.8 (3)C3B—C2B—H2BA121.6
O4B—P1B—O3B104.3 (3)C1B—C2B—H2BA121.6
O2C—P1C—O3C113.7 (4)C2B—C3B—C4B121.1 (10)
O2C—P1C—O1C115.8 (4)C2B—C3B—H3BA119.5
O3C—P1C—O1C102.8 (4)C4B—C3B—H3BA119.5
O2C—P1C—O4C109.4 (4)C5B—C4B—C3B119.7 (9)
O3C—P1C—O4C104.7 (4)C5B—C4B—H4BA120.2
O1C—P1C—O4C109.7 (4)C3B—C4B—H4BA120.2
P1A—O1A—V1134.7 (3)N1B—C5B—C4B119.4 (9)
P1A—O2A—Cu1Ai137.3 (4)N1B—C5B—C6B116.1 (8)
P1A—O3A—H3A108 (3)C4B—C5B—C6B124.5 (8)
P1A—O4A—Cu1A134.8 (4)N2B—C6B—C7B120.7 (9)
P1B—O1B—V1140.8 (4)N2B—C6B—C5B113.1 (8)
P1B—O2B—Cu1Bii134.1 (4)C7B—C6B—C5B126.2 (9)
P1B—O3B—H3B106 (3)C8B—C7B—C6B120.5 (9)
P1B—O4B—Cu1B134.2 (4)C8B—C7B—H7BA119.7
P1C—O1C—H1C113 (3)C6B—C7B—H7BA119.7
P1C—O3C—H3C112 (3)C7B—C8B—C9B118.4 (9)
P1C—O4C—H4C113 (3)C7B—C8B—H8BA120.8
N1D—O1D—V198.8 (5)C9B—C8B—H8BA120.8
N1D—O2D—V190.4 (5)C8B—C9B—C10B120.7 (10)
V1—O1—Cu1A129.9 (3)C8B—C9B—H9BA119.6
V1—O2—Cu1Bii131.9 (3)C10B—C9B—H9BA119.6
C1A—N1A—C5A117.4 (8)N2B—C10B—C9B122.7 (9)
C1A—N1A—Cu1A127.3 (6)N2B—C10B—H10A118.6
C5A—N1A—Cu1A115.3 (6)C9B—C10B—H10A118.6
C10A—N2A—C6A118.6 (8)
Symmetry codes: (i) x+2, y+2, z; (ii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O3Diii0.84 (4)2.02 (4)2.848 (8)169 (6)
O3B—H3B···O2Cii0.82 (4)1.76 (4)2.573 (8)174 (5)
O1C—H1C···O20.81 (4)2.08 (4)2.777 (9)144 (2)
O3C—H3C···O3Biv0.82 (4)1.83 (4)2.647 (9)169 (7)
O4C—H4C···O2Ai0.82 (4)1.91 (4)2.640 (8)149 (7)
Symmetry codes: (i) x+2, y+2, z; (ii) x+2, y+2, z+1; (iii) x+2, y+3, z; (iv) x, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu2V(HPO4)2(NO3)O2(C10H8N2)2]·2H2O[Cu2V(HPO4)2(NO3)O2(C10H8N2)2]·H3PO4
Mr812.39874.35
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293299
a, b, c (Å)10.5927 (13), 12.0359 (15), 12.1655 (15)9.8343 (13), 10.4632 (14), 14.3210 (19)
α, β, γ (°)107.090 (2), 110.399 (2), 93.876 (2)72.070 (2), 89.900 (2), 80.651 (2)
V3)1364.3 (3)1381.6 (3)
Z22
Radiation typeMo KαMo Kα
µ (mm1)2.082.13
Crystal size (mm)0.28 × 0.24 × 0.160.32 × 0.24 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.57, 0.720.55, 0.68
No. of measured, independent and
observed [I > 2σ(I)] reflections
5669, 4697, 3098 8625, 4812, 2471
Rint0.0470.076
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.085, 0.83 0.047, 0.161, 0.85
No. of reflections46974812
No. of parameters424448
No. of restraints811
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.450.76, 0.83

Computer programs: SMART (Bruker, 2001), SMART, SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1994), SHELXTL/PC.

Selected geometric parameters (Å, º) for (I) top
Cu1A—O2Ai1.909 (3)V1—O1D2.281 (3)
Cu1A—O4A1.922 (3)V1—O2D2.351 (4)
Cu1A—N2A1.999 (4)P1A—O4A1.500 (3)
Cu1A—N1A2.021 (4)P1A—O2A1.501 (3)
Cu1A—O12.360 (3)P1A—O1A1.528 (3)
Cu1B—O2Bii1.908 (3)P1A—O3A1.599 (4)
Cu1B—O4B1.926 (3)P1B—O2B1.503 (3)
Cu1B—N1B2.001 (4)P1B—O4B1.515 (3)
Cu1B—N2B2.004 (4)P1B—O1B1.523 (3)
Cu1B—O2ii2.267 (3)P1B—O3B1.577 (4)
V1—O21.620 (3)O1D—N1D1.253 (5)
V1—O11.640 (3)O2D—N1D1.259 (5)
V1—O1B1.952 (3)O3D—N1D1.221 (5)
V1—O1A1.959 (3)
O2Ai—Cu1A—O4A96.83 (13)N1B—Cu1B—O2ii95.49 (14)
O2Ai—Cu1A—N2A170.68 (14)N2B—Cu1B—O2ii95.69 (14)
O4A—Cu1A—N2A92.42 (14)O2—V1—O1106.87 (17)
O2Ai—Cu1A—N1A91.52 (15)O2—V1—O1B97.03 (15)
O4A—Cu1A—N1A158.98 (16)O1—V1—O1B97.37 (14)
N2A—Cu1A—N1A80.14 (16)O2—V1—O1A95.48 (15)
O2Ai—Cu1A—O190.03 (13)O1—V1—O1A97.87 (15)
O4A—Cu1A—O190.76 (12)O1B—V1—O1A156.54 (13)
N2A—Cu1A—O188.72 (14)O2—V1—O1D152.42 (15)
N1A—Cu1A—O1108.56 (14)O1—V1—O1D100.71 (15)
O2Bii—Cu1B—O4B95.86 (13)O1B—V1—O1D78.85 (13)
O2Bii—Cu1B—N1B91.26 (15)O1A—V1—O1D80.87 (13)
O4B—Cu1B—N1B168.04 (15)O2—V1—O2D97.45 (15)
O2Bii—Cu1B—N2B166.80 (16)O1—V1—O2D155.61 (15)
O4B—Cu1B—N2B90.38 (14)O1B—V1—O2D81.07 (12)
N1B—Cu1B—N2B80.78 (16)O1A—V1—O2D77.68 (13)
O2Bii—Cu1B—O2ii95.54 (13)O1D—V1—O2D55.00 (12)
O4B—Cu1B—O2ii93.38 (13)
Symmetry codes: (i) x1, y1, z; (ii) x1, y2, z1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O3Diii0.82 (4)2.14 (5)2.871 (5)150 (5)
O3B—H3B···O2W0.81 (4)1.91 (5)2.718 (5)175 (6)
O1W—H1WA···O1iv0.83 (4)2.35 (5)2.973 (6)132 (6)
O1W—H1WB···O4Bv0.83 (4)2.18 (5)3.006 (6)179 (7)
O2W—H2WA···O1W0.83 (4)1.91 (5)2.708 (7)162 (5)
O2W—H2WB···O3Aiii0.82 (4)2.37 (5)3.186 (6)177 (7)
Symmetry codes: (iii) x, y1, z; (iv) x+1, y, z; (v) x, y2, z1.
Selected geometric parameters (Å, º) for (II) top
Cu1A—O4A1.911 (5)P1A—O4A1.509 (6)
Cu1A—O2Ai1.925 (6)P1A—O1A1.507 (6)
Cu1A—N2A1.965 (7)P1A—O2A1.524 (6)
Cu1A—N1A2.016 (7)P1A—O3A1.575 (6)
Cu1A—O12.432 (6)P1B—O2B1.501 (6)
Cu1B—O4B1.920 (6)P1B—O1B1.512 (6)
Cu1B—O2Bii1.921 (6)P1B—O4B1.524 (6)
Cu1B—N1B2.013 (7)P1B—O3B1.609 (6)
Cu1B—N2B2.036 (7)P1C—O2C1.473 (6)
Cu1B—O2ii2.307 (6)P1C—O3C1.531 (6)
V1—O11.622 (6)P1C—O1C1.539 (7)
V1—O21.645 (6)P1C—O4C1.543 (6)
V1—O1B1.958 (6)O1D—N1D1.269 (9)
V1—O1A1.983 (6)O2D—N1D1.260 (9)
V1—O1D2.213 (6)O3D—N1D1.234 (9)
V1—O2D2.395 (7)
O4A—Cu1A—O2Ai96.7 (2)N1B—Cu1B—O2ii96.8 (2)
O4A—Cu1A—N2A93.2 (3)N2B—Cu1B—O2ii96.9 (2)
O2Ai—Cu1A—N2A170.0 (3)O1—V1—O2107.4 (3)
O4A—Cu1A—N1A159.9 (3)O1—V1—O1B98.9 (3)
O2Ai—Cu1A—N1A91.2 (3)O2—V1—O1B97.3 (3)
N2A—Cu1A—N1A79.9 (3)O1—V1—O1A96.5 (3)
O4A—Cu1A—O191.8 (2)O2—V1—O1A94.1 (3)
O2Ai—Cu1A—O188.2 (2)O1B—V1—O1A157.0 (2)
N2A—Cu1A—O190.1 (2)O1—V1—O1D100.1 (3)
N1A—Cu1A—O1107.0 (2)O2—V1—O1D152.5 (3)
O4B—Cu1B—O2Bii95.4 (2)O1B—V1—O1D78.5 (2)
O4B—Cu1B—N1B170.7 (3)O1A—V1—O1D82.2 (2)
O2Bii—Cu1B—N1B92.5 (3)O1—V1—O2D155.1 (3)
O4B—Cu1B—N2B90.3 (3)O2—V1—O2D97.3 (3)
O2Bii—Cu1B—N2B166.1 (3)O1B—V1—O2D80.2 (2)
N1B—Cu1B—N2B81.0 (3)O1A—V1—O2D78.7 (2)
O4B—Cu1B—O2ii87.3 (2)O1D—V1—O2D55.2 (2)
O2Bii—Cu1B—O2ii96.1 (2)
Symmetry codes: (i) x+2, y+2, z; (ii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O3Diii0.84 (4)2.02 (4)2.848 (8)169 (6)
O3B—H3B···O2Cii0.82 (4)1.76 (4)2.573 (8)174 (5)
O1C—H1C···O20.81 (4)2.08 (4)2.777 (9)144 (2)
O3C—H3C···O3Biv0.82 (4)1.83 (4)2.647 (9)169 (7)
O4C—H4C···O2Ai0.82 (4)1.91 (4)2.640 (8)149 (7)
Symmetry codes: (i) x+2, y+2, z; (ii) x+2, y+2, z+1; (iii) x+2, y+3, z; (iv) x, y1, z.
Selected parameters for the coordination polyhedra in (I) and (II) top
CationPolyhedral typeBasal planed1 (Å)Apical atomd2 (°)
Compound (I)
Cu1ASquare pyramidO2A/O4A/N1A/N2A0.19 (1)O18.9 (1)
Cu1BSquare pyramidO2B/O4B/N1B/N2B0.02 (1)O218.2 (1)
V1OctahedronO1D/O2D/O1/O20.02 (1)O112.0 (1)
O211.6 (1)
Compound (II)
Cu1ASquare pyramidO2A/O4A/N1A/N2A0.18 (1)O17.6 (1)
Cu1BSquare pyramidO2B/O4B/N1B/N2B0.07 (1)O24.9 (1)
V1OctahedronO1D/O2D/O1/O20.03 (1)O110.5 (1)
O21.6 (1)
Notes: d1 is the mean linear deviation from the least-squares plane and d2 is the angular deviation from the least-squares plane normal.
Selected parameters (Å, °) for ππ interactions in (I) and (II) top
Group 1, Group 2IPDCCDSA
Compound (I)
N1A/C1A-C5A, N2Ai/C6Ai-C10Ai3.44 (1)3.64 (1)19.2 (1)
N1B/C1B-C5B, N2Bii/C6Bii-C10Bii3.41 (1)3.64 (1)20.1 (1)
N1Ai/C1Ai-C5Ai, N2B/C6B-C10B3.35 (1)3.74 (1)26.2 (1)
N2Ai/C6Ai-C10Ai, N1B/C1B-C5B3.39 (1)3.64 (1)22.3 (1)
Compound (II)
N1A/C1A-C5A, N2Aiii/C6Aiii-C10Aiii3.35 (1)3.67 (1)24.1 (1)
N1B/C1B-C5B, N2Biv/C6Biv-C10Biv3.37 (1)3.67 (1)23.2 (1)
N1Aiii/C1Aiii-C5Aiii, N2B/C6B-C10B3.46 (1)3.59 (1)15.7 (1)
N2Aiii/C6Aiii-C10Aiii, N1B/C1B-C5B3.37 (1)3.61 (1)21.1 (1)
Symmetry codes: (i) −1 − x, −1 − y, −z; (ii) −1 − x, −2 − y, −1 − z; (iii) 2 − x, 2 − y, −z; (iv) 2 − x, 2 − y, 1 − z.. Notes: IPD is the interplanar distance, CCD is the centre-to-centre distance and SA is the slippage angle (for nomenclature, see Janiak, 2000).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds