Download citation
Download citation
link to html
Sodium tetracalcium pentaniobium heptadecaoxide, NaCa4­Nb5O17, corresponds to the n = 5 term of the homologous AnBnO3n+2 family of structures composed of ABX3 perovskite layers. The structure consists of perovskite-type blocks of n = 5 layers of NbO6 octahedra, separated by an interblock region. Successive blocks along the b axis are displaced by {1 \over 2}c with respect to each other. The deformation of the NbO6 octahedra is a minimum at the middle of each block, and increases along the direction of the b axis to a maximum at each end of the block. Ca and Na share the same intrablock sites, coordinated by 12 O atoms, whereas only Ca atoms are found in the interblock cavities, at sites with different coordination geometries.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102022746/fa1002sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102022746/fa1002Isup2.hkl
Contains datablock I

Comment top

Compounds of the series AnBnO3n+2 (where A is Ca, La or Sr, and B is Ti or Nb) with n = 4, 4.5, 5, 6 and 7 have attracted attention because of their interesting physical properties and their flexibility in accommodating various compositions (Lichtenberg et al., 2001). The structure of these compounds is derived from the ABX3 perovskite, in which BX6 octahedra share corners and A cations lie in the X cavities. For any value of n, the ideal structure of the corresponding compound can be interpreted in terms of blocks formed by BO6 octahedra, which blocks are stacked along the [110]p direction of the ideal perovskite structure. The periodicity along the stacking direction (conventionally labelled as the b axis) contains two blocks of n octahedral layers, so that its magnitude depends on the composition and is, to a first approximation, given by b (n+1)21/2ap (ap = 3.933 Å; Levin & Bendersky, 1999). The other two cell vectors, usually defined as a = [100]p (a = 3.93 Å) and c = [011]p (c = 5.6 Å), span the (011)p blocks of octahedra. This setting of the orthorhombic cell parameters is generally used for the structural description of the family. Consecutive blocks of octahedra are shifted with respect to each other by the vector 1/2(a+c), leaving interlayer regions where octahedra do not share two O atoms. Note that the ideal perovskite structure corresponds to the limiting value n = , i.e. with a single infinitely thick slab of octahedra. On the other hand, n = 4 is the lower limit, due to valence considerations. Intermediate integral values of n correspond to equally thick sequences of blocks, but non-integer values are also possible and correspond to sequences of octahedra-based blocks with alternating numbers of layers, e.g. n = 4.5 corresponds to alternating blocks of four and five layers.

A general description and symmetry classification of this type of structure has been reported by Levin & Bendersky (1999). Based on the tilts of the octahedra (Glazer, 1972), they present a scheme relating the stacking sequence and octahedral tilts to the symmetry of AnBnO3n+2 structures. The review contains references to 40 compounds, six of which correspond to compositions with n = 5. More recently, Levin et al. (2000) published a transmission electron microscopy study of the Srn(Nb,Ti)nO3n+2 series, with n = 4, 4.5, 5, 6 and 7. They reported the existence of commensurate incommensurate phase transitions for members with n = 4, 5, 6 and 7, with modulation vectors close to 1/2a*. A lock-in phase to 1/2a* was only confirmed for the compound with n = 5. However, phases with a cell parameter a 2ap (7.7 Å) are very common, as reported in the review by Lichtenberg et al. (2001), and result from the presence of an alternating tilt of the octahedra around the b axis.

A different approach for describing this family of compounds has been proposed by Elcoro et al. (2001). Based on the superspace formalism, they describe many known phases of the Srn(Nb,Ti)nO3n+2 series as modulated structures, with a composition-dependent primary modulation wavevector q = γb* [γ = 1/(1+n)] and step-like occupational modulation functions. In this way, the introduction of the composition variable n within the `structural parameter' q leads to a unique structural model with a unique superspace group. The efficacy of this method was tested by comparing the symmetry reported for members of this family with the resulting space groups derived from the superspace model; even the case of symmetry breaking due to the phase transitions present in many compounds can be taken into account with this method.

With the aim of testing the superspace method described above, we have prepared new compounds of the AnBnO3n+2 family. In this paper, we report the structure of a system with mixed Ca/Na composition for the A cations and with B = Nb. The first studies on Ca-based compounds of this series were carried out by Nanot et al. (1979, 1981, 1986). For the compounds (La4Ca)Ti5O17, (Nb4Ca)Ti5O17 and Ca5(Nb4Ti)O17, despite the apparent orthorhombic symmetry (C2221) observed on precession photographs, they proposed a monoclinic cell with similar a and c axes, but with b' = 1/2(b-a) and with P21/b or P21 as possible space groups; the apparent orthorhombic symmetry was attributed to systematic pseudo-merohedral twinning of the crystals. For all three compounds, a cell parameter a = 2ap was reported. In the present case, NaCa4Nb5O17, we confirm a monoclinic cell and P21/b as space group.

A projection of the structure of NaCa4Nb5O17 is shown in Figs. 1a and 1 b. Owing to the monoclinic distortion, successive slabs of octahedra stacked along the b axis direction are shifted by 1/2c. The shift transforms to 1/2(a+c) when the parameters of the C-centred orthorhombic cell are used. Thus, the packing of the blocks does in fact correspond to that expected for a structural motif composed of an odd number of layers of octahedra. Similar packing is found in Sr5TiNb4O17 (Drews et al., 1996) and Sr5Nb5O17 (Schmalle et al., 1995). The structure has a pseudo lattice translation of (1/2)a for the heavy atoms, which is broken by differing tilts of the oxygen octahedra; successive octahedra along the a axis exhibit tilts around b in antiphase; that is, consecutive octahedra along the a axis are successively tilted clockwise and anticlockwise. This fact, and the weakness of the superlattice reflections with k = 2n, permits a description of this phase as a modulation with wavevector q = (1/2)a* (lock-in phase) of a hypothetical higher-temperature phase (incommensurate phase). Such a phase transition has been reported for other compounds (Levin at al., 2000) experiencing the sequence of symmetries Immm Pmnn Inc P1121/b, with the final structure being associated with an a+b or a+c tilt of the untilted high-temperature Immm structure.

The distorted octahedra in NaCa4Nb5O17 have Nb—O distances within two different ranges. The shortest and longest distances for octahedra in the middle of the block (Nb1 and Nb2) range from 1.965 (2) to 1.990 (2) Å, for the next layer of octahedra outward from the centre the distances range from 1.843 (2) to 2.164 (2) Å, and for the octahedra at the edges of the blocks the distances range from 1.798 (2) to 2.259 (2) Å. Thus the distortion of the octahedra clearly increases from the centres to the edges of the slabs. The Ca atoms located in the O-bounded cavities between octahedra are arranged in columns along the a axis and exhibit two different coordination environments. Atoms Ca1 and Ca2 are in the inter-block region, in sites fully occupied by Ca; Ca1 is coordinated to 7 O atoms, with distances ranging from 2.303 (2) to 2.529 (2) Å, and Ca2 is coordinated to 6 + 3 O atoms, at distances in the range 2.398 (2)–3.277 (2) Å with a break at 2.643 (2) Å. Atoms Ca3, Ca4 and Ca5, embedded in the blocks, are 12-coordinate, with Ca—O distances ranging from 2.343 (2) to 3.348 (2) Å.

The refinement of the occupancy factors of the Ca/Na atoms shows that the Na atoms are located inside the slabs. This preference is in accord with the charge distribution in the structure. The interslab regions have an excess of O atoms and so full occupancy of Ca favours local electroneutrality. A random distribution of the Na atoms at the sites inside the slabs would correspond to occupancy factors of 2/3 and 1/3 for Ca and Na, respectively. But, according to the refined values, the Ca sites in the middle of the blocks (Ca3 type) have a higher proportion of Ca [0.747 (3)], while those closer to the edges have Ca fractions of 0.796 (4) (Ca4) and 0.457 (4) (Ca5). A similar distribution has been reported for Nd4Ca2Ti6O20 (Nanot et al., 1976), in which Ca atoms replace Nd preferentially on sites away from the interblock regions.

Experimental top

Single crystals of NaCa4Nb5O17 were isolated by heating a mixture corresponding to the composition Na2Ca4Nb6O20, under oxygen at 1753 K. Na2Ca4Nb6O20 was initially prepared by firing the appropriate stoichiometric mixture of Na2CO3, CaCO3 and Nb2O5. The sample was mixed in an agate mortar and heated in an alumina crucible at 1223 K for 24 h, and in a final step at 1473 K for 24 h. The preparations were carried out under a flow of oxygen.

Refinement top

The diffraction patterns from precession photographs show weak (hkl) h = 2n+1 layers and an apparent orthorhombic symmetry. With reference to the orthorhombic cell (a = 7.710, b = 64.24 and c = 5.4838 Å), the systematic absences observed were those of C-centring including k = 2n+1 for (0k0). Such a lattice type has been registered for compounds with n = 4 and 6, but the tilt pattern expected in the present case, with an odd number of octahedra-based layers per block, points to a P-type orthorhombic or monoclinic space group (Levin & Bendersky, 1999). However, attempts to find a solution in the space group C2221 failed. Using the direct methods routines of SHELXS97 (Sheldrick, 1997), a solution was found and refined in both P21 and P21/b, with the lattice constants given in the crystal data table (an unconventional setting is used to permit facile comparisons with other, previously published work). The choice of this monoclinic cell assumes a pseudo-merohedral twinned crystal with perfect superposition of both lattices (note that the monoclinic angle is almost 90° in the C-centred cell), and a twin law given by a binary axis about the [100] direct lattice direction, relating (hkl) and (h,-(h+k),-l) reflection pairs from each twin. The violation of the systematic absences for the b-glide plane were assumed to be due to the twinning, so the centrosymmetric space group was chosen. In fact, only reflections of type (hk0) h = odd and k = odd were observed to violate the b-glide extinctions and correspond to reflections (odd,even,0) of the second twin component. Using the twin model and with all A sites fully occupied by Ca atoms, the refinement converged to R = 0.057 (all atoms anisotropic); at this point, some Ca atoms showed large atomic displacements. A model containing Na and Ca atoms was employed, constraining the population factors to the given composition and keeping the anisotropic displacements equal for all Ca/Na sites during the refinement. Near the end of the refinement, the occupancy factors for the Ca atoms in the interlayer regions were close to 1 and they were fixed to that value in the final cycles. The final population parameter for the twin was 0.5559 (9).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: STRUPLO84 (Fischer, 1985).

Figures top
[Figure 1] Fig. 1. Projections of the structure of NaCa4Nb5O17 along (a) the [001] and (b) the [100] direction.
(I) top
Crystal data top
Ca4NaNb5O17F(000) = 1728
Mr = 919.82Dx = 4.499 Mg m3
Monoclinic, P1121/bMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2bcCell parameters from 25 reflections
a = 7.710 (2) Åθ = 9.1–29.6°
b = 32.350 (5) ŵ = 5.74 mm1
c = 5.4838 (6) ÅT = 293 K
β = 90°Parallelepiped, colourless
V = 1358.0 (4) Å30.21 × 0.08 × 0.05 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.035
non–profiled ω/2θ scansθmax = 40.0°, θmin = 1.9°
Absorption correction: gaussian
[PLATON (Spek, 1990) and WinGX (Farrugia, 1999)]
h = 1313
Tmin = 0.599, Tmax = 0.759k = 5858
17947 measured reflectionsl = 09
8692 independent reflections3 standard reflections every 60 min
6585 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0289P)2 + 1.0534P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.032
wR(F2) = 0.071Δρmax = 2.12 [at (0.5188,0.0165,0.0006), 0.54Å from Nb02] e Å3
S = 1.06Δρmin = 2.23 [at (0.0029,0.000,0.8794), 0.66Å from Nb01] e Å3
8692 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
252 parametersExtinction coefficient: 0.00168 (6)
Crystal data top
Ca4NaNb5O17V = 1358.0 (4) Å3
Mr = 919.82Z = 4
Monoclinic, P1121/bMo Kα radiation
a = 7.710 (2) ŵ = 5.74 mm1
b = 32.350 (5) ÅT = 293 K
c = 5.4838 (6) Å0.21 × 0.08 × 0.05 mm
β = 90°
Data collection top
Enraf-Nonius CAD-4
diffractometer
6585 reflections with I > 2σ(I)
Absorption correction: gaussian
[PLATON (Spek, 1990) and WinGX (Farrugia, 1999)]
Rint = 0.035
Tmin = 0.599, Tmax = 0.7593 standard reflections every 60 min
17947 measured reflections intensity decay: none
8692 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028252 parameters
wR(F2) = 0.0711 restraint
S = 1.06Δρmax = 2.12 [at (0.5188,0.0165,0.0006), 0.54Å from Nb02] e Å3
8692 reflectionsΔρmin = 2.23 [at (0.0029,0.000,0.8794), 0.66Å from Nb01] e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nb10.00.50.50.00471 (4)
Nb20.50.50.50.00484 (4)
Nb30.04653 (5)0.590626 (6)0.00067 (4)0.00465 (3)
Nb40.54524 (5)0.591230 (5)0.00065 (4)0.00472 (3)
Nb50.08743 (5)0.677064 (6)0.51853 (4)0.00484 (3)
Nb60.59507 (5)0.677922 (6)0.52199 (4)0.00481 (4)
Ca10.86245 (8)0.721758 (14)0.07847 (8)0.00756 (7)
Ca20.36211 (9)0.708872 (17)0.00755 (9)0.01337 (8)
Ca30.25409 (8)0.505615 (15)0.00672 (11)0.00775 (10)0.747 (3)
Ca40.29892 (10)0.594439 (15)0.49543 (9)0.00737 (11)0.796 (4)
Ca50.79183 (15)0.58280 (2)0.50277 (13)0.01099 (16)0.457 (4)
Na30.25409 (8)0.505615 (15)0.00672 (11)0.00775 (10)0.253 (3)
Na40.29892 (10)0.594439 (15)0.49543 (9)0.00737 (11)0.204 (4)
Na50.79183 (15)0.58280 (2)0.50277 (13)0.01099 (16)0.543 (4)
O10.2470 (3)0.49542 (5)0.5794 (3)0.0087 (3)
O20.0183 (2)0.53477 (6)0.7908 (4)0.0089 (4)
O30.0687 (2)0.54949 (6)0.2923 (4)0.0085 (3)
O40.4819 (3)0.54977 (6)0.2927 (4)0.0088 (3)
O50.5528 (3)0.53465 (6)0.7911 (4)0.0095 (4)
O60.7926 (3)0.58549 (6)0.0716 (3)0.0104 (3)
O70.2891 (3)0.57907 (5)0.0781 (3)0.0062 (2)
O80.0327 (2)0.61919 (6)0.7006 (3)0.0075 (4)
O90.1189 (3)0.63377 (7)0.2103 (4)0.0095 (3)
O100.5160 (2)0.63518 (6)0.2051 (4)0.0091 (3)
O110.5848 (3)0.61792 (6)0.6952 (3)0.0075 (4)
O120.8355 (3)0.66952 (5)0.4234 (3)0.0086 (3)
O130.3353 (3)0.66849 (5)0.5878 (3)0.0081 (2)
O140.0786 (3)0.71089 (6)0.7871 (4)0.0087 (3)
O150.1378 (2)0.71939 (6)0.2962 (4)0.0073 (3)
O160.5907 (3)0.72361 (6)0.3153 (4)0.0089 (4)
O170.6363 (2)0.70373 (6)0.8102 (4)0.0098 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.00417 (10)0.00565 (9)0.00432 (9)0.00065 (18)0.00022 (18)0.00015 (9)
Nb20.00423 (10)0.00591 (10)0.00442 (9)0.00080 (18)0.00061 (18)0.00034 (9)
Nb30.00415 (8)0.00473 (7)0.00496 (7)0.00006 (15)0.00070 (12)0.00002 (7)
Nb40.00408 (7)0.00476 (7)0.00518 (7)0.00007 (15)0.00043 (12)0.00010 (7)
Nb50.00429 (7)0.00503 (7)0.00517 (7)0.00036 (13)0.00034 (11)0.00001 (6)
Nb60.00360 (7)0.00552 (7)0.00513 (7)0.00020 (12)0.00016 (11)0.00011 (6)
Ca10.00636 (15)0.00983 (16)0.00648 (13)0.00090 (19)0.0003 (2)0.00034 (12)
Ca20.00814 (18)0.0232 (2)0.00920 (16)0.0037 (2)0.0005 (2)0.00124 (16)
Ca30.00720 (18)0.0098 (2)0.00636 (18)0.00142 (19)0.0010 (3)0.00126 (17)
Ca40.00622 (19)0.00963 (19)0.00642 (18)0.0016 (2)0.0005 (3)0.00100 (14)
Ca50.0082 (3)0.0165 (3)0.0083 (3)0.0017 (3)0.0005 (4)0.0038 (2)
Na30.00720 (18)0.0098 (2)0.00636 (18)0.00142 (19)0.0010 (3)0.00126 (17)
Na40.00622 (19)0.00963 (19)0.00642 (18)0.0016 (2)0.0005 (3)0.00100 (14)
Na50.0082 (3)0.0165 (3)0.0083 (3)0.0017 (3)0.0005 (4)0.0038 (2)
O10.0045 (6)0.0121 (7)0.0095 (6)0.0013 (7)0.0007 (7)0.0014 (5)
O20.0098 (9)0.0088 (8)0.0075 (7)0.0017 (6)0.0033 (6)0.0028 (6)
O30.0096 (8)0.0084 (9)0.0072 (8)0.0003 (6)0.0004 (6)0.0017 (6)
O40.0104 (8)0.0083 (9)0.0083 (8)0.0031 (6)0.0023 (6)0.0025 (7)
O50.0121 (9)0.0091 (8)0.0078 (7)0.0038 (6)0.0023 (6)0.0028 (6)
O60.0045 (6)0.0190 (8)0.0079 (6)0.0018 (8)0.0015 (8)0.0004 (5)
O70.0031 (5)0.0081 (6)0.0076 (5)0.0011 (7)0.0001 (8)0.0003 (5)
O80.0075 (10)0.0075 (7)0.0069 (7)0.0013 (6)0.0010 (6)0.0028 (6)
O90.0096 (7)0.0111 (9)0.0081 (8)0.0022 (6)0.0003 (6)0.0036 (7)
O100.0091 (7)0.0088 (8)0.0089 (8)0.0001 (6)0.0008 (6)0.0036 (7)
O110.0083 (10)0.0092 (7)0.0053 (6)0.0023 (6)0.0013 (6)0.0020 (6)
O120.0035 (5)0.0128 (7)0.0095 (6)0.0016 (7)0.0005 (8)0.0008 (5)
O130.0037 (5)0.0087 (6)0.0123 (6)0.0018 (7)0.0006 (9)0.0001 (5)
O140.0095 (9)0.0107 (8)0.0060 (7)0.0016 (6)0.0011 (6)0.0010 (5)
O150.0076 (9)0.0070 (7)0.0075 (7)0.0014 (5)0.0008 (6)0.0015 (5)
O160.0095 (9)0.0101 (8)0.0074 (7)0.0020 (6)0.0009 (6)0.0011 (5)
O170.0075 (8)0.0148 (9)0.0068 (7)0.0002 (6)0.0010 (5)0.0041 (6)
Geometric parameters (Å, º) top
Nb1—O21.966 (2)Ca3—O4viii3.304 (2)
Nb1—O11.976 (2)Ca3—O3ix3.318 (2)
Nb1—O31.9849 (19)Ca4—O7x2.3904 (17)
Nb2—O51.965 (2)Ca4—O42.408 (2)
Nb2—O11.987 (2)Ca4—O32.427 (2)
Nb2—O41.9895 (19)Ca4—O132.4319 (17)
Nb3—O91.843 (2)Ca4—O112.497 (2)
Nb3—O8i1.8963 (18)Ca4—O92.532 (2)
Nb3—O6ii1.984 (3)Ca4—O82.552 (2)
Nb3—O71.997 (2)Ca4—O102.559 (2)
Nb3—O32.100 (2)Ca4—O73.1835 (17)
Nb3—O2i2.151 (2)Ca4—O13.2138 (18)
Nb4—O101.850 (2)Ca4—O53.332 (2)
Nb4—O11i1.8863 (18)Ca4—O23.348 (2)
Nb4—O61.978 (3)Ca5—O112.320 (2)
Nb4—O72.013 (2)Ca5—O8iv2.343 (2)
Nb4—O42.114 (2)Ca5—O62.3661 (19)
Nb4—O5i2.164 (2)Ca5—O1vi2.5527 (18)
Nb5—O151.8401 (19)Ca5—O42.752 (2)
Nb5—O141.841 (2)Ca5—O2iv2.756 (2)
Nb5—O12ii1.998 (2)Ca5—O3iv2.756 (2)
Nb5—O132.000 (2)Ca5—O52.764 (2)
Nb5—O82.1197 (19)Ca5—O122.8192 (18)
Nb5—O92.227 (2)Ca5—O6x3.1205 (19)
Nb6—O171.798 (2)Ca5—O9iv3.265 (2)
Nb6—O161.8660 (19)Ca5—O103.304 (2)
Nb6—O121.980 (2)O1—Ca3x2.366 (2)
Nb6—O132.022 (2)O1—Ca5vi2.5527 (18)
Nb6—O112.1540 (19)O2—Nb3x2.151 (2)
Nb6—O102.259 (2)O2—Ca3vii2.383 (2)
Ca1—O17i2.303 (2)O2—Ca3x2.678 (2)
Ca1—O14iii2.365 (2)O2—Ca5ii2.756 (2)
Ca1—O15iv2.445 (2)O3—Ca5ii2.756 (2)
Ca1—O15v2.454 (2)O3—Ca3ix3.318 (2)
Ca1—O14v2.455 (2)O4—Ca3viii3.304 (2)
Ca1—O162.472 (2)O5—Nb4x2.164 (2)
Ca1—O122.5287 (18)O5—Ca3vi2.367 (2)
Ca2—O17i2.398 (2)O5—Ca3x2.659 (2)
Ca2—O152.398 (2)O6—Nb3iv1.984 (2)
Ca2—O16v2.414 (2)O6—Ca3viii2.9577 (19)
Ca2—O162.446 (2)O6—Ca5i3.1205 (19)
Ca2—O14i2.506 (2)O7—Ca4i2.3904 (17)
Ca2—O13i2.6428 (18)O8—Nb3x1.8963 (18)
Ca2—O102.989 (2)O8—Ca5ii2.343 (2)
Ca2—O93.094 (2)O9—Ca5ii3.265 (2)
Ca2—O17v3.277 (2)O11—Nb4x1.8863 (18)
Ca2—O133.4363 (19)O12—Nb5iv1.998 (2)
Ca3—O1i2.366 (2)O13—Ca2x2.6428 (18)
Ca3—O5vi2.367 (2)O14—Ca1xi2.365 (2)
Ca3—O2vii2.383 (2)O14—Ca1xii2.455 (2)
Ca3—O72.4050 (17)O14—Ca2x2.506 (2)
Ca3—O42.644 (2)O15—Ca1ii2.445 (2)
Ca3—O32.644 (2)O15—Ca1xii2.454 (2)
Ca3—O5i2.659 (2)O16—Ca2xii2.414 (2)
Ca3—O2i2.678 (2)O17—Ca1x2.303 (2)
Ca3—O6viii2.9577 (19)O17—Ca2x2.398 (2)
Ca3—O13.157 (2)O17—Ca2xii3.277 (2)
O2vii—Nb1—O2180.00 (10)O7x—Ca4—O553.81 (6)
O2—Nb1—O189.97 (8)O4—Ca4—O556.63 (7)
O2—Nb1—O1vii90.03 (8)O3—Ca4—O5108.29 (6)
O1—Nb1—O1vii180O13—Ca4—O5117.61 (7)
O2—Nb1—O391.97 (9)O11—Ca4—O553.48 (6)
O1—Nb1—O391.12 (8)O9—Ca4—O5170.84 (6)
O2—Nb1—O3vii88.03 (9)O8—Ca4—O5121.17 (6)
O1—Nb1—O3vii88.88 (8)O10—Ca4—O5102.03 (6)
O3—Nb1—O3vii180.00 (7)O7—Ca4—O5113.25 (5)
O5—Nb2—O5vi180.00 (10)O1—Ca4—O550.51 (5)
O5—Nb2—O1vi90.01 (8)O7x—Ca4—O253.40 (6)
O5—Nb2—O189.99 (8)O4—Ca4—O2108.50 (6)
O1vi—Nb2—O1180O3—Ca4—O256.26 (7)
O5—Nb2—O491.85 (9)O13—Ca4—O2117.27 (6)
O1—Nb2—O491.31 (8)O11—Ca4—O2121.40 (6)
O5—Nb2—O4vi88.15 (9)O9—Ca4—O2100.49 (7)
O1—Nb2—O4vi88.69 (8)O8—Ca4—O253.69 (6)
O4—Nb2—O4vi180.00 (7)O10—Ca4—O2170.46 (6)
O9—Nb3—O8i101.65 (9)O7—Ca4—O2112.69 (5)
O9—Nb3—O6ii98.52 (8)O1—Ca4—O250.21 (5)
O8i—Nb3—O6ii95.67 (8)O5—Ca4—O282.49 (5)
O9—Nb3—O794.05 (8)O11—Ca5—O8iv95.38 (6)
O8i—Nb3—O790.67 (8)O11—Ca5—O6115.81 (8)
O6ii—Nb3—O7164.46 (7)O8iv—Ca5—O6116.48 (8)
O9—Nb3—O387.97 (9)O11—Ca5—O1vi124.01 (8)
O8i—Nb3—O3169.39 (9)O8iv—Ca5—O1vi124.90 (8)
O6ii—Nb3—O387.22 (8)O6—Ca5—O1vi81.93 (7)
O7—Nb3—O384.12 (7)O11—Ca5—O476.37 (8)
O9—Nb3—O2i171.67 (9)O8iv—Ca5—O4171.35 (7)
O8i—Nb3—O2i85.65 (9)O6—Ca5—O466.05 (8)
O6ii—Nb3—O2i84.61 (7)O1vi—Ca5—O463.07 (6)
O7—Nb3—O2i81.75 (7)O11—Ca5—O2iv117.25 (7)
O3—Nb3—O2i84.46 (9)O8iv—Ca5—O2iv64.88 (7)
O10—Nb4—O11i102.44 (9)O6—Ca5—O2iv126.47 (8)
O10—Nb4—O699.03 (8)O1vi—Ca5—O2iv63.23 (6)
O11i—Nb4—O696.59 (8)O4—Ca5—O2iv121.06 (6)
O10—Nb4—O794.15 (8)O11—Ca5—O3iv172.63 (8)
O11i—Nb4—O790.26 (8)O8iv—Ca5—O3iv77.63 (7)
O6—Nb4—O7163.44 (7)O6—Ca5—O3iv66.25 (8)
O10—Nb4—O489.05 (9)O1vi—Ca5—O3iv62.84 (7)
O11i—Nb4—O4167.38 (9)O4—Ca5—O3iv110.49 (5)
O6—Nb4—O486.60 (8)O2iv—Ca5—O3iv62.06 (6)
O7—Nb4—O483.63 (7)O11—Ca5—O564.18 (7)
O10—Nb4—O5i171.90 (8)O8iv—Ca5—O5116.98 (7)
O11i—Nb4—O5i84.33 (9)O6—Ca5—O5126.22 (8)
O6—Nb4—O5i84.44 (7)O1vi—Ca5—O563.29 (7)
O7—Nb4—O5i81.25 (7)O4—Ca5—O562.01 (7)
O4—Nb4—O5i83.83 (9)O2iv—Ca5—O573.59 (5)
O15—Nb5—O1496.16 (9)O3iv—Ca5—O5120.97 (6)
O15—Nb5—O12ii91.96 (8)O11—Ca5—O1265.84 (7)
O14—Nb5—O12ii100.21 (8)O8iv—Ca5—O1265.03 (7)
O15—Nb5—O1396.21 (8)O6—Ca5—O1279.03 (6)
O14—Nb5—O1391.95 (8)O1vi—Ca5—O12160.96 (7)
O12ii—Nb5—O13164.54 (7)O4—Ca5—O12108.50 (7)
O15—Nb5—O8166.34 (8)O2iv—Ca5—O12129.86 (7)
O14—Nb5—O897.50 (9)O3iv—Ca5—O12108.54 (7)
O12ii—Nb5—O885.78 (7)O5—Ca5—O12129.93 (7)
O13—Nb5—O883.19 (7)O11—Ca5—O6x62.02 (7)
O15—Nb5—O986.33 (9)O8iv—Ca5—O6x61.61 (6)
O14—Nb5—O9174.67 (8)O6—Ca5—O6x176.32 (9)
O12ii—Nb5—O984.38 (7)O1vi—Ca5—O6x101.75 (6)
O13—Nb5—O983.08 (7)O4—Ca5—O6x115.34 (7)
O8—Nb5—O980.04 (8)O2iv—Ca5—O6x56.18 (6)
O17—Nb6—O16100.66 (9)O3iv—Ca5—O6x115.50 (7)
O17—Nb6—O12100.77 (8)O5—Ca5—O6x56.14 (6)
O16—Nb6—O1292.76 (9)O12—Ca5—O6x97.29 (5)
O17—Nb6—O1391.75 (8)O11—Ca5—O9iv120.74 (7)
O16—Nb6—O1396.73 (9)O8iv—Ca5—O9iv57.00 (7)
O12—Nb6—O13162.63 (7)O6—Ca5—O9iv59.48 (7)
O17—Nb6—O1190.94 (9)O1vi—Ca5—O9iv113.98 (7)
O16—Nb6—O11168.35 (8)O4—Ca5—O9iv124.98 (6)
O12—Nb6—O1186.07 (7)O2iv—Ca5—O9iv97.82 (6)
O13—Nb6—O1181.70 (7)O3iv—Ca5—O9iv53.43 (6)
O17—Nb6—O10168.62 (8)O5—Ca5—O9iv171.38 (7)
O16—Nb6—O1089.35 (9)O12—Ca5—O9iv55.11 (6)
O12—Nb6—O1083.98 (7)O6x—Ca5—O9iv118.57 (6)
O13—Nb6—O1081.63 (7)O11—Ca5—O1056.73 (6)
O11—Nb6—O1079.01 (8)O8iv—Ca5—O10119.42 (6)
O17i—Ca1—O14iii93.24 (6)O6—Ca5—O1059.09 (7)
O17i—Ca1—O15iv159.76 (7)O1vi—Ca5—O10114.48 (7)
O14iii—Ca1—O15iv72.27 (8)O4—Ca5—O1053.85 (6)
O17i—Ca1—O15v73.93 (7)O2iv—Ca5—O10171.86 (6)
O14iii—Ca1—O15v75.80 (7)O3iv—Ca5—O10124.70 (6)
O15iv—Ca1—O15v114.40 (4)O5—Ca5—O1098.34 (6)
O17i—Ca1—O14v125.26 (8)O12—Ca5—O1054.65 (6)
O14iii—Ca1—O14v112.79 (5)O6x—Ca5—O10118.61 (6)
O15iv—Ca1—O14v74.35 (7)O9iv—Ca5—O1090.23 (5)
O15v—Ca1—O14v67.82 (7)Nb1—O1—Nb2153.19 (11)
O17i—Ca1—O1673.94 (8)Nb1—O1—Ca3x102.38 (8)
O14iii—Ca1—O16166.62 (8)Nb2—O1—Ca3x101.55 (9)
O15iv—Ca1—O16119.07 (6)Nb1—O1—Ca5vi92.00 (7)
O15v—Ca1—O16103.52 (7)Nb2—O1—Ca5vi91.93 (7)
O14v—Ca1—O1678.57 (7)Ca3x—O1—Ca5vi108.12 (7)
O17i—Ca1—O12108.00 (7)Nb1—O1—Ca377.18 (6)
O14iii—Ca1—O12114.18 (7)Nb2—O1—Ca376.68 (6)
O15iv—Ca1—O1267.45 (7)Ca3x—O1—Ca3166.08 (7)
O15v—Ca1—O12169.36 (6)Ca5vi—O1—Ca385.79 (5)
O14v—Ca1—O12103.67 (6)Nb1—O1—Ca484.31 (6)
O16—Ca1—O1267.69 (7)Nb2—O1—Ca483.64 (6)
O17i—Ca2—O15164.60 (8)Ca3x—O1—Ca490.28 (5)
O17i—Ca2—O16v80.00 (8)Ca5vi—O1—Ca4161.60 (8)
O15—Ca2—O16v101.17 (7)Ca3—O1—Ca475.81 (4)
O17i—Ca2—O1672.80 (7)Nb1—O2—Nb3x152.80 (11)
O15—Ca2—O1691.83 (6)Nb1—O2—Ca3vii99.57 (8)
O16v—Ca2—O1695.58 (5)Nb3x—O2—Ca3vii107.29 (8)
O17i—Ca2—O14i124.27 (6)Nb1—O2—Ca3x92.56 (7)
O15—Ca2—O14i70.65 (7)Nb3x—O2—Ca3x86.88 (7)
O16v—Ca2—O14i78.70 (7)Ca3vii—O2—Ca3x100.37 (8)
O16—Ca2—O14i159.80 (7)Nb1—O2—Ca5ii86.37 (7)
O17i—Ca2—O13i65.82 (7)Nb3x—O2—Ca5ii85.35 (7)
O15—Ca2—O13i129.03 (7)Ca3vii—O2—Ca5ii98.88 (7)
O16v—Ca2—O13i93.52 (6)Ca3x—O2—Ca5ii160.62 (8)
O16—Ca2—O13i135.21 (7)Nb1—O2—Ca480.81 (6)
O14i—Ca2—O13i64.88 (7)Nb3x—O2—Ca472.15 (6)
O17i—Ca2—O1070.83 (7)Ca3vii—O2—Ca4177.20 (9)
O15—Ca2—O10103.60 (6)Ca3x—O2—Ca482.37 (5)
O16v—Ca2—O10148.05 (7)Ca5ii—O2—Ca478.36 (6)
O16—Ca2—O1063.92 (6)Nb1—O3—Nb3156.05 (11)
O14i—Ca2—O10128.73 (7)Nb1—O3—Ca4109.03 (9)
O13i—Ca2—O1086.36 (6)Nb3—O3—Ca494.51 (8)
O17i—Ca2—O9124.38 (7)Nb1—O3—Ca390.94 (8)
O15—Ca2—O959.62 (6)Nb3—O3—Ca388.80 (7)
O16v—Ca2—O9151.61 (7)Ca4—O3—Ca3100.95 (7)
O16—Ca2—O9105.10 (6)Nb1—O3—Ca5ii85.99 (7)
O14i—Ca2—O975.20 (6)Nb3—O3—Ca5ii86.90 (7)
O13i—Ca2—O985.43 (6)Ca4—O3—Ca5ii96.82 (7)
O10—Ca2—O960.29 (5)Ca3—O3—Ca5ii161.98 (9)
O17i—Ca2—O17v112.05 (5)Nb1—O3—Ca3ix74.86 (6)
O15—Ca2—O17v58.15 (6)Nb3—O3—Ca3ix81.47 (6)
O16v—Ca2—O17v57.03 (6)Ca4—O3—Ca3ix175.68 (8)
O16—Ca2—O17v63.48 (6)Ca3—O3—Ca3ix80.65 (6)
O14i—Ca2—O17v97.81 (6)Ca5ii—O3—Ca3ix81.41 (5)
O13i—Ca2—O17v149.28 (5)Nb2—O4—Nb4156.22 (11)
O10—Ca2—O17v122.91 (5)Nb2—O4—Ca4108.92 (9)
O9—Ca2—O17v115.81 (6)Nb4—O4—Ca494.49 (7)
O17i—Ca2—O13113.90 (6)Nb2—O4—Ca390.44 (8)
O15—Ca2—O1355.32 (6)Nb4—O4—Ca388.86 (8)
O16v—Ca2—O13138.09 (6)Ca4—O4—Ca3101.49 (7)
O16—Ca2—O1356.26 (6)Nb2—O4—Ca586.21 (7)
O14i—Ca2—O13116.32 (6)Nb4—O4—Ca587.00 (7)
O13i—Ca2—O13128.39 (6)Ca4—O4—Ca596.73 (8)
O10—Ca2—O1351.17 (5)Ca3—O4—Ca5161.57 (9)
O9—Ca2—O1350.60 (5)Nb2—O4—Ca3viii74.82 (6)
O17v—Ca2—O1381.54 (5)Nb4—O4—Ca3viii81.67 (6)
O1i—Ca3—O5vi113.14 (7)Ca4—O4—Ca3viii175.92 (8)
O1i—Ca3—O2vii112.42 (7)Ca3—O4—Ca3viii79.91 (6)
O5vi—Ca3—O2vii88.21 (6)Ca5—O4—Ca3viii81.73 (5)
O1i—Ca3—O786.80 (6)Nb2—O5—Nb4x152.44 (11)
O5vi—Ca3—O7129.07 (8)Nb2—O5—Ca3vi99.67 (8)
O2vii—Ca3—O7128.35 (7)Nb4x—O5—Ca3vi107.47 (8)
O1i—Ca3—O4131.74 (7)Nb2—O5—Ca3x92.72 (8)
O5vi—Ca3—O466.34 (7)Nb4x—O5—Ca3x87.40 (7)
O2vii—Ca3—O4115.75 (7)Ca3vi—O5—Ca3x99.91 (8)
O7—Ca3—O465.88 (6)Nb2—O5—Ca586.34 (7)
O1i—Ca3—O3131.02 (7)Nb4x—O5—Ca584.75 (7)
O5vi—Ca3—O3115.67 (7)Ca3vi—O5—Ca599.06 (7)
O2vii—Ca3—O365.96 (7)Ca3x—O5—Ca5160.89 (8)
O7—Ca3—O365.70 (6)Nb2—O5—Ca480.77 (6)
O4—Ca3—O374.06 (5)Nb4x—O5—Ca471.89 (5)
O1i—Ca3—O5i67.27 (7)Ca3vi—O5—Ca4177.05 (9)
O5vi—Ca3—O5i80.09 (8)Ca3x—O5—Ca482.96 (5)
O2vii—Ca3—O5i166.67 (7)Ca5—O5—Ca478.04 (6)
O7—Ca3—O5i64.79 (7)Nb4—O6—Nb3iv154.94 (10)
O4—Ca3—O5i65.22 (7)Nb4—O6—Ca5101.86 (10)
O3—Ca3—O5i125.06 (6)Nb3iv—O6—Ca5101.37 (10)
O1i—Ca3—O2i66.73 (7)Nb4—O6—Ca3viii93.43 (7)
O5vi—Ca3—O2i166.31 (8)Nb3iv—O6—Ca3viii93.27 (7)
O2vii—Ca3—O2i79.63 (8)Ca5—O6—Ca3viii96.26 (6)
O7—Ca3—O2i64.36 (7)Nb4—O6—Ca5i78.68 (6)
O4—Ca3—O2i124.78 (6)Nb3iv—O6—Ca5i78.75 (6)
O3—Ca3—O2i64.94 (7)Ca5—O6—Ca5i176.32 (9)
O5i—Ca3—O2i111.19 (5)Ca3viii—O6—Ca5i80.07 (5)
O1i—Ca3—O6viii73.70 (6)Nb3—O7—Nb4146.79 (9)
O5vi—Ca3—O6viii61.94 (7)Nb3—O7—Ca4i100.36 (8)
O2vii—Ca3—O6viii61.76 (7)Nb4—O7—Ca4i99.19 (8)
O7—Ca3—O6viii160.50 (6)Nb3—O7—Ca398.36 (8)
O4—Ca3—O6viii128.24 (7)Nb4—O7—Ca398.32 (8)
O3—Ca3—O6viii127.69 (6)Ca4i—O7—Ca3113.06 (7)
O5i—Ca3—O6viii106.57 (6)Nb3—O7—Ca476.27 (5)
O2i—Ca3—O6viii106.20 (7)Nb4—O7—Ca475.91 (5)
O1i—Ca3—O1166.08 (7)Ca4i—O7—Ca4159.15 (7)
O5vi—Ca3—O158.73 (6)Ca3—O7—Ca487.77 (5)
O2vii—Ca3—O158.45 (6)Nb3x—O8—Nb5145.31 (11)
O7—Ca3—O1107.10 (5)Nb3x—O8—Ca5ii104.13 (8)
O4—Ca3—O157.91 (6)Nb5—O8—Ca5ii106.76 (8)
O3—Ca3—O157.53 (6)Nb3x—O8—Ca497.81 (8)
O5i—Ca3—O1118.87 (6)Nb5—O8—Ca489.21 (7)
O2i—Ca3—O1118.15 (6)Ca5ii—O8—Ca4104.91 (8)
O6viii—Ca3—O192.40 (5)Nb3—O9—Nb5154.71 (11)
O1i—Ca3—O4viii55.80 (6)Nb3—O9—Ca498.02 (9)
O5vi—Ca3—O4viii57.73 (7)Nb5—O9—Ca487.39 (7)
O2vii—Ca3—O4viii114.41 (6)Nb3—O9—Ca2118.12 (9)
O7—Ca3—O4viii115.83 (6)Nb5—O9—Ca283.11 (7)
O4—Ca3—O4viii100.09 (6)Ca4—O9—Ca2107.41 (7)
O3—Ca3—O4viii172.99 (7)Nb3—O9—Ca5ii77.16 (7)
O5i—Ca3—O4viii53.63 (6)Nb5—O9—Ca5ii79.02 (6)
O2i—Ca3—O4viii122.05 (6)Ca4—O9—Ca5ii83.08 (6)
O6viii—Ca3—O4viii52.94 (6)Ca2—O9—Ca5ii158.85 (7)
O1—Ca3—O4viii116.22 (5)Nb4—O10—Nb6152.99 (11)
O1i—Ca3—O3ix55.40 (6)Nb4—O10—Ca496.64 (9)
O5vi—Ca3—O3ix114.61 (6)Nb6—O10—Ca487.08 (7)
O2vii—Ca3—O3ix57.39 (7)Nb4—O10—Ca2119.22 (9)
O7—Ca3—O3ix115.11 (6)Nb6—O10—Ca283.94 (6)
O4—Ca3—O3ix172.48 (6)Ca4—O10—Ca2109.82 (7)
O3—Ca3—O3ix99.35 (6)Nb4—O10—Ca576.26 (7)
O5i—Ca3—O3ix122.21 (6)Nb6—O10—Ca577.90 (6)
O2i—Ca3—O3ix53.21 (6)Ca4—O10—Ca581.36 (6)
O6viii—Ca3—O3ix52.99 (6)Ca2—O10—Ca5158.23 (8)
O1—Ca3—O3ix115.64 (5)Nb4x—O11—Nb6142.09 (11)
O4viii—Ca3—O3ix86.22 (4)Nb4x—O11—Ca5105.15 (9)
O7x—Ca4—O4109.47 (7)Nb6—O11—Ca5106.68 (8)
O7x—Ca4—O3108.76 (7)Nb4x—O11—Ca499.19 (8)
O4—Ca4—O382.38 (6)Nb6—O11—Ca490.99 (7)
O7x—Ca4—O1389.90 (6)Ca5—O11—Ca4106.57 (8)
O4—Ca4—O13132.84 (8)Nb6—O12—Nb5iv145.52 (9)
O3—Ca4—O13132.55 (8)Nb6—O12—Ca196.69 (8)
O7x—Ca4—O1168.85 (7)Nb5iv—O12—Ca196.43 (8)
O4—Ca4—O1180.00 (7)Nb6—O12—Ca595.24 (7)
O3—Ca4—O11159.98 (7)Nb5iv—O12—Ca594.63 (7)
O13—Ca4—O1167.33 (7)Ca1—O12—Ca5140.45 (7)
O7x—Ca4—O9134.67 (8)Nb5—O13—Nb6152.99 (10)
O4—Ca4—O9114.30 (7)Nb5—O13—Ca495.55 (8)
O3—Ca4—O967.18 (7)Nb6—O13—Ca496.20 (8)
O13—Ca4—O968.88 (7)Nb5—O13—Ca2x96.70 (7)
O11—Ca4—O9129.40 (7)Nb6—O13—Ca2x93.61 (7)
O7x—Ca4—O868.10 (7)Ca4—O13—Ca2x131.40 (7)
O4—Ca4—O8160.45 (7)Nb5—O13—Ca277.69 (6)
O3—Ca4—O880.33 (7)Nb6—O13—Ca276.34 (6)
O13—Ca4—O866.56 (7)Ca4—O13—Ca2100.16 (6)
O11—Ca4—O8115.15 (5)Ca2x—O13—Ca2128.39 (6)
O9—Ca4—O866.75 (7)Nb5—O14—Ca1xi134.87 (11)
O7x—Ca4—O10135.93 (8)Nb5—O14—Ca1xii97.96 (8)
O4—Ca4—O1068.15 (7)Ca1xi—O14—Ca1xii104.03 (7)
O3—Ca4—O10114.20 (7)Nb5—O14—Ca2x106.05 (9)
O13—Ca4—O1068.30 (7)Ca1xi—O14—Ca2x108.08 (8)
O11—Ca4—O1067.47 (7)Ca1xii—O14—Ca2x100.24 (8)
O9—Ca4—O1073.79 (6)Nb5—O15—Ca2115.08 (9)
O8—Ca4—O10127.88 (6)Nb5—O15—Ca1ii103.86 (8)
O7x—Ca4—O7159.15 (7)Ca2—O15—Ca1ii109.00 (8)
O4—Ca4—O756.97 (6)Nb5—O15—Ca1xii98.04 (8)
O3—Ca4—O756.70 (6)Ca2—O15—Ca1xii126.41 (8)
O13—Ca4—O7110.94 (5)Ca1ii—O15—Ca1xii101.71 (7)
O11—Ca4—O7118.98 (7)Nb6—O16—Ca2xii115.88 (9)
O9—Ca4—O757.59 (6)Nb6—O16—Ca2110.19 (10)
O8—Ca4—O7118.65 (7)Ca2xii—O16—Ca2120.37 (8)
O10—Ca4—O757.84 (6)Nb6—O16—Ca1101.82 (9)
O7x—Ca4—O169.85 (5)Ca2xii—O16—Ca1102.37 (8)
O4—Ca4—O158.71 (6)Ca2—O16—Ca1103.05 (8)
O3—Ca4—O158.19 (6)Nb6—O17—Ca1x139.98 (10)
O13—Ca4—O1159.74 (6)Nb6—O17—Ca2x108.68 (9)
O11—Ca4—O1103.97 (6)Ca1x—O17—Ca2x109.96 (8)
O9—Ca4—O1125.34 (7)Nb6—O17—Ca2xii86.43 (7)
O8—Ca4—O1103.88 (6)Ca1x—O17—Ca2xii100.36 (7)
O10—Ca4—O1126.79 (6)Ca2x—O17—Ca2xii94.69 (6)
O7—Ca4—O189.31 (5)
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x+1, y, z1; (iv) x+1, y, z; (v) x+1, y+3/2, z1/2; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) x+1, y+1, z; (ix) x, y+1, z; (x) x, y, z+1; (xi) x1, y, z+1; (xii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaCa4NaNb5O17
Mr919.82
Crystal system, space groupMonoclinic, P1121/b
Temperature (K)293
a, b, c (Å)7.710 (2), 32.350 (5), 5.4838 (6)
γ (°) 96.820 (13)
V3)1358.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.74
Crystal size (mm)0.21 × 0.08 × 0.05
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionGaussian
[PLATON (Spek, 1990) and WinGX (Farrugia, 1999)]
Tmin, Tmax0.599, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
17947, 8692, 6585
Rint0.035
(sin θ/λ)max1)0.904
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.06
No. of reflections8692
No. of parameters252
No. of restraints1
Δρmax, Δρmin (e Å3)2.12 [at (0.5188,0.0165,0.0006), 0.54Å from Nb02], 2.23 [at (0.0029,0.000,0.8794), 0.66Å from Nb01]

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), STRUPLO84 (Fischer, 1985).

Selected bond lengths (Å) top
Nb1—O21.966 (2)Ca2—O14i2.506 (2)
Nb1—O11.976 (2)Ca2—O13i2.6428 (18)
Nb1—O31.9849 (19)Ca2—O102.989 (2)
Nb2—O51.965 (2)Ca2—O93.094 (2)
Nb2—O11.987 (2)Ca2—O17v3.277 (2)
Nb2—O41.9895 (19)Ca3—O1i2.366 (2)
Nb3—O91.843 (2)Ca3—O5vi2.367 (2)
Nb3—O8i1.8963 (18)Ca3—O2vii2.383 (2)
Nb3—O6ii1.984 (3)Ca3—O72.4050 (17)
Nb3—O71.997 (2)Ca3—O42.644 (2)
Nb3—O32.100 (2)Ca3—O32.644 (2)
Nb3—O2i2.151 (2)Ca3—O5i2.659 (2)
Nb4—O101.850 (2)Ca3—O2i2.678 (2)
Nb4—O11i1.8863 (18)Ca3—O6viii2.9577 (19)
Nb4—O61.978 (3)Ca3—O13.157 (2)
Nb4—O72.013 (2)Ca3—O4viii3.304 (2)
Nb4—O42.114 (2)Ca3—O3ix3.318 (2)
Nb4—O5i2.164 (2)Ca4—O7x2.3904 (17)
Nb5—O151.8401 (19)Ca4—O42.408 (2)
Nb5—O141.841 (2)Ca4—O32.427 (2)
Nb5—O12ii1.998 (2)Ca4—O132.4319 (17)
Nb5—O132.000 (2)Ca4—O112.497 (2)
Nb5—O82.1197 (19)Ca4—O92.532 (2)
Nb5—O92.227 (2)Ca4—O82.552 (2)
Nb6—O171.798 (2)Ca4—O102.559 (2)
Nb6—O161.8660 (19)Ca4—O73.1835 (17)
Nb6—O121.980 (2)Ca4—O13.2138 (18)
Nb6—O132.022 (2)Ca4—O53.332 (2)
Nb6—O112.1540 (19)Ca4—O23.348 (2)
Nb6—O102.259 (2)Ca5—O112.320 (2)
Ca1—O17i2.303 (2)Ca5—O8iv2.343 (2)
Ca1—O14iii2.365 (2)Ca5—O62.3661 (19)
Ca1—O15iv2.445 (2)Ca5—O1vi2.5527 (18)
Ca1—O15v2.454 (2)Ca5—O42.752 (2)
Ca1—O14v2.455 (2)Ca5—O2iv2.756 (2)
Ca1—O162.472 (2)Ca5—O3iv2.756 (2)
Ca1—O122.5287 (18)Ca5—O52.764 (2)
Ca2—O17i2.398 (2)Ca5—O122.8192 (18)
Ca2—O152.398 (2)Ca5—O6x3.1205 (19)
Ca2—O16v2.414 (2)Ca5—O9iv3.265 (2)
Ca2—O162.446 (2)Ca5—O103.304 (2)
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x+1, y, z1; (iv) x+1, y, z; (v) x+1, y+3/2, z1/2; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1; (viii) x+1, y+1, z; (ix) x, y+1, z; (x) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds