Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The molecule of the title complex, [Rh(5-NO2trop)(C18H15P)(CO)] (5-­NO2trop is 2-hydroxy-5-nitrocyclo­hepta-2,4,6-trienone, C7H4NO4), has a distorted square-planar geometry. Strong intramolecular and weak intermolecular hydrogen bonding is observed, with H...O distances of the order of 2.25 and 2.55 Å, respectively. The Rh—CO, Rh—O (trans to CO), Rh—O (trans to P) and Rh—P bond distances are 1.775 (7), 2.072 (4), 2.068 (4) and 2.2397 (17) Å, respectively, the O—Rh—O angle is 77.09 (16)° and the bidentate O—C—C—O torsion angle is 1.5 (7)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104011102/fa1061sup1.cif
Contains datablocks I, rhno21

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104011102/fa1061Isup2.hkl
Contains datablock I

CCDC reference: 245856

Comment top

Although 5-nitrotropolone-type compounds are known for main group elements (Kubo et al., 2001a, 2001b; Dittes et al., 1996), very few transition metal complexes have been investigated to date. As part of our investigation into the role of functionalized tropolones (Steyl & Roodt, 2003) in rhodium(I) complexes, we present the first crystal structure of 5-nitrotropolone to be characterized for a transition group element.

The title compound, (I), crystallizes in the triclinic space group P1, with Rh—O bond distances of 2.072 (4) and 2.068 (4) Å, and an O—Rh—O bite angle of 77.09 (16)°. The effective and Tolman angles observed for the triphenylphosphine ligand, 159 and 155°, respectively, correspond well to observed cone angles (Tolman, 1977; Simanko et al., 2000). The carbonyl C atom is slightly displaced by 0.299 (7) Å above the plane defined by atoms Rh, P1, O12 and O11. The shortest intermolecular contact [H36···H13(x − 1, y, z) = 2.504 (1) Å] illustrates the generally efficient packing in the unit cell. However, high anisotropy is observed for the nitro moiety lying on the periphery of the molecule and is considered to be the result of locally weak packing forces allowing for high flexibility of the nitro group.

Intramolecular hydrogen bonding is observed between the nitro moiety and the troponoid H atoms (C6—H6.·O51 and C4—H4.·O52; see Table 2]. A further weak intramolecular hydrogen-bonding interaction is observed (C36—H36.·O11). A clearly defined bifurcated hydrogen bond is observed [C34—H34···O12(x, 1 + y, z)/O51(1 + x, 1 + y, z)], with the H atom lying in the plane defined by the donor/acceptor atoms (see Fig. 2). The carbonyl O atom is involved in two weak intermolecular hydrogen bonds, C6—H6.·O01(x − 1, y, z) and C33—H33.·O01 (x, 1 + y, z), which might be the cause of the slight deviation from linearity of the Rh—C—O moiety [bond angle = 175.4 (5)°].

Of further interest is the similarity of the Rh—O bond distances (Table 1), in spite of the presence of different trans moieties (P versus CO); this configuration is similar to that? generally observed in square planar rhodium(I) complexes (Leipoldt et al., 1980; Steyl et al., 2001). The distortion from square planar geometry can, in part, be attributed to the strong symmetry observed in the functionalized tropolone (O12—C2 and O11—C1) bond distances (Gilli et al., 1989; Bertolasi et al., 1991), as well as the out-of-plane distortion of the carbonyl moiety (O1/C1/Rh; Table 1). Strong hydrogen-bonding interactions are observed for the PhNO2 group, with closely related torsion angles for the C4—C5—N5—O52 moiety of (I). A host of nitrophenyl compounds have been characterized in the solid state, and of particular interest are the similarities between these nitrophenyl compounds (Andre et al., 1997a; Andre et al., 1997b) and (I) in the nitro moiety conformation, confirming the `aromatic' nature of the troponoid system.

In conclusion, the observed symmetry in the nitrotropolone moiety is attributed to both strong intramolecular and weak intermolecular hydrogen bonding with neighbouring nitrotropolone moieties. This is probably the cause of the distorted square planar geometry at the rhodium metal center.

Experimental top

The title compound, (I), was synthesized by dissolving [Rh(TropNO2)(CO)2] (10 mg, 0.031 mmol) in the minimum amount of hexane (40 ml), adding 1.1 equivalents of PPh3 (9 mg, 0.034) and allowing crystallization to occur under slow evaporation (ca 1 d). νCO: 1983 cm−1; 1H NMR (CDCl3, 300 MHz): 8.2 (m); 31P NMR (CDCl3, 121.497 MHz): 49.197 (d) 1J(Rh—P) 173.9 Hz.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) values of 1.2Ueq of the parent atom.

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and XPREP (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. : The structure of (I), showing the atom numbering scheme and displacement ellipsoids at the 30% probability level. For clarity, only selected atoms have been numbered. For the C atoms, the first digit indicates the ring number, and the second the atom number in the ring.
[Figure 2] Fig. 2. : Part of the unit cell of (I), showing the intra- and intermolecular hydrogen bonding. Selected phenyl ring atoms have been omitted for clarity. [Symmetry codes: (i) x, 1 + y, z; (ii) 1 + x, 1 + y, z.]
Carbonyl(5-nitrotropolonato-κ2O1,O2)(triphenylphosphine-κP)rhodium(I) top
Crystal data top
[Rh(C7H4NO4)(C18H15P)(CO)]Z = 2
Mr = 559.30F(000) = 564
Triclinic, P1Dx = 1.592 Mg m3
Dm = 1.60 Mg m3
Dm measured by Flotation in aqueous KI
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.3078 (19) ÅCell parameters from 1631 reflections
b = 10.329 (2) Åθ = 2–21°
c = 12.898 (3) ŵ = 0.84 mm1
α = 93.51 (3)°T = 293 K
β = 105.33 (3)°Plate, brown
γ = 100.75 (3)°0.17 × 0.11 × 0.05 mm
V = 1166.9 (5) Å3
Data collection top
Brukr SMART CCD 1K area detector
diffractometer
3988 independent reflections
Radiation source: fine-focus sealed tube2582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 8.5 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 128
Tmin = 0.871, Tmax = 0.959l = 1515
7136 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0469P)2]
where P = (Fo2 + 2Fc2)/3
3988 reflections(Δ/σ)max = 0.002
307 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Rh(C7H4NO4)(C18H15P)(CO)]γ = 100.75 (3)°
Mr = 559.30V = 1166.9 (5) Å3
Triclinic, P1Z = 2
a = 9.3078 (19) ÅMo Kα radiation
b = 10.329 (2) ŵ = 0.84 mm1
c = 12.898 (3) ÅT = 293 K
α = 93.51 (3)°0.17 × 0.11 × 0.05 mm
β = 105.33 (3)°
Data collection top
Brukr SMART CCD 1K area detector
diffractometer
3988 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2582 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.959Rint = 0.050
7136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.00Δρmax = 0.55 e Å3
3988 reflectionsΔρmin = 0.59 e Å3
307 parameters
Special details top

Experimental. First 80 frames repeated after collection for monitoring possible decay.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh0.67529 (5)0.03586 (4)0.72435 (4)0.04218 (18)
P10.79140 (15)0.22016 (13)0.83881 (11)0.0360 (3)
O120.5576 (5)0.1251 (4)0.6111 (3)0.0623 (11)
O110.4530 (4)0.0629 (4)0.6871 (3)0.0540 (10)
C310.7541 (6)0.3714 (5)0.7798 (4)0.0397 (13)
O010.9579 (5)0.0657 (4)0.7787 (5)0.0920 (16)
C110.9984 (6)0.2449 (5)0.8844 (4)0.0373 (13)
C260.6957 (6)0.1187 (5)1.0091 (4)0.0494 (15)
H260.68950.03630.97300.059*
C161.0790 (6)0.2496 (6)0.9905 (5)0.0531 (16)
H161.02860.24681.04400.064*
C010.8490 (7)0.0204 (6)0.7566 (5)0.0601 (17)
C10.3522 (7)0.0335 (5)0.6287 (4)0.0474 (14)
C320.8688 (6)0.4798 (5)0.7821 (4)0.0489 (15)
H320.96950.47810.81680.059*
C210.7379 (5)0.2333 (5)0.9647 (4)0.0399 (13)
C220.7433 (6)0.3544 (6)1.0182 (4)0.0482 (15)
H220.77010.43190.98820.058*
C330.8349 (7)0.5906 (5)0.7334 (5)0.0556 (16)
H330.91230.66300.73550.067*
C121.0781 (6)0.2508 (5)0.8069 (5)0.0536 (16)
H121.02490.24710.73440.064*
C360.6041 (6)0.3766 (6)0.7272 (4)0.0501 (15)
H360.52590.30430.72370.060*
C250.6627 (7)0.1272 (7)1.1080 (5)0.0660 (19)
H250.63630.05021.13860.079*
C60.0698 (8)0.1302 (7)0.5591 (5)0.0720 (19)
H60.02230.10910.56140.086*
C50.0570 (9)0.2485 (7)0.5033 (5)0.067 (2)
O520.1209 (7)0.4346 (6)0.4023 (5)0.121 (2)
C30.3247 (8)0.2565 (6)0.5166 (4)0.0625 (18)
H30.38130.30990.49140.075*
O510.2082 (8)0.2774 (8)0.4646 (6)0.135 (3)
N50.1016 (9)0.3272 (8)0.4540 (5)0.092 (2)
C70.1975 (7)0.0355 (6)0.6134 (5)0.0641 (17)
H70.17710.03980.64520.077*
C151.2361 (7)0.2586 (7)1.0190 (5)0.072 (2)
H151.29010.26051.09110.087*
C131.2325 (7)0.2619 (6)0.8346 (6)0.0618 (17)
H131.28370.26770.78160.074*
C240.6688 (8)0.2468 (7)1.1601 (5)0.0661 (18)
H240.64540.25121.22580.079*
C40.1689 (9)0.3047 (7)0.4814 (5)0.070 (2)
H40.13640.38530.43730.085*
C20.4129 (8)0.1408 (5)0.5840 (4)0.0503 (15)
C141.3106 (7)0.2645 (7)0.9400 (6)0.072 (2)
H141.41540.27030.95880.087*
C230.7090 (7)0.3615 (6)1.1170 (5)0.0591 (17)
H230.71330.44341.15340.071*
C340.6858 (8)0.5925 (6)0.6819 (5)0.0605 (17)
H340.66300.66580.64770.073*
C350.5703 (7)0.4875 (6)0.6805 (5)0.0595 (17)
H350.46960.49130.64800.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh0.0440 (3)0.0401 (3)0.0419 (3)0.0078 (2)0.0126 (2)0.00090 (19)
P10.0310 (8)0.0376 (8)0.0399 (8)0.0056 (6)0.0117 (7)0.0051 (6)
O120.059 (3)0.055 (3)0.064 (3)0.015 (2)0.006 (2)0.016 (2)
O110.045 (2)0.046 (2)0.063 (3)0.010 (2)0.004 (2)0.007 (2)
C310.042 (3)0.041 (3)0.038 (3)0.008 (3)0.015 (3)0.000 (3)
O010.063 (3)0.063 (3)0.153 (5)0.027 (3)0.028 (3)0.005 (3)
C110.032 (3)0.038 (3)0.040 (3)0.004 (2)0.010 (3)0.001 (3)
C260.057 (4)0.038 (3)0.053 (4)0.003 (3)0.019 (3)0.011 (3)
C160.039 (4)0.074 (4)0.050 (4)0.017 (3)0.017 (3)0.004 (3)
C010.057 (4)0.042 (4)0.083 (5)0.012 (3)0.021 (4)0.003 (3)
C10.045 (4)0.041 (4)0.046 (3)0.004 (3)0.001 (3)0.007 (3)
C320.044 (4)0.047 (4)0.054 (4)0.007 (3)0.014 (3)0.005 (3)
C210.026 (3)0.048 (4)0.043 (3)0.000 (2)0.010 (3)0.005 (3)
C220.048 (4)0.044 (4)0.053 (4)0.001 (3)0.025 (3)0.004 (3)
C330.063 (4)0.037 (4)0.065 (4)0.002 (3)0.018 (4)0.008 (3)
C120.037 (3)0.064 (4)0.060 (4)0.006 (3)0.016 (3)0.014 (3)
C360.038 (3)0.054 (4)0.057 (4)0.008 (3)0.014 (3)0.006 (3)
C250.084 (5)0.064 (5)0.060 (4)0.013 (4)0.034 (4)0.026 (4)
C60.056 (5)0.080 (5)0.065 (5)0.004 (4)0.000 (4)0.002 (4)
C50.073 (5)0.070 (5)0.033 (4)0.022 (4)0.005 (4)0.013 (4)
O520.120 (5)0.090 (4)0.099 (4)0.046 (4)0.011 (4)0.005 (4)
C30.086 (5)0.050 (4)0.041 (4)0.008 (4)0.007 (4)0.013 (3)
O510.076 (5)0.164 (7)0.125 (6)0.044 (5)0.010 (4)0.006 (5)
N50.090 (6)0.095 (6)0.051 (4)0.045 (5)0.007 (4)0.016 (4)
C70.048 (4)0.061 (4)0.069 (4)0.007 (3)0.002 (4)0.010 (3)
C150.049 (4)0.103 (6)0.059 (4)0.023 (4)0.002 (4)0.004 (4)
C130.040 (4)0.070 (4)0.078 (5)0.005 (3)0.025 (4)0.002 (4)
C240.087 (5)0.073 (5)0.047 (4)0.020 (4)0.031 (4)0.010 (4)
C40.094 (6)0.053 (4)0.035 (4)0.020 (4)0.004 (4)0.008 (3)
C20.072 (5)0.038 (3)0.033 (3)0.006 (3)0.006 (3)0.001 (3)
C140.031 (4)0.087 (5)0.097 (6)0.017 (3)0.013 (4)0.000 (4)
C230.065 (4)0.057 (4)0.055 (4)0.006 (3)0.023 (3)0.008 (3)
C340.072 (5)0.045 (4)0.066 (4)0.020 (4)0.016 (4)0.015 (3)
C350.047 (4)0.059 (4)0.073 (4)0.019 (3)0.010 (3)0.012 (4)
Geometric parameters (Å, º) top
Rh—C011.775 (7)C12—H120.9300
Rh—O122.068 (4)C36—C351.376 (7)
Rh—O112.072 (4)C36—H360.9300
Rh—P12.2397 (17)C25—C241.354 (8)
P1—C111.823 (5)C25—H250.9300
P1—C211.824 (5)C6—C51.349 (9)
P1—C311.830 (5)C6—C71.379 (8)
O12—C21.274 (7)C6—H60.9300
O11—C11.275 (6)C5—C41.365 (9)
C31—C321.388 (7)C5—N51.496 (9)
C31—C361.395 (7)O52—N51.217 (9)
O01—C011.170 (6)C3—C41.382 (9)
C11—C161.369 (7)C3—C21.410 (7)
C11—C121.391 (7)C3—H30.9300
C26—C211.383 (7)O51—N51.234 (9)
C26—C251.390 (8)C7—H70.9300
C26—H260.9300C15—C141.375 (8)
C16—C151.393 (7)C15—H150.9300
C16—H160.9300C13—C141.357 (8)
C1—C71.397 (8)C13—H130.9300
C1—C21.486 (8)C24—C231.370 (8)
C32—C331.386 (7)C24—H240.9300
C32—H320.9300C4—H40.9300
C21—C221.377 (7)C14—H140.9300
C22—C231.396 (7)C23—H230.9300
C22—H220.9300C34—C351.372 (8)
C33—C341.375 (8)C34—H340.9300
C33—H330.9300C35—H350.9300
C12—C131.367 (7)
C01—Rh—O1294.6 (2)C31—C36—H36119.6
C01—Rh—O11168.7 (2)C24—C25—C26120.4 (5)
O12—Rh—O1177.09 (16)C24—C25—H25119.8
C01—Rh—P189.3 (2)C26—C25—H25119.8
O12—Rh—P1175.38 (13)C5—C6—C7130.4 (7)
O11—Rh—P199.41 (12)C5—C6—H6114.8
C11—P1—C21103.5 (2)C7—C6—H6114.8
C11—P1—C31105.0 (2)C6—C5—C4128.9 (7)
C21—P1—C31103.8 (2)C6—C5—N5116.1 (8)
C11—P1—Rh114.45 (17)C4—C5—N5114.9 (8)
C21—P1—Rh116.08 (17)C4—C3—C2131.5 (7)
C31—P1—Rh112.74 (18)C4—C3—H3114.3
C2—O12—Rh115.5 (4)C2—C3—H3114.3
C1—O11—Rh115.6 (4)O52—N5—O51122.7 (8)
C32—C31—C36118.4 (5)O52—N5—C5119.3 (9)
C32—C31—P1123.0 (4)O51—N5—C5117.9 (9)
C36—C31—P1118.5 (4)C6—C7—C1130.9 (7)
C16—C11—C12118.1 (5)C6—C7—H7114.6
C16—C11—P1123.4 (4)C1—C7—H7114.6
C12—C11—P1118.4 (4)C14—C15—C16119.6 (6)
C21—C26—C25119.8 (6)C14—C15—H15120.2
C21—C26—H26120.1C16—C15—H15120.2
C25—C26—H26120.1C14—C13—C12119.6 (6)
C11—C16—C15120.5 (5)C14—C13—H13120.2
C11—C16—H16119.7C12—C13—H13120.2
C15—C16—H16119.7C25—C24—C23120.8 (6)
O01—C01—Rh175.4 (5)C25—C24—H24119.6
O11—C1—C7120.4 (6)C23—C24—H24119.6
O11—C1—C2115.0 (5)C5—C4—C3127.9 (6)
C7—C1—C2124.5 (6)C5—C4—H4116.0
C33—C32—C31120.8 (5)C3—C4—H4116.0
C33—C32—H32119.6O12—C2—C3118.6 (6)
C31—C32—H32119.6O12—C2—C1115.8 (5)
C22—C21—C26119.3 (5)C3—C2—C1125.6 (6)
C22—C21—P1121.7 (4)C13—C14—C15120.5 (6)
C26—C21—P1119.0 (4)C13—C14—H14119.7
C21—C22—C23120.3 (5)C15—C14—H14119.7
C21—C22—H22119.8C24—C23—C22119.4 (6)
C23—C22—H22119.8C24—C23—H23120.3
C34—C33—C32119.4 (5)C22—C23—H23120.3
C34—C33—H33120.3C33—C34—C35120.8 (6)
C32—C33—H33120.3C33—C34—H34119.6
C13—C12—C11121.7 (6)C35—C34—H34119.6
C13—C12—H12119.2C36—C35—C34119.8 (6)
C11—C12—H12119.2C36—C35—H35120.1
C35—C36—C31120.7 (5)C34—C35—H35120.1
C35—C36—H36119.6
C01—Rh—P1—C1112.3 (3)P1—C21—C22—C23176.8 (4)
O11—Rh—P1—C11175.0 (2)C31—C32—C33—C340.2 (9)
C01—Rh—P1—C21108.2 (3)C16—C11—C12—C130.5 (8)
O11—Rh—P1—C2164.5 (2)P1—C11—C12—C13176.4 (5)
C01—Rh—P1—C31132.2 (3)C32—C31—C36—C351.1 (8)
O11—Rh—P1—C3155.0 (2)P1—C31—C36—C35179.3 (4)
C01—Rh—O12—C2164.2 (4)C21—C26—C25—C241.3 (10)
O11—Rh—O12—C28.1 (4)C7—C6—C5—C43.2 (12)
C01—Rh—O11—C134.3 (13)C7—C6—C5—N5180.0 (6)
O12—Rh—O11—C19.0 (3)C6—C5—N5—O52179.7 (6)
P1—Rh—O11—C1174.1 (3)C4—C5—N5—O522.4 (9)
C11—P1—C31—C324.6 (5)C6—C5—N5—O512.2 (9)
C21—P1—C31—C32103.7 (5)C4—C5—N5—O51175.1 (7)
Rh—P1—C31—C32129.8 (4)C5—C6—C7—C11.1 (12)
C11—P1—C31—C36173.5 (4)O11—C1—C7—C6176.5 (6)
C21—P1—C31—C3678.2 (5)C2—C1—C7—C61.3 (10)
Rh—P1—C31—C3648.2 (5)C11—C16—C15—C140.9 (10)
C21—P1—C11—C169.1 (5)C11—C12—C13—C141.4 (9)
C31—P1—C11—C16117.6 (5)C26—C25—C24—C230.7 (10)
Rh—P1—C11—C16118.2 (4)C6—C5—C4—C34.0 (11)
C21—P1—C11—C12175.2 (4)N5—C5—C4—C3179.1 (6)
C31—P1—C11—C1266.7 (5)C2—C3—C4—C50.9 (11)
Rh—P1—C11—C1257.5 (4)Rh—O12—C2—C3172.9 (4)
C12—C11—C16—C150.7 (8)Rh—O12—C2—C16.3 (6)
P1—C11—C16—C15175.0 (5)C4—C3—C2—O12174.4 (6)
Rh—O11—C1—C7169.5 (4)C4—C3—C2—C14.8 (10)
Rh—O11—C1—C28.5 (6)O11—C1—C2—O121.5 (7)
C36—C31—C32—C330.0 (8)C7—C1—C2—O12176.4 (5)
P1—C31—C32—C33178.1 (4)O11—C1—C2—C3179.3 (5)
C25—C26—C21—C221.4 (8)C7—C1—C2—C32.7 (9)
C25—C26—C21—P1176.5 (4)C12—C13—C14—C151.3 (10)
C11—P1—C21—C2282.7 (5)C16—C15—C14—C130.1 (10)
C31—P1—C21—C2226.7 (5)C25—C24—C23—C220.3 (10)
Rh—P1—C21—C22151.0 (4)C21—C22—C23—C240.4 (9)
C11—P1—C21—C2695.1 (4)C32—C33—C34—C351.5 (9)
C31—P1—C21—C26155.4 (4)C31—C36—C35—C342.4 (9)
Rh—P1—C21—C2631.1 (5)C33—C34—C35—C362.6 (10)
C26—C21—C22—C231.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C36—H36···O110.932.443.234 (7)143
C6—H6···O510.932.252.671 (9)107
C4—H4···O520.932.272.673 (9)106
C33—H33···O01i0.932.753.483 (7)136
C34—H34···O12i0.932.553.438 (7)159
C34—H34···O51ii0.932.963.473 (9)116
C6—H6···O01iii0.932.873.337 (9)112
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Rh(C7H4NO4)(C18H15P)(CO)]
Mr559.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3078 (19), 10.329 (2), 12.898 (3)
α, β, γ (°)93.51 (3), 105.33 (3), 100.75 (3)
V3)1166.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.17 × 0.11 × 0.05
Data collection
DiffractometerBrukr SMART CCD 1K area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.871, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
7136, 3988, 2582
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.107, 1.00
No. of reflections3988
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.59

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SAINT-Plus and XPREP (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Berndt, 2001), SHELXL97.

Selected geometric parameters (Å, º) top
Rh—C011.775 (7)O11—C11.275 (6)
Rh—O122.068 (4)O01—C011.170 (6)
Rh—O112.072 (4)C5—N51.496 (9)
Rh—P12.2397 (17)O52—N51.217 (9)
O12—C21.274 (7)O51—N51.234 (9)
C01—Rh—O1294.6 (2)O12—Rh—P1175.38 (13)
C01—Rh—O11168.7 (2)O11—Rh—P199.41 (12)
O12—Rh—O1177.09 (16)O01—C01—Rh175.4 (5)
C01—Rh—P189.3 (2)O52—N5—O51122.7 (8)
C4—C5—N5—O522.4 (9)O11—C1—C2—O121.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C36—H36···O110.932.443.234 (7)143
C6—H6···O510.932.252.671 (9)107
C4—H4···O520.932.272.673 (9)106
C33—H33···O01i0.932.753.483 (7)136
C34—H34···O12i0.932.553.438 (7)159
C34—H34···O51ii0.932.963.473 (9)116
C6—H6···O01iii0.932.873.337 (9)112
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds