Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Biguanidium tris­(biguanide-κ2N2,N4)­manganese(IV) hexanitrate, (C2H9N5)[Mn(C2H7N5)3](NO3)6, is a cocrystal of the [MnIV(C2H7N5)3]4+ ion and biguanidium. The cocrystal exhibits a double hydrogen-bonding interaction between the biguanide and nitrate groups, which is rarely observed in crystal structures but is proposed as a recognition mode for guanidinium-recognizing anionic groups in biological systems. In this cocrystal structure, biguanide moieties exist both as divalent cations and as neutral mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103024892/fa1036sup1.cif
Contains datablocks I, llp6

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103024892/fa1036Isup2.hkl
Contains datablock I

CCDC reference: 220534

Comment top

Das et al.(2001) reported the synthesis and crystal structure of [MnIV(C2H7N5)3]4+, a rare stable mononuclear complex of manganese(IV) in aqueous solution. We have also encountered this cation, but in crystals in which it coexists with biguanide, forming a complex structure of overall formula [Mn(C2H7N5)3][C2H9N5](NO3)6, which can be viewed as a mixture of [Mn(C2H7N5)3](NO3)4 and [C2H9N5]·(NO3)2. In this complex, (I), we find a double hydrogen-bonding interaction between the biguanide and nitrate groups, which has rarely been observed in crystal structures but which is proposed as a molecular recognition mode for guanidinium group-recognizing anionic entities, such as carboxylates, phosphates, sulfates and nitrates, in biological systems (Baggio et al., 1997; Liu et al., 2001; Lu et al., 2001; Best et al., 2003). We report here the structural characterization of (I).

A single-crystal of the complex was prepared according to the procedure described by Das et al. (2001). However, not only is the stoichiometry of our crystal different from that of Das et al., but the quality of the crystal is also much improved. The R value [0.0455] for the present structure, with the triclinic space group P1, is better than that (0.0943) of the previously reported monoclinic crystal, with space group I2/a (Das et al., 2001).

The geometric parameters of (I) are listed in Table 1 and the molecular conformation is illustrated in Fig.1. The crystal structure of [Mn(C2H7N5)3][C2H9N5](NO3)6 consists of three different chemical moieties, namely the [MnIV(C2H7N5)3]4+ cation, the [C2H9N5]2+ cation and six nitrate anions (Fig. 1). The [MnIV(C2H7N5)3]4+ cation is similar to that reported by Das et al. In the complex tetracation, six N atoms from three neutral biguanide moieties coordinate to MnIV, forming an octahedron. The Mn—N bonds range from 1.918 (2)–1.952 (2) Å. The bite angles of the biguanide ligands at MnIV are 86.43 (10)° for N4—Mn1—N1, 85.68 (10)° for N11—Mn1—N14 and 84.30 (10)° for N9—Mn1—N6. The free biguanide moieties exist in the form of divalent cations, with charge balance achieved by six nitrate anions. Thus two forms of biguanide moieties, viz. divalent cations and neutral molecules (as ligands), are present in the crystal. There are hydrogen bonds between all biguanide and nitrate groups (Table 2). The biguanides, whether coordinated to Mn4+ (neutral) or free (divalent cations), interact with nitrates through strong double hydrogen bonds. In the double hydrogen bonds (Fig.2), the D···A distances are between 2.820 (3) and 2.906 (3) Å, forming an elongated hexagon that was suggested for guanidinium group-recognizing anions such as amino acids (Galán, 1992; Kanyo et al., 1996; Metzger et al., 1996) and nucleotides (Andreu et al., 1994; Kato et al., 1994; Lu et al., 2001; Schliessl & Schmidtchen, 1994). In previous reports, the guanidinium group, present in the side chain of the amino acid arginine, being a vital component of enzymatic catalytic domains that participate in the binding of anionic substrates (Christianson & Lipscomb, 1989; Cotton et al., 1979), attracted great attention. An array of receptors containing guanidinium groups for the purpose of binding anions has been designed and synthesized (Best et al., 2003). It has been proven that a strong interaction between the guanidinium groups and anions through charge pairing and hydrogen bonding facilitates the recognition of small target anions by receptors containing guanidinium groups in competitive solvent systems (Best et al., 2003), but few crystal structure studies have been reported to date. Our result provides direct crystallographic evidence for this interaction.

Experimental top

The complex was prepared according to the procedure reported by Das et al. (2001).

Refinement top

H atoms attached to N atoms of (I) were found in a difference map but were placed in idealized positions (N—H = 0.88 Å) and constrained to ride on their parent atoms [Uiso(H) = 1.2Ueq(N)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. The structure of [Mn(C2H7N5)3][C2H9N5](NO3)6 with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. The double hydrogen-bonding of biguanide group-recognizing anions. [Symmetry codes: (A) x + 1,y,z; (B) x − 1,y,z.]
Tribiguanidomanganese(iV) biguuanidium hexanitrate top
Crystal data top
(C2H9N5)[Mn(C2H7N5)3](NO3)6Z = 2
Mr = 833.52F(000) = 858
Triclinic, P1Dx = 1.811 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4222 (19) ÅCell parameters from 2688 reflections
b = 12.803 (3) Åθ = 2.4–26.5°
c = 14.452 (3) ŵ = 0.55 mm1
α = 105.673 (2)°T = 184 K
β = 104.037 (2)°Block, red
γ = 104.891 (2)°0.25 × 0.20 × 0.20 mm
V = 1528.3 (5) Å3
Data collection top
SMART 1K CCD area-detector
diffractometer
5274 independent reflections
Radiation source: fine-focus sealed tube4160 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1111
Tmin = 0.874, Tmax = 0.898k = 1515
6316 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
5274 reflections(Δ/σ)max < 0.001
479 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
(C2H9N5)[Mn(C2H7N5)3](NO3)6γ = 104.891 (2)°
Mr = 833.52V = 1528.3 (5) Å3
Triclinic, P1Z = 2
a = 9.4222 (19) ÅMo Kα radiation
b = 12.803 (3) ŵ = 0.55 mm1
c = 14.452 (3) ÅT = 184 K
α = 105.673 (2)°0.25 × 0.20 × 0.20 mm
β = 104.037 (2)°
Data collection top
SMART 1K CCD area-detector
diffractometer
5274 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4160 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.898Rint = 0.022
6316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 0.98Δρmax = 0.41 e Å3
5274 reflectionsΔρmin = 0.55 e Å3
479 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.26973 (5)0.33181 (4)0.13314 (3)0.01802 (14)
N10.1220 (3)0.3343 (2)0.20574 (18)0.0203 (6)
H10.02760.28420.17000.024*
N20.0191 (3)0.3822 (2)0.3351 (2)0.0286 (6)
H2A0.07250.32920.29720.034*
H2B0.03350.42580.39750.034*
N30.2738 (3)0.4796 (2)0.36239 (19)0.0262 (6)
H30.27430.52120.42200.031*
N40.4211 (3)0.4511 (2)0.25510 (18)0.0209 (6)
H40.51500.47440.25100.025*
N50.5320 (3)0.5868 (2)0.41870 (19)0.0306 (7)
H5A0.62360.60770.41090.037*
H5B0.52050.62050.47670.037*
C10.1359 (3)0.3964 (3)0.2980 (2)0.0220 (7)
C20.4118 (3)0.5047 (2)0.3433 (2)0.0224 (7)
N60.2130 (3)0.4427 (2)0.07551 (18)0.0207 (6)
H60.18750.49580.11410.025*
N70.1430 (3)0.5095 (2)0.0566 (2)0.0289 (6)
H7A0.09840.55220.02380.035*
H7B0.14370.50860.11760.035*
N80.2746 (3)0.3816 (2)0.07158 (19)0.0227 (6)
H80.23860.36240.13830.027*
N90.4186 (3)0.3410 (2)0.06021 (18)0.0200 (6)
H90.51180.34210.09160.024*
N100.4771 (3)0.3199 (2)0.0892 (2)0.0293 (6)
H10A0.55600.29840.06610.035*
H10B0.45470.32430.15050.035*
C30.2091 (3)0.4462 (2)0.0140 (2)0.0211 (7)
C40.3917 (3)0.3457 (2)0.0315 (2)0.0217 (7)
N110.3346 (3)0.2140 (2)0.17085 (19)0.0199 (5)
H110.37010.22680.23660.024*
N120.4179 (3)0.0574 (2)0.1385 (2)0.0266 (6)
H12A0.48140.08250.20180.032*
H12B0.41180.00760.09430.032*
N130.2369 (3)0.0721 (2)0.00952 (18)0.0199 (6)
H130.25550.01740.03250.024*
N140.1098 (3)0.2058 (2)0.01792 (18)0.0193 (5)
H140.02190.21720.00540.023*
N150.0056 (3)0.0296 (2)0.11539 (19)0.0237 (6)
H15A0.07620.04630.14220.028*
H15B0.01400.03710.14530.028*
C50.1165 (3)0.1053 (2)0.0297 (2)0.0186 (6)
C60.3314 (3)0.1175 (2)0.1098 (2)0.0194 (7)
N160.0987 (3)0.8390 (2)0.5659 (2)0.0270 (6)
H16A0.02490.83840.59340.032*
H16B0.18770.83580.59980.032*
N170.0553 (3)0.8495 (2)0.4233 (2)0.0298 (6)
H17A0.12990.84900.45000.036*
H17B0.06920.85330.36200.036*
N180.1872 (3)0.8458 (2)0.42912 (19)0.0246 (6)
H180.15740.83630.36390.030*
N190.4153 (3)0.9236 (2)0.57026 (19)0.0261 (6)
H19A0.51430.93350.59760.031*
H19B0.36670.95630.60770.031*
N200.4079 (3)0.8099 (2)0.4155 (2)0.0263 (6)
H20A0.50680.81830.44070.032*
H20B0.35470.76770.35090.032*
C70.0760 (3)0.8447 (3)0.4745 (2)0.0225 (7)
C80.3404 (3)0.8600 (3)0.4737 (2)0.0222 (7)
N210.7110 (3)0.2101 (2)0.0802 (2)0.0244 (6)
O10.7321 (3)0.30816 (18)0.13895 (16)0.0307 (5)
O20.5951 (2)0.16052 (19)0.00081 (17)0.0327 (6)
O30.8082 (2)0.16062 (18)0.10169 (18)0.0318 (6)
N220.6568 (3)0.3131 (2)0.3958 (2)0.0245 (6)
O40.6754 (2)0.25013 (19)0.32034 (16)0.0310 (5)
O50.7708 (2)0.3715 (2)0.47552 (17)0.0349 (6)
O60.5238 (2)0.31558 (19)0.39233 (17)0.0301 (5)
N230.8362 (3)0.5831 (2)0.3120 (2)0.0309 (7)
O70.7125 (3)0.5779 (2)0.24814 (18)0.0402 (6)
O80.9560 (3)0.5959 (2)0.28914 (19)0.0427 (6)
O90.8314 (3)0.5750 (2)0.39474 (18)0.0437 (6)
N240.7762 (3)0.8825 (2)0.6299 (2)0.0265 (6)
O100.7169 (2)0.9387 (2)0.68310 (17)0.0340 (6)
O110.8824 (3)0.8512 (2)0.66983 (18)0.0371 (6)
O120.7287 (3)0.8562 (2)0.53412 (17)0.0416 (6)
N250.1679 (3)0.7363 (2)0.1652 (2)0.0252 (6)
O130.2391 (3)0.67981 (19)0.20335 (17)0.0341 (6)
O140.1249 (3)0.8077 (2)0.21814 (17)0.0352 (6)
O150.1383 (3)0.7204 (2)0.07225 (17)0.0339 (6)
N260.2725 (3)0.0783 (2)0.7437 (2)0.0306 (7)
O160.1725 (3)0.1214 (2)0.76133 (18)0.0399 (6)
O170.3379 (3)0.1043 (2)0.68261 (18)0.0380 (6)
O180.3074 (3)0.0120 (2)0.78622 (19)0.0491 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0186 (2)0.0161 (2)0.0171 (3)0.00619 (19)0.0036 (2)0.00460 (19)
N10.0160 (12)0.0194 (13)0.0203 (14)0.0044 (11)0.0029 (11)0.0039 (11)
N20.0258 (14)0.0309 (16)0.0235 (15)0.0063 (12)0.0106 (13)0.0022 (12)
N30.0233 (14)0.0270 (15)0.0186 (14)0.0052 (12)0.0060 (12)0.0023 (12)
N40.0169 (13)0.0203 (14)0.0227 (14)0.0053 (11)0.0054 (12)0.0055 (11)
N50.0240 (14)0.0298 (16)0.0224 (15)0.0025 (13)0.0029 (13)0.0037 (13)
C10.0238 (16)0.0211 (17)0.0224 (17)0.0122 (14)0.0053 (15)0.0075 (14)
C20.0241 (16)0.0160 (16)0.0229 (17)0.0064 (14)0.0042 (15)0.0040 (14)
N60.0230 (13)0.0181 (13)0.0217 (14)0.0101 (11)0.0066 (12)0.0059 (11)
N70.0365 (16)0.0333 (16)0.0256 (15)0.0219 (14)0.0104 (14)0.0147 (13)
N80.0260 (14)0.0255 (14)0.0155 (13)0.0114 (12)0.0029 (12)0.0069 (11)
N90.0170 (13)0.0232 (14)0.0191 (14)0.0076 (11)0.0037 (11)0.0078 (11)
N100.0299 (15)0.0377 (17)0.0260 (15)0.0169 (13)0.0108 (13)0.0139 (13)
C30.0203 (16)0.0176 (16)0.0225 (17)0.0046 (13)0.0036 (14)0.0076 (13)
C40.0211 (16)0.0139 (15)0.0244 (18)0.0015 (13)0.0057 (14)0.0042 (13)
N110.0245 (13)0.0197 (13)0.0166 (13)0.0097 (11)0.0055 (12)0.0072 (11)
N120.0333 (15)0.0262 (15)0.0198 (14)0.0176 (13)0.0024 (13)0.0062 (12)
N130.0224 (13)0.0192 (13)0.0177 (13)0.0112 (11)0.0051 (12)0.0034 (11)
N140.0168 (12)0.0193 (14)0.0205 (14)0.0070 (11)0.0041 (11)0.0062 (11)
N150.0222 (13)0.0202 (14)0.0219 (14)0.0060 (12)0.0018 (12)0.0037 (12)
C50.0213 (16)0.0195 (16)0.0152 (16)0.0047 (13)0.0074 (14)0.0079 (13)
C60.0167 (15)0.0199 (16)0.0217 (17)0.0048 (13)0.0066 (14)0.0088 (14)
N160.0190 (13)0.0386 (16)0.0272 (16)0.0123 (12)0.0083 (12)0.0147 (13)
N170.0256 (15)0.0407 (17)0.0282 (16)0.0175 (13)0.0086 (13)0.0146 (14)
N180.0237 (14)0.0325 (15)0.0189 (14)0.0120 (12)0.0055 (12)0.0103 (12)
N190.0180 (13)0.0325 (16)0.0249 (15)0.0087 (12)0.0070 (12)0.0061 (13)
N200.0209 (13)0.0307 (15)0.0246 (15)0.0118 (12)0.0050 (12)0.0053 (12)
C70.0232 (17)0.0214 (17)0.0219 (17)0.0093 (14)0.0056 (15)0.0062 (14)
C80.0182 (16)0.0227 (17)0.0266 (18)0.0060 (14)0.0061 (15)0.0124 (15)
N210.0239 (14)0.0228 (15)0.0276 (15)0.0078 (12)0.0096 (13)0.0099 (13)
O10.0390 (13)0.0193 (12)0.0302 (13)0.0113 (11)0.0102 (12)0.0034 (10)
O20.0235 (12)0.0309 (13)0.0328 (14)0.0099 (11)0.0004 (11)0.0028 (11)
O30.0241 (12)0.0226 (12)0.0428 (15)0.0114 (10)0.0008 (11)0.0087 (11)
N220.0288 (15)0.0236 (15)0.0213 (15)0.0107 (13)0.0056 (13)0.0091 (12)
O40.0332 (13)0.0362 (14)0.0209 (12)0.0140 (11)0.0094 (11)0.0039 (10)
O50.0274 (12)0.0375 (14)0.0236 (13)0.0102 (11)0.0024 (11)0.0033 (11)
O60.0237 (12)0.0394 (14)0.0276 (13)0.0154 (11)0.0070 (11)0.0096 (11)
N230.0317 (16)0.0269 (16)0.0299 (17)0.0045 (13)0.0093 (15)0.0100 (13)
O70.0270 (13)0.0558 (17)0.0344 (15)0.0043 (12)0.0036 (12)0.0262 (13)
O80.0346 (14)0.0497 (16)0.0471 (16)0.0138 (12)0.0207 (13)0.0169 (13)
O90.0399 (14)0.0645 (18)0.0314 (15)0.0164 (13)0.0108 (13)0.0268 (13)
N240.0201 (14)0.0284 (15)0.0254 (16)0.0038 (12)0.0045 (13)0.0080 (13)
O100.0301 (13)0.0402 (14)0.0285 (13)0.0184 (11)0.0086 (11)0.0025 (11)
O110.0356 (13)0.0530 (16)0.0350 (14)0.0277 (13)0.0152 (12)0.0195 (12)
O120.0264 (13)0.0694 (18)0.0230 (14)0.0162 (13)0.0061 (11)0.0094 (13)
N250.0241 (14)0.0248 (15)0.0235 (15)0.0080 (12)0.0040 (13)0.0075 (12)
O130.0410 (14)0.0353 (14)0.0264 (13)0.0246 (12)0.0015 (12)0.0090 (11)
O140.0507 (15)0.0371 (14)0.0282 (13)0.0299 (12)0.0157 (12)0.0112 (11)
O150.0425 (14)0.0390 (14)0.0221 (13)0.0208 (12)0.0073 (12)0.0105 (11)
N260.0306 (15)0.0314 (16)0.0209 (15)0.0103 (14)0.0003 (13)0.0035 (13)
O160.0446 (14)0.0576 (17)0.0417 (15)0.0359 (14)0.0257 (13)0.0270 (13)
O170.0395 (14)0.0442 (15)0.0424 (15)0.0189 (12)0.0263 (13)0.0182 (12)
O180.0686 (18)0.0501 (17)0.0371 (15)0.0358 (15)0.0074 (15)0.0230 (14)
Geometric parameters (Å, º) top
Mn1—N41.918 (2)N13—H130.8800
Mn1—N111.924 (2)N14—C51.311 (4)
Mn1—N141.931 (2)N14—H140.8800
Mn1—N11.937 (2)N15—C51.330 (4)
Mn1—N91.947 (2)N15—H15A0.8800
Mn1—N61.952 (2)N15—H15B0.8800
N1—C11.309 (4)N16—C71.311 (4)
N1—H10.8800N16—H16A0.8800
N2—C11.330 (4)N16—H16B0.8800
N2—H2A0.8800N17—C71.304 (4)
N2—H2B0.8800N17—H17A0.8800
N3—C11.362 (4)N17—H17B0.8800
N3—C21.371 (4)N18—C71.364 (4)
N3—H30.8800N18—C81.372 (4)
N4—C21.310 (4)N18—H180.8800
N4—H40.8800N19—C81.312 (4)
N5—C21.321 (4)N19—H19A0.8800
N5—H5A0.8800N19—H19B0.8800
N5—H5B0.8800N20—C81.305 (4)
N6—C31.299 (4)N20—H20A0.8800
N6—H60.8800N20—H20B0.8800
N7—C31.329 (3)N21—O11.245 (3)
N7—H7A0.8800N21—O21.247 (3)
N7—H7B0.8800N21—O31.266 (3)
N8—C41.364 (4)N22—O41.249 (3)
N8—C31.376 (4)N22—O51.250 (3)
N8—H80.8800N22—O61.252 (3)
N9—C41.309 (4)N23—O81.235 (3)
N9—H90.8800N23—O91.239 (3)
N10—C41.328 (4)N23—O71.272 (3)
N10—H10A0.8800N24—O101.240 (3)
N10—H10B0.8800N24—O111.243 (3)
N11—C61.298 (4)N24—O121.265 (3)
N11—H110.8800N25—O141.243 (3)
N12—C61.327 (3)N25—O131.250 (3)
N12—H12A0.8800N25—O151.252 (3)
N12—H12B0.8800N26—O181.239 (3)
N13—C51.362 (3)N26—O161.250 (3)
N13—C61.372 (4)N26—O171.259 (3)
N4—Mn1—N1191.80 (10)Mn1—N11—H11116.5
N4—Mn1—N14175.03 (10)C6—N12—H12A120.0
N11—Mn1—N1485.68 (10)C6—N12—H12B120.0
N4—Mn1—N186.43 (10)H12A—N12—H12B120.0
N11—Mn1—N196.47 (10)C5—N13—C6124.8 (2)
N14—Mn1—N189.59 (10)C5—N13—H13117.6
N4—Mn1—N991.95 (10)C6—N13—H13117.6
N11—Mn1—N987.65 (10)C5—N14—Mn1127.7 (2)
N14—Mn1—N992.22 (10)C5—N14—H14116.1
N1—Mn1—N9175.62 (10)Mn1—N14—H14116.1
N4—Mn1—N692.87 (10)C5—N15—H15A120.0
N11—Mn1—N6170.82 (10)C5—N15—H15B120.0
N14—Mn1—N690.22 (10)H15A—N15—H15B120.0
N1—Mn1—N691.70 (10)N14—C5—N15122.5 (3)
N9—Mn1—N684.30 (10)N14—C5—N13120.6 (3)
C1—N1—Mn1132.2 (2)N15—C5—N13116.8 (3)
C1—N1—H1113.9N11—C6—N12123.3 (3)
Mn1—N1—H1113.9N11—C6—N13120.9 (3)
C1—N2—H2A120.0N12—C6—N13115.8 (3)
C1—N2—H2B120.0C7—N16—H16A120.0
H2A—N2—H2B120.0C7—N16—H16B120.0
C1—N3—C2126.2 (3)H16A—N16—H16B120.0
C1—N3—H3116.9C7—N17—H17A120.0
C2—N3—H3116.9C7—N17—H17B120.0
C2—N4—Mn1132.4 (2)H17A—N17—H17B120.0
C2—N4—H4113.8C7—N18—C8127.3 (3)
Mn1—N4—H4113.8C7—N18—H18116.3
C2—N5—H5A120.0C8—N18—H18116.3
C2—N5—H5B120.0C8—N19—H19A120.0
H5A—N5—H5B120.0C8—N19—H19B120.0
N1—C1—N2122.9 (3)H19A—N19—H19B120.0
N1—C1—N3121.2 (3)C8—N20—H20A120.0
N2—C1—N3115.9 (3)C8—N20—H20B120.0
N4—C2—N5123.0 (3)H20A—N20—H20B120.0
N4—C2—N3121.4 (3)N17—C7—N16120.8 (3)
N5—C2—N3115.5 (3)N17—C7—N18117.3 (3)
C3—N6—Mn1126.6 (2)N16—C7—N18121.9 (3)
C3—N6—H6116.7N20—C8—N19122.0 (3)
Mn1—N6—H6116.7N20—C8—N18117.1 (3)
C3—N7—H7A120.0N19—C8—N18120.8 (3)
C3—N7—H7B120.0O1—N21—O2120.5 (2)
H7A—N7—H7B120.0O1—N21—O3119.5 (3)
C4—N8—C3124.0 (3)O2—N21—O3119.9 (2)
C4—N8—H8118.0O4—N22—O5119.8 (2)
C3—N8—H8118.0O4—N22—O6120.1 (3)
C4—N9—Mn1125.5 (2)O5—N22—O6120.1 (3)
C4—N9—H9117.2O8—N23—O9122.6 (3)
Mn1—N9—H9117.2O8—N23—O7118.9 (3)
C4—N10—H10A120.0O9—N23—O7118.5 (3)
C4—N10—H10B120.0O10—N24—O11120.6 (3)
H10A—N10—H10B120.0O10—N24—O12120.1 (3)
N6—C3—N7123.7 (3)O11—N24—O12119.3 (3)
N6—C3—N8120.6 (3)O14—N25—O13121.0 (3)
N7—C3—N8115.7 (3)O14—N25—O15119.3 (2)
N9—C4—N10123.2 (3)O13—N25—O15119.6 (3)
N9—C4—N8120.5 (3)O18—N26—O16120.5 (3)
N10—C4—N8116.3 (3)O18—N26—O17120.7 (3)
C6—N11—Mn1127.0 (2)O16—N26—O17118.9 (3)
C6—N11—H11116.5
N4—Mn1—N1—C10.6 (3)C4—N8—C3—N625.0 (4)
N11—Mn1—N1—C192.0 (3)C4—N8—C3—N7155.5 (3)
N14—Mn1—N1—C1177.6 (3)Mn1—N9—C4—N10160.6 (2)
N6—Mn1—N1—C192.2 (3)Mn1—N9—C4—N821.4 (4)
N11—Mn1—N4—C297.4 (3)C3—N8—C4—N920.2 (4)
N1—Mn1—N4—C21.1 (3)C3—N8—C4—N10157.9 (3)
N9—Mn1—N4—C2174.9 (3)N4—Mn1—N11—C6148.9 (2)
N6—Mn1—N4—C290.5 (3)N14—Mn1—N11—C635.4 (2)
Mn1—N1—C1—N2177.9 (2)N1—Mn1—N11—C6124.5 (2)
Mn1—N1—C1—N31.3 (4)N9—Mn1—N11—C657.0 (2)
C2—N3—C1—N13.5 (5)N11—Mn1—N14—C530.2 (2)
C2—N3—C1—N2175.8 (3)N1—Mn1—N14—C5126.7 (2)
Mn1—N4—C2—N5179.4 (2)N9—Mn1—N14—C557.2 (2)
Mn1—N4—C2—N30.5 (4)N6—Mn1—N14—C5141.6 (2)
C1—N3—C2—N43.1 (5)Mn1—N14—C5—N15172.3 (2)
C1—N3—C2—N5177.9 (3)Mn1—N14—C5—N1310.1 (4)
N4—Mn1—N6—C3127.5 (3)C6—N13—C5—N1420.5 (4)
N14—Mn1—N6—C356.4 (3)C6—N13—C5—N15157.2 (3)
N1—Mn1—N6—C3146.0 (2)Mn1—N11—C6—N12159.1 (2)
N9—Mn1—N6—C335.8 (2)Mn1—N11—C6—N1320.4 (4)
N4—Mn1—N9—C4133.0 (2)C5—N13—C6—N1115.4 (4)
N11—Mn1—N9—C4135.3 (2)C5—N13—C6—N12165.1 (3)
N14—Mn1—N9—C449.7 (2)C8—N18—C7—N17168.7 (3)
N6—Mn1—N9—C440.3 (2)C8—N18—C7—N1611.3 (5)
Mn1—N6—C3—N7167.2 (2)C7—N18—C8—N20150.3 (3)
Mn1—N6—C3—N812.3 (4)C7—N18—C8—N1931.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N20—H20B···O130.881.992.866 (3)177
N20—H20A···O120.882.052.906 (3)165
N19—H19B···O17i0.882.032.818 (3)148
N19—H19A···O100.881.982.841 (3)165
N18—H18···O140.881.972.839 (3)170
N17—H17B···O16ii0.881.972.792 (3)156
N17—H17A···O12iii0.882.012.883 (3)170
N16—H16A···O11iii0.881.942.820 (3)173
N16—H16B···O4iv0.882.213.017 (3)152
N14—H14···O15v0.882.042.894 (3)162
N13—H13···O3vi0.882.082.841 (3)144
N12—H12B···O2vi0.882.042.919 (3)177
N11—H11···O60.882.162.984 (3)157
N9—H9···O10.882.213.077 (3)167
N7—H7B···O8vii0.882.293.060 (4)146
N7—H7A···O150.882.102.854 (3)143
N6—H6···O130.882.223.009 (3)150
N5—H5B···O6iv0.882.042.913 (3)175
N5—H5A···O90.882.162.961 (4)152
N4—H4···O70.882.002.848 (3)160
N3—H3···O5iv0.881.942.788 (3)161
N1—H1···O3iii0.882.062.934 (3)173
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x, y+1, z; (vi) x+1, y, z; (vii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula(C2H9N5)[Mn(C2H7N5)3](NO3)6
Mr833.52
Crystal system, space groupTriclinic, P1
Temperature (K)184
a, b, c (Å)9.4222 (19), 12.803 (3), 14.452 (3)
α, β, γ (°)105.673 (2), 104.037 (2), 104.891 (2)
V3)1528.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerSMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.874, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
6316, 5274, 4160
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.110, 0.98
No. of reflections5274
No. of parameters479
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.55

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1999), SHELXTL/PC.

Selected geometric parameters (Å, º) top
Mn1—N41.918 (2)Mn1—N11.937 (2)
Mn1—N111.924 (2)Mn1—N91.947 (2)
Mn1—N141.931 (2)Mn1—N61.952 (2)
N4—Mn1—N1191.80 (10)N14—Mn1—N992.22 (10)
N4—Mn1—N14175.03 (10)N1—Mn1—N9175.62 (10)
N11—Mn1—N1485.68 (10)N4—Mn1—N692.87 (10)
N4—Mn1—N186.43 (10)N11—Mn1—N6170.82 (10)
N11—Mn1—N196.47 (10)N14—Mn1—N690.22 (10)
N14—Mn1—N189.59 (10)N1—Mn1—N691.70 (10)
N4—Mn1—N991.95 (10)N9—Mn1—N684.30 (10)
N11—Mn1—N987.65 (10)
N4—Mn1—N1—C10.6 (3)N14—Mn1—N11—C635.4 (2)
N9—Mn1—N6—C335.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N20—H20B···O130.881.992.866 (3)177
N20—H20A···O120.882.052.906 (3)165
N19—H19B···O17i0.882.032.818 (3)148
N19—H19A···O100.881.982.841 (3)165
N18—H18···O140.881.972.839 (3)170
N17—H17B···O16ii0.881.972.792 (3)156
N17—H17A···O12iii0.882.012.883 (3)170
N16—H16A···O11iii0.881.942.820 (3)173
N16—H16B···O4iv0.882.213.017 (3)152
N14—H14···O15v0.882.042.894 (3)162
N13—H13···O3vi0.882.082.841 (3)144
N12—H12B···O2vi0.882.042.919 (3)177
N11—H11···O60.882.162.984 (3)157
N9—H9···O10.882.213.077 (3)167
N7—H7B···O8vii0.882.293.060 (4)146
N7—H7A···O150.882.102.854 (3)143
N6—H6···O130.882.223.009 (3)150
N5—H5B···O6iv0.882.042.913 (3)175
N5—H5A···O90.882.162.961 (4)152
N4—H4···O70.882.002.848 (3)160
N3—H3···O5iv0.881.942.788 (3)161
N1—H1···O3iii0.882.062.934 (3)173
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x, y+1, z; (vi) x+1, y, z; (vii) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds