Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, [Cd(C6H15NO3)2](C4O4)·H2O, a supramolecular structure is observed. The asymmetric unit consists of one unit of the cationic Cd complex, one water mol­ecule and two half-squarate anions, each sitting on a crystallographic inversion center. The different coordinations of the two triethanolamine (TEA) ligands results in an unusual example of coordination number seven for the CdII ion. Both TEA ligands coordinate to the CdII ion, forming a distorted monocapped trigonal prismatic geometry with approximate C2v symmetry. One of the TEA ligands acts as an N,O,O′-tridentate ligand, whereas the other behaves as an N,O,O′,O′′-tetradentate donor. The anions and cations are linked to one another by hydrogen bonds between hydroxy H atoms of the TEA ligands and squarate O atoms. The crystal structure is stabilized by O—H...O hydrogen bonds between the unligated water mol­ecule and a squarate O atom, together with a weak π–ring interaction between the ethyl­ene group of a TEA ligand and a squarate anion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104013174/fa1064sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104013174/fa1064Isup2.hkl
Contains datablock I

CCDC reference: 248133

Comment top

Supramolecular structures containing metal ions have attracted many workers from a variety of scientific disciplines for different kinds of applications, such as zeolite-like materials (Venkataraman et al., 1995), catalysts (Fujita et al., 1994) and magnetic materials (Kahn, 1993). In order to understand the properties of supramolecular architectures, detailed structural information is required. In this context, we have synthesized bis(triethanolamine) cadmium(II) squarate monohydrate. Squaric acid was selected because of its utility in building cocrystals (Bouma et al., 1999; Bertollasi et al., 2001; Bulut et al., 2003). The triethanolamine (TEA) molecule is also used as a ligand since it contains four donor atoms – three hydroxy O atoms and one amine N atom. The TEA ligand usually acts as an N,O,O'-tridentate ligand in transition metal complexes (Sen & Dotson, 1970; Icbudak et al., 1995; Ucar et al., 2004). Although such behaviour is not common, TEA may also act as an N,O,O',O''-tetradentate ligand when geometrical demands enforce high coordination numbers or the metal ions have large ionic radii (Naiini et al., 1995; Naiini et al., 1996; Topcu et al., 2002; Starynowicz & Gatner, 2003). Coordination number seven is rare because of increased ligand–ligand repulsion, weaker bonds and, usually, reduced CF (crystal field) stabilization in comparison to those of octahedral complexes. Seven-coordination is most commonly found in discrete complexes of second- and third-row transition metals, such as lanthanides and actinides (Arndt et al., 2002; Han et al., 1999). The three known coordination geometries for coordination number seven are (i) pentagonal bipyramidal, (ii) capped octahedral with a seventh ligand added to a rectangular face and (iii) capped trigonal prismatic with a seventh ligand added to a rectangular face. These geometries are considered to have approximately equal a priori probabilities (Park et al., 1970). The third coordination geometry is observed in the title complex.

An ORTEPIII (Burnet & Johnson., 1996) view of (I) and its atom-labelling scheme are shown in Fig. 1. The crystal structure contains a complex [Cd(TEA)2]2+ cation and an uncoordinated squarate anion, C4O42−. The structure of the complex cation reveals a heptacoordinated CdII ion with a coordination polyhedron best described as a distorted monocapped trigonal prism with approximate C2v symmetry. In the complex cation, in which the CdII ion is coordinated by two TEA ligands and is seven coordinate, both tri- and tetradentate TEA molecules are present. The coordination modes of the two TEA molecules are different. One molecule coordinates to CdII with all donor atoms, behaving as an N,O,O',O''-tetradentate ligand, while the other coordinates through two hydroxy O atoms and the amine group, acting as an N,O,O'-tridentate ligand and leaving the other hydroxy group free. The C and O atoms of the free hydroxy group, C22 and O22, are disordered over two positions, with occupancies of 0.7 for O22a/C22a and 0.3 for O22b/C22b.

In the monocapped trigonal prism, the triangles O1/O4/O5 and O2/O3/N2 form the bases; these planes are nearly parallel to one another, with a dihedral angle of 6.08 (3)°. The rectangular faces [O3/O4/N2/O5 (plane 1), O1/O2/O3/O4 (plane 2) and O1/O2/N2/O5 (plane 3)] are almost planar, with r.m.s. deviations of 0.0679, 0.0884 and 0.1223 Å, and the maximum deviations from these planes are 0.071 (2) Å for atom N2, 0.092 (2) Å for atom O3 and 0.131 (2) Å for atom N2, respectively. The dihedral angles between these least-squares planes are 77.07 (11)° between planes 1 and 3, 51.14 (9)° between planes 2 and 3, and 51.86 (11)° between planes 1 and 2. The dihedral angles between the rectangular face (plane 1) and the nearly parallel triangular bases are 86.03 (12) and 82.51 (13)°. In the monocapped trigonal prism, atom N1 is located at the axial position, while atoms N2 and O5 are in pseudo-axial positions. When the capping atom N1 (additional ligand) is added on top of a face of the trigonal prism, a slight distortion occurs. The Cd—O bond distances are in the range 2.310 (4)–2.457 (4) Å, while the Cd—N bond distances are 2.389 (4) and 2.404 (4) Å. It was seen that, in the tetradentate and tridentate TEA ligands, the Cd—O and Cd—N bond distances are different, so the two TEA ligands are not equivalent. All the O—Cd—O angles deviate significantly from 90 and 180°. The central CdII ion is located 0.2498 (16) Å below the least-squares plane (O1/O2/O3/O4). These values are comparable to those observed for another CdII TEA complex (Andac et al., 2001; Naiini et al., 1995). The values also indicate that the coordination geometry around the CdII ion is irregular, presumably as a result of the steric constraints arising from the shape of the polydentate ligands.

The uncoordinated squarate anions are almost coplanar and play an important role in the supramolecular architecture. The O—C bond distances are in the range of 1.246 (6)–1.256 (6) Å in the squarate anion, while the unique C—C bond distances are 1.451 (6) and 1.463 (7) Å. These bond lengths accord with the fact that the squarate anion, C4O42−, which possesses a pronounced degree of delocalization, is considered to be aromatic. Each squarate anion is surrounded by four [Cd(TEA)2]2+ cations. As shown in Fig. 2, the squarate O atoms participate in hydrogen bonds with the hydroxy H atoms (O atoms lie on the equatorial plane) of the TEA ligands. The lattice water molecules link the complex cation to the squarate ion through hydrogen-bonding interactions (see table 2 for details). In the extended structure (Fig. 2), there is also a weak C—H···π interaction between atoms C5 and H5B of the tetradentate TEA ligand and a squarate anion. For the C—H···Cg contact (Cg is the center of the squarate ion containing atoms C14 and C15), the distance between the squarate centroid and the nearest methylene H atom is 2.99 Å. The perpendicular distance between atom H5B and the center of the squarate ion is 2.862 Å and the C—H···Cg angle is 143.61°. An extensive network of hydrogen bonds and C—H···π intermolecular interactions embeds the complex in an infinite three-dimensional lattice.

Experimental top

Squaric acid (0.57 g, 5 mmol), dissolved in water (25 ml), was neutralized with NaOH (0.40 g, 10 mmol) and was added to a hot solution of CdCl2·H2O(0.201 g, 5 mmol) dissolved in water (50 ml). The mixture was stirred at 333 K for 12 h and then cooled to room temperature. The resulting yellow crystals were filtered, washed with water and alcohol, and dried in a vacuum. A solution of triethanolamine (0.298 g, 2 mmol) in methanol (50 ml) was added dropwise with stirring to a suspension of CdSq·2H2O (0.26 g, 1 mmol) in water (50 ml). The mixture was heated to 323 K for 12 h and then left to cool to room temperature. A few days later, well formed crystals were selected for X-ray studies.

Refinement top

The hydroxy and water H atoms were located from a difference map and then restrained to an O—H distance of 0.84 (3) Å. Other H atoms were placed at calculated positions (C—H = 0.97 Å) and were allowed to ride on their parent atoms [Uiso(H)= 1.2Ueq(C)]. The disordered hydroxymethyl moiety (site-occupancy factors are 0.7 for O22a/C22a and 0.3 for O22b/C22b) was refined anisotropically, with constraints and restraints imposed on the C—C and O—C distances, the N—C—C and C—C—O angles, and the anisotropic displacement parameters of the O and C atoms. The highest peak and deepest hole are located 0.05 and 0.11 Å from atoms O2 and O22b, respectively, and are thus related to disorder in the O atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 view of the ionic moeities of (I) together with the hydrogen bonds. H atoms of hydroxyl groups are shown as small circles and hydrogen bonds are indicated by dashed lines. The methylene H atoms are omitted. Symmetry codes: i) x, y, 1 + z ii) 1 + x, 1 + y, 2 + z
[Figure 2] Fig. 2. : The three-dimensional structure of the co-crystal. Dashed lines illustrate the hydrogen bonds and π-ring interactions.
(I) top
Crystal data top
[Cd(C6H15NO3)2](C4O4)·H2OZ = 2
Mr = 539.83F(000) = 554
Triclinic, P1Dx = 1.678 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.135 (5) ÅCell parameters from 16158 reflections
b = 10.972 (5) Åθ = 1.9–25.9°
c = 11.968 (5) ŵ = 1.08 mm1
α = 71.537 (5)°T = 293 K
β = 70.118 (5)°Prism, colorless
γ = 86.582 (5)°0.4 × 0.3 × 0.2 mm
V = 1068.4 (9) Å3
Data collection top
Stoe IPDS-II
diffractometer
4123 independent reflections
Radiation source: fine-focus sealed tube3368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 6.67 pixels mm-1θmax = 25.9°, θmin = 1.9°
rotation method scansh = 1011
Absorption correction: integration
X-RED32 (Stoe & Cie, 2002)
k = 1213
Tmin = 0.480, Tmax = 0.819l = 014
4123 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0878P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
4123 reflectionsΔρmax = 1.17 e Å3
277 parametersΔρmin = 2.53 e Å3
192 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (2)
Crystal data top
[Cd(C6H15NO3)2](C4O4)·H2Oγ = 86.582 (5)°
Mr = 539.83V = 1068.4 (9) Å3
Triclinic, P1Z = 2
a = 9.135 (5) ÅMo Kα radiation
b = 10.972 (5) ŵ = 1.08 mm1
c = 11.968 (5) ÅT = 293 K
α = 71.537 (5)°0.4 × 0.3 × 0.2 mm
β = 70.118 (5)°
Data collection top
Stoe IPDS-II
diffractometer
4123 independent reflections
Absorption correction: integration
X-RED32 (Stoe & Cie, 2002)
3368 reflections with I > 2σ(I)
Tmin = 0.480, Tmax = 0.819Rint = 0.000
4123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044192 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 1.17 e Å3
4123 reflectionsΔρmin = 2.53 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.22532 (4)0.28813 (3)0.72935 (3)0.02810 (15)
O10.2512 (5)0.2761 (4)0.5343 (4)0.0501 (6)
O20.0902 (5)0.0773 (4)0.7933 (4)0.0501 (6)
O30.2163 (4)0.2490 (4)0.9375 (3)0.0407 (8)
O40.4230 (4)0.4433 (3)0.6900 (3)0.0368 (8)
O50.1398 (4)0.4937 (3)0.6345 (3)0.0400 (8)
O60.1266 (5)0.0639 (4)0.6425 (4)0.0493 (10)
O70.0006 (5)0.2045 (3)0.4908 (4)0.0508 (10)
O80.6041 (5)0.4212 (4)1.1553 (4)0.0495 (10)
O90.4516 (5)0.2954 (4)1.0075 (4)0.0500 (10)
O100.1873 (6)0.3195 (4)0.7214 (4)0.0520 (10)
N10.4703 (5)0.1970 (4)0.6580 (4)0.0339 (9)
N20.0425 (5)0.2951 (4)0.8537 (4)0.0327 (9)
C10.0737 (8)0.0711 (6)0.8552 (6)0.0546 (9)
H1A0.09750.02870.94430.065*
H1B0.12460.02050.82410.065*
C20.1355 (6)0.2040 (5)0.8338 (5)0.0403 (11)
H2A0.13670.23680.74870.048*
H2B0.24210.19840.89010.048*
C30.0555 (6)0.2591 (6)0.9875 (5)0.0453 (13)
H3A0.06890.16631.02400.054*
H3B0.14730.29571.03210.054*
C40.0845 (7)0.3049 (6)1.0036 (5)0.0470 (13)
H4A0.09730.39800.97040.056*
H4B0.07290.27891.09170.056*
C50.0950 (6)0.4262 (5)0.8113 (5)0.0438 (12)
H5A0.06640.47910.85270.053*
H5B0.20780.42230.83540.053*
C60.0256 (6)0.4877 (5)0.6722 (5)0.0445 (12)
H6A0.05890.43810.63000.053*
H6B0.06190.57380.64850.053*
C70.5754 (6)0.3984 (5)0.6620 (5)0.0384 (11)
H7A0.59690.35530.73880.046*
H7B0.65140.47000.61230.046*
C80.5854 (6)0.3069 (6)0.5908 (6)0.0447 (12)
H8A0.57050.35320.51200.054*
H8B0.68910.27450.57160.054*
C90.3846 (7)0.2144 (6)0.4770 (5)0.0429 (12)
H9A0.46210.27930.41290.052*
H9B0.35450.16100.43670.052*
C100.4561 (7)0.1314 (6)0.5720 (5)0.0468 (13)
H10A0.39190.05250.62030.056*
H10B0.55870.10850.52770.056*
C110.5240 (8)0.1089 (6)0.7575 (6)0.0546 (9)
H11A0.62750.08420.71730.065*0.694 (6)
H11B0.53440.15750.80970.065*0.694 (6)
H11C0.59920.16410.76230.065*0.306 (6)
H11D0.43370.10140.83180.065*0.306 (6)
C120.0002 (6)0.0929 (5)0.4962 (5)0.0361 (11)
C130.0567 (6)0.0290 (5)0.5645 (5)0.0359 (11)
C140.4775 (6)0.4077 (5)1.0040 (5)0.0329 (10)
C150.5461 (6)0.4637 (5)1.0708 (4)0.0323 (10)
H10.175 (6)0.253 (7)0.529 (7)0.07 (2)*
H20.105 (7)0.039 (5)0.747 (4)0.039 (15)*
H30.288 (5)0.263 (6)0.957 (5)0.040 (16)*
H40.403 (8)0.479 (6)0.744 (5)0.06 (2)*
H50.163 (10)0.542 (7)0.671 (7)0.09 (3)*
H60.169 (9)0.243 (3)0.690 (6)0.07 (2)*
H70.270 (7)0.325 (11)0.736 (10)0.12 (4)*
C22A0.4306 (11)0.0067 (8)0.8384 (8)0.0546 (9)0.694 (6)
H22A0.44830.03230.91790.065*0.694 (6)
H22B0.32150.01130.85430.065*0.694 (6)
O22A0.4631 (7)0.1110 (5)0.7881 (6)0.0501 (6)0.694 (6)
C22B0.52520.01320.77900.0546 (9)0.306 (6)
H22C0.61270.03630.71740.065*0.306 (6)
H22D0.42910.04730.77990.065*0.306 (6)
O22B0.53900.05480.89220.0501 (6)0.306 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0268 (2)0.0295 (2)0.0308 (2)0.00259 (12)0.01022 (13)0.01297 (13)
O10.0629 (17)0.0414 (14)0.0572 (15)0.0048 (12)0.0281 (13)0.0222 (12)
O20.0629 (17)0.0414 (14)0.0572 (15)0.0048 (12)0.0281 (13)0.0222 (12)
O30.037 (2)0.055 (2)0.0372 (19)0.0018 (17)0.0155 (16)0.0218 (17)
O40.0325 (18)0.0362 (19)0.049 (2)0.0066 (14)0.0161 (15)0.0215 (16)
O50.0389 (19)0.0318 (19)0.046 (2)0.0046 (15)0.0139 (16)0.0095 (16)
O60.072 (3)0.034 (2)0.067 (2)0.0156 (19)0.053 (2)0.0215 (18)
O70.067 (3)0.0293 (19)0.081 (3)0.0163 (18)0.051 (2)0.0266 (19)
O80.072 (3)0.045 (2)0.054 (2)0.022 (2)0.046 (2)0.0223 (18)
O90.069 (3)0.031 (2)0.068 (3)0.0077 (18)0.044 (2)0.0185 (18)
O100.069 (3)0.041 (2)0.064 (3)0.022 (2)0.042 (2)0.024 (2)
N10.036 (2)0.029 (2)0.041 (2)0.0091 (17)0.0168 (18)0.0140 (17)
N20.032 (2)0.032 (2)0.035 (2)0.0022 (16)0.0112 (16)0.0113 (17)
C10.063 (2)0.0429 (19)0.060 (2)0.0056 (18)0.0284 (19)0.0119 (17)
C20.031 (3)0.043 (3)0.050 (3)0.002 (2)0.017 (2)0.014 (2)
C30.038 (3)0.059 (4)0.036 (3)0.005 (2)0.008 (2)0.016 (2)
C40.047 (3)0.064 (4)0.036 (3)0.005 (3)0.012 (2)0.026 (3)
C50.032 (3)0.038 (3)0.058 (3)0.011 (2)0.011 (2)0.017 (2)
C60.038 (3)0.038 (3)0.051 (3)0.007 (2)0.019 (2)0.003 (2)
C70.029 (2)0.037 (3)0.052 (3)0.000 (2)0.015 (2)0.016 (2)
C80.032 (3)0.045 (3)0.057 (3)0.006 (2)0.011 (2)0.023 (3)
C90.050 (3)0.046 (3)0.037 (3)0.003 (2)0.014 (2)0.019 (2)
C100.053 (3)0.044 (3)0.051 (3)0.011 (3)0.017 (3)0.027 (3)
C110.063 (2)0.0429 (19)0.060 (2)0.0056 (18)0.0284 (19)0.0119 (17)
C120.040 (3)0.031 (3)0.048 (3)0.007 (2)0.025 (2)0.016 (2)
C130.042 (3)0.030 (3)0.046 (3)0.006 (2)0.024 (2)0.017 (2)
C140.033 (2)0.032 (3)0.038 (2)0.006 (2)0.017 (2)0.014 (2)
C150.033 (2)0.034 (3)0.035 (2)0.011 (2)0.0154 (19)0.014 (2)
C22A0.063 (2)0.0429 (19)0.060 (2)0.0056 (18)0.0284 (19)0.0119 (17)
O22A0.0629 (17)0.0414 (14)0.0572 (15)0.0048 (12)0.0281 (13)0.0222 (12)
C22B0.063 (2)0.0429 (19)0.060 (2)0.0056 (18)0.0284 (19)0.0119 (17)
O22B0.0629 (17)0.0414 (14)0.0572 (15)0.0048 (12)0.0281 (13)0.0222 (12)
Geometric parameters (Å, º) top
Cd1—O12.310 (4)C3—H3A0.9700
Cd1—O32.363 (4)C3—H3B0.9700
Cd1—O42.379 (4)C4—H4A0.9700
Cd1—N12.390 (4)C4—H4B0.9700
Cd1—O52.399 (4)C5—C61.500 (8)
Cd1—N22.404 (4)C5—H5A0.9700
Cd1—O22.457 (4)C5—H5B0.9700
O1—C91.428 (7)C6—H6A0.9700
O1—H10.78 (3)C6—H6B0.9700
O2—C11.421 (8)C7—C81.490 (7)
O2—H20.77 (3)C7—H7A0.9700
O3—C41.422 (7)C7—H7B0.9700
O3—H30.81 (3)C8—H8A0.9700
O4—C71.414 (6)C8—H8B0.9700
O4—H40.82 (3)C9—C101.526 (8)
O5—C61.422 (6)C9—H9A0.9700
O5—H50.86 (9)C9—H9B0.9700
O6—C131.256 (6)C10—H10A0.9700
O7—C121.246 (6)C10—H10B0.9700
O8—C151.248 (6)C11—C22B1.282 (6)
O9—C141.253 (6)C11—C22A1.437 (10)
O10—H60.83 (3)C11—H11A0.9700
O10—H70.83 (8)C11—H11B0.9700
N1—C101.471 (7)C11—H11C0.9701
N1—C81.473 (7)C11—H11D0.9700
N1—C111.485 (7)C12—C131.458 (7)
N2—C21.472 (6)C14—C151.451 (6)
N2—C51.475 (7)C22A—O22A1.426 (9)
N2—C31.486 (6)C22A—H11D1.1645
C1—C21.509 (8)C22A—H22A0.9700
C1—H1A0.9700C22A—H22B0.9700
C1—H1B0.9700C22B—O22B1.3333 (5)
C2—H2A0.9700C22B—H22C0.9700
C2—H2B0.9700C22B—H22D0.9700
C3—C41.494 (8)
O1—Cd1—O3166.28 (14)O3—C4—H4B110.2
O1—Cd1—O4104.74 (14)C3—C4—H4B110.2
O3—Cd1—O481.38 (13)H4A—C4—H4B108.5
O1—Cd1—N173.67 (15)N2—C5—C6112.4 (4)
O3—Cd1—N196.99 (13)N2—C5—H5A109.1
O4—Cd1—N172.97 (13)C6—C5—H5A109.1
O1—Cd1—O578.40 (14)N2—C5—H5B109.1
O3—Cd1—O5115.27 (13)C6—C5—H5B109.1
O4—Cd1—O573.66 (13)H5A—C5—H5B107.9
N1—Cd1—O5128.56 (13)O5—C6—C5110.1 (4)
O1—Cd1—N2112.22 (15)O5—C6—H6A109.6
O3—Cd1—N272.78 (13)C5—C6—H6A109.6
O4—Cd1—N2123.19 (13)O5—C6—H6B109.6
N1—Cd1—N2157.68 (14)C5—C6—H6B109.6
O5—Cd1—N273.42 (13)H6A—C6—H6B108.2
O1—Cd1—O280.65 (15)O4—C7—C8107.8 (4)
O3—Cd1—O289.51 (14)O4—C7—H7A110.1
O4—Cd1—O2159.51 (14)C8—C7—H7A110.1
N1—Cd1—O290.13 (15)O4—C7—H7B110.1
O5—Cd1—O2126.77 (14)C8—C7—H7B110.1
N2—Cd1—O270.41 (14)H7A—C7—H7B108.5
C9—O1—Cd1116.4 (3)N1—C8—C7113.8 (4)
C9—O1—H1112 (6)N1—C8—H8A108.8
Cd1—O1—H1115 (6)C7—C8—H8A108.8
C1—O2—Cd1115.9 (3)N1—C8—H8B108.8
C1—O2—H2107 (4)C7—C8—H8B108.8
Cd1—O2—H2121 (4)H8A—C8—H8B107.7
C4—O3—Cd1110.3 (3)O1—C9—C10111.9 (4)
C4—O3—H3107 (4)O1—C9—H9A109.2
Cd1—O3—H3125 (4)C10—C9—H9A109.2
C7—O4—Cd1114.3 (3)O1—C9—H9B109.2
C7—O4—H4113 (5)C10—C9—H9B109.2
Cd1—O4—H4113 (5)H9A—C9—H9B107.9
C6—O5—Cd1109.3 (3)N1—C10—C9112.6 (4)
C6—O5—H5106 (6)N1—C10—H10A109.1
Cd1—O5—H5103 (6)C9—C10—H10A109.1
H6—O10—H7111 (9)N1—C10—H10B109.1
C10—N1—C8110.9 (4)C9—C10—H10B109.1
C10—N1—C11111.2 (4)H10A—C10—H10B107.8
C8—N1—C11107.0 (4)C22B—C11—N1122.7 (5)
C10—N1—Cd1106.4 (3)C22A—C11—N1118.3 (6)
C8—N1—Cd1105.5 (3)C22A—C11—H11A107.7
C11—N1—Cd1115.7 (3)N1—C11—H11A107.7
C2—N2—C5109.2 (4)C22B—C11—H11B128.3
C2—N2—C3111.1 (4)C22A—C11—H11B107.7
C5—N2—C3110.6 (4)N1—C11—H11B107.7
C2—N2—Cd1107.8 (3)H11A—C11—H11B107.1
C5—N2—Cd1109.1 (3)C22B—C11—H11C127.6
C3—N2—Cd1109.0 (3)C22A—C11—H11C136.4
O2—C1—C2110.9 (5)N1—C11—H11C101.9
O2—C1—H1A109.5N1—C11—H11D101.6
C2—C1—H1A109.5H11A—C11—H11D150.5
O2—C1—H1B109.5H11C—C11—H11D104.7
C2—C1—H1B109.5O7—C12—C13135.2 (5)
H1A—C1—H1B108.1O6—C13—C12134.9 (5)
N2—C2—C1113.0 (4)O9—C14—C15135.0 (4)
N2—C2—H2A109.0O8—C15—C14135.6 (5)
C1—C2—H2A109.0O22A—C22A—C11113.4 (7)
N2—C2—H2B109.0O22A—C22A—H11D154.0
C1—C2—H2B109.0O22A—C22A—H22A108.9
H2A—C2—H2B107.8C11—C22A—H22A108.9
N2—C3—C4112.3 (4)O22A—C22A—H22B108.9
N2—C3—H3A109.1C11—C22A—H22B108.9
C4—C3—H3A109.1H22A—C22A—H22B107.7
N2—C3—H3B109.1C11—C22B—O22B102.0 (3)
C4—C3—H3B109.1C11—C22B—H22C111.4
H3A—C3—H3B107.9O22B—C22B—H22C111.4
O3—C4—C3107.5 (4)C11—C22B—H22D111.4
O3—C4—H4A110.2O22B—C22B—H22D111.4
C3—C4—H4A110.2H22C—C22B—H22D109.2
O3—Cd1—O1—C943.3 (8)O5—Cd1—N2—C2110.2 (3)
O4—Cd1—O1—C971.8 (4)O2—Cd1—N2—C230.0 (3)
N1—Cd1—O1—C94.9 (4)O1—Cd1—N2—C577.9 (4)
O5—Cd1—O1—C9141.2 (4)O3—Cd1—N2—C5115.7 (4)
N2—Cd1—O1—C9152.3 (4)O4—Cd1—N2—C548.7 (4)
O2—Cd1—O1—C988.0 (4)N1—Cd1—N2—C5179.1 (4)
O1—Cd1—O2—C1110.7 (4)O5—Cd1—N2—C58.2 (3)
O3—Cd1—O2—C178.9 (4)O2—Cd1—N2—C5148.5 (4)
O4—Cd1—O2—C1142.1 (4)O1—Cd1—N2—C3161.3 (3)
N1—Cd1—O2—C1175.9 (4)O3—Cd1—N2—C35.1 (3)
O5—Cd1—O2—C142.8 (4)O4—Cd1—N2—C372.1 (4)
N2—Cd1—O2—C17.1 (4)N1—Cd1—N2—C360.1 (5)
O1—Cd1—O3—C4139.1 (6)O5—Cd1—N2—C3129.1 (4)
O4—Cd1—O3—C4103.3 (4)O2—Cd1—N2—C390.7 (3)
N1—Cd1—O3—C4174.8 (4)Cd1—O2—C1—C217.1 (6)
O5—Cd1—O3—C436.0 (4)C5—N2—C2—C1170.9 (5)
N2—Cd1—O3—C425.6 (3)C3—N2—C2—C166.9 (6)
O2—Cd1—O3—C495.2 (4)Cd1—N2—C2—C152.5 (5)
O1—Cd1—O4—C775.0 (3)O2—C1—C2—N247.1 (7)
O3—Cd1—O4—C792.5 (3)C2—N2—C3—C4153.2 (5)
N1—Cd1—O4—C77.6 (3)C5—N2—C3—C485.4 (6)
O5—Cd1—O4—C7147.9 (3)Cd1—N2—C3—C434.6 (5)
N2—Cd1—O4—C7155.3 (3)Cd1—O3—C4—C352.0 (5)
O2—Cd1—O4—C728.0 (6)N2—C3—C4—O359.1 (6)
O1—Cd1—O5—C696.5 (4)C2—N2—C5—C681.3 (5)
O3—Cd1—O5—C682.3 (4)C3—N2—C5—C6156.2 (5)
O4—Cd1—O5—C6154.2 (4)Cd1—N2—C5—C636.3 (5)
N1—Cd1—O5—C6154.5 (3)Cd1—O5—C6—C547.7 (5)
N2—Cd1—O5—C621.1 (3)N2—C5—C6—O558.5 (6)
O2—Cd1—O5—C627.6 (4)Cd1—O4—C7—C834.4 (5)
O1—Cd1—N1—C1027.2 (3)C10—N1—C8—C7164.2 (4)
O3—Cd1—N1—C10142.5 (3)C11—N1—C8—C774.4 (6)
O4—Cd1—N1—C10138.8 (3)Cd1—N1—C8—C749.3 (5)
O5—Cd1—N1—C1087.1 (4)O4—C7—C8—N157.9 (6)
N2—Cd1—N1—C1081.7 (5)Cd1—O1—C9—C1018.2 (6)
O2—Cd1—N1—C1053.0 (3)C8—N1—C10—C967.2 (6)
O1—Cd1—N1—C890.7 (3)C11—N1—C10—C9173.9 (5)
O3—Cd1—N1—C899.6 (3)Cd1—N1—C10—C947.1 (5)
O4—Cd1—N1—C820.9 (3)O1—C9—C10—N145.1 (7)
O5—Cd1—N1—C830.8 (4)C10—N1—C11—C22B13.5 (8)
N2—Cd1—N1—C8160.4 (4)C8—N1—C11—C22B134.7 (5)
O2—Cd1—N1—C8170.9 (3)Cd1—N1—C11—C22B108.1 (5)
O1—Cd1—N1—C11151.2 (4)C10—N1—C11—C22A59.4 (8)
O3—Cd1—N1—C1118.5 (4)C8—N1—C11—C22A179.4 (6)
O4—Cd1—N1—C1197.2 (4)Cd1—N1—C11—C22A62.2 (7)
O5—Cd1—N1—C11148.9 (3)O7—C12—C13—O60.2 (12)
N2—Cd1—N1—C1142.4 (6)O9—C14—C15—O80.0 (11)
O2—Cd1—N1—C1171.0 (4)C22B—C11—C22A—O22A23.0 (4)
O1—Cd1—N2—C240.6 (3)N1—C11—C22A—O22A85.2 (8)
O3—Cd1—N2—C2125.8 (3)C22A—C11—C22B—O22B67.6 (6)
O4—Cd1—N2—C2167.2 (3)N1—C11—C22B—O22B163.8 (5)
N1—Cd1—N2—C260.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H7···O8i0.83 (8)2.03 (6)2.770 (5)148 (10)
O10—H6···O60.83 (3)1.92 (3)2.749 (6)171 (7)
O3—H3···O90.81 (3)1.88 (3)2.685 (5)179 (6)
O4—H4···O8ii0.82 (3)1.86 (3)2.662 (5)168 (7)
O5—H5···O10iii0.86 (9)1.85 (4)2.690 (6)164 (9)
O1—H1···O7iv0.78 (3)1.83 (7)2.614 (6)177 (8)
O2—H2···O60.77 (3)1.89 (3)2.658 (6)176 (6)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+2; (iii) x, y+1, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C6H15NO3)2](C4O4)·H2O
Mr539.83
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.135 (5), 10.972 (5), 11.968 (5)
α, β, γ (°)71.537 (5), 70.118 (5), 86.582 (5)
V3)1068.4 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionIntegration
X-RED32 (Stoe & Cie, 2002)
Tmin, Tmax0.480, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
4123, 4123, 3368
Rint0.000
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 0.97
No. of reflections4123
No. of parameters277
No. of restraints192
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.17, 2.53

Computer programs: X-AREA (Stoe & Cie, 2001), X-AREA, X-RED32 (Stoe & Cie, 2001), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cd1—O12.310 (4)O6—C131.256 (6)
Cd1—O32.363 (4)O7—C121.246 (6)
Cd1—O42.379 (4)O8—C151.248 (6)
Cd1—N12.390 (4)O9—C141.253 (6)
Cd1—O52.399 (4)C12—C131.458 (7)
Cd1—N22.404 (4)C14—C151.451 (6)
Cd1—O22.457 (4)
O1—Cd1—O3166.28 (14)O3—Cd1—N272.78 (13)
O1—Cd1—O4104.74 (14)O4—Cd1—N2123.19 (13)
O3—Cd1—O481.38 (13)N1—Cd1—N2157.68 (14)
O1—Cd1—N173.67 (15)O5—Cd1—N273.42 (13)
O3—Cd1—N196.99 (13)O1—Cd1—O280.65 (15)
O4—Cd1—N172.97 (13)O3—Cd1—O289.51 (14)
O1—Cd1—O578.40 (14)O4—Cd1—O2159.51 (14)
O3—Cd1—O5115.27 (13)N1—Cd1—O290.13 (15)
O4—Cd1—O573.66 (13)O5—Cd1—O2126.77 (14)
N1—Cd1—O5128.56 (13)N2—Cd1—O270.41 (14)
O1—Cd1—N2112.22 (15)
O7—C12—C13—O60.2 (12)O9—C14—C15—O80.0 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H7···O8i0.83 (8)2.03 (6)2.770 (5)148 (10)
O10—H6···O60.83 (3)1.92 (3)2.749 (6)171 (7)
O3—H3···O90.81 (3)1.88 (3)2.685 (5)179 (6)
O4—H4···O8ii0.82 (3)1.86 (3)2.662 (5)168 (7)
O5—H5···O10iii0.86 (9)1.85 (4)2.690 (6)164 (9)
O1—H1···O7iv0.78 (3)1.83 (7)2.614 (6)177 (8)
O2—H2···O60.77 (3)1.89 (3)2.658 (6)176 (6)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+2; (iii) x, y+1, z; (iv) x, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds