metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butyl­tri­ethyl­ammonium tetra­chlorido­ferrate(III)

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: jinlei8812@163.com

(Received 7 March 2012; accepted 18 April 2012; online 21 April 2012)

In the title compound, (C10H24N)[FeCl4], no classical hydrogen bonds are observed. The butyl­triethyl­ammonium cations inter­act with the tetra­hedral [FeCl4] anion through weak C—H⋯Cl inter­actions, forming a three-dimensional network.

Related literature

For background to mol­ecular–ionic and ferroelectric–dielectric compounds, see: Hay & Geib (2005[Hay, M. T. & Geib, S. J. (2005). Acta Cryst. E61, m190-m191.]); Zhang et al. (2010[Zhang, W., Chen, L. Z., Gou, M., Li, Y. H., Fu, D. W. & Xiong, R. G. (2010). Cryst. Growth Des. 10, 1025-1027.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H24N)[FeCl4]

  • Mr = 355.95

  • Monoclinic, P 21 /c

  • a = 7.6197 (15) Å

  • b = 11.671 (2) Å

  • c = 18.473 (4) Å

  • β = 91.51 (3)°

  • V = 1642.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.655, Tmax = 0.734

  • 16819 measured reflections

  • 3754 independent reflections

  • 2766 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.117

  • S = 1.10

  • 3754 reflections

  • 149 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯Cl3i 0.96 2.87 3.790 (4) 162
C4—H4A⋯Cl1 0.97 2.92 3.859 (3) 163
Symmetry code: (i) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our laboratory, we synthesize simple molecular–ionic compounds containing organic-ammonium cations and anions due to the tunability of their special structural features and their ferroelectric-dielectric properties (Hay & Geib, 2005; Zhang et al., 2010). Herein, the crystal structure of the title compound is reported.

The asymmetric unit of the title compound, (C10H24N+).(FeCl4-) consists of one tetrachloroferrate anion unit and one butyltriethylammonium cation (Fig 1). In the structure, the FeIII ion adopts a distorted tetrahedral geometry surrounded by four Cl- anions with the Fe—Cl bond distances being in the range of 2.1611 (9)–2.1823 (10)? and the Cl–Fe–Cl bond angles being in the range of 109.26 (5)–110.18 (5) (5)°. There are no classic hydrogen bonds found, although weak intermolecular C—H···Cl interactions link the butyltriethylammonium cations and the tetrahedral FeCl4- anion into a three-dimensional network.

Related literature top

For background to molecular–ionic and ferroelectric–dielectric compounds, see: Hay & Geib (2005); Zhang et al. (2010).

Experimental top

In room temperaturebutyltriethylammonium(5 mmol,1.17 g) were dissolved in 30 ml water, then FeCl3.6H2O (5 mmol, 1.35 g) was added into the previous solution slowly with properly sirring. An orange solid appeared immediately and the solid was collected by filtration. Plate orange single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above filtrate after a week in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature (below the melting point).

Refinement top

H atoms were placed in calculated positions C—H = 0.96 Å and 0.97 Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2/N) and 1.5Ueq(Csp3)] and allowed to ride.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
Butyltriethylammonium tetrachloridoferrate(III) top
Crystal data top
(C10H24N)[FeCl4]Z = 4
Mr = 355.95F(000) = 740
Monoclinic, P21/cDx = 1.440 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.6197 (15) Åθ = 3.2–27.5°
b = 11.671 (2) ŵ = 1.55 mm1
c = 18.473 (4) ÅT = 293 K
β = 91.51 (3)°Block, orange
V = 1642.2 (6) Å30.28 × 0.24 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
3754 independent reflections
Radiation source: fine-focus sealed tube2766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.655, Tmax = 0.734l = 2323
16819 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.8101P]
where P = (Fo2 + 2Fc2)/3
3754 reflections(Δ/σ)max < 0.001
149 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
(C10H24N)[FeCl4]V = 1642.2 (6) Å3
Mr = 355.95Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6197 (15) ŵ = 1.55 mm1
b = 11.671 (2) ÅT = 293 K
c = 18.473 (4) Å0.28 × 0.24 × 0.20 mm
β = 91.51 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3754 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2766 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.734Rint = 0.052
16819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.10Δρmax = 0.30 e Å3
3754 reflectionsΔρmin = 0.53 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3896 (4)0.6311 (3)0.58003 (19)0.0585 (9)
H1A0.31660.69690.57120.088*
H1B0.32290.57260.60330.088*
H1C0.43120.60250.53490.088*
C20.5419 (4)0.6641 (2)0.62761 (16)0.0415 (7)
H2A0.61140.59600.63750.050*
H2B0.49740.69060.67340.050*
C30.8471 (5)0.6102 (3)0.5330 (2)0.0643 (10)
H3A0.94250.62090.56730.096*
H3B0.89280.59380.48620.096*
H3C0.77540.54750.54810.096*
C40.7386 (4)0.7171 (3)0.52879 (16)0.0424 (7)
H4A0.64380.70520.49350.051*
H4B0.81120.77870.51100.051*
C50.9389 (4)0.8585 (3)0.63699 (19)0.0554 (9)
H5A0.99740.83320.59440.083*
H5B1.02270.86540.67650.083*
H5C0.88490.93150.62780.083*
C60.8021 (4)0.7737 (3)0.65603 (16)0.0441 (7)
H6A0.74720.79900.70010.053*
H6B0.85890.70100.66640.053*
C70.2880 (5)1.0847 (3)0.6797 (2)0.0670 (10)
H7A0.20271.03620.70170.101*
H7B0.23141.15240.66120.101*
H7C0.37651.10570.71520.101*
C80.3716 (4)1.0216 (3)0.61889 (18)0.0512 (8)
H8A0.45151.07280.59470.061*
H8B0.28110.99880.58390.061*
C90.4705 (4)0.9172 (3)0.64418 (17)0.0473 (8)
H9A0.55630.93870.68150.057*
H9B0.38970.86290.66490.057*
C100.5615 (4)0.8626 (2)0.58253 (15)0.0372 (6)
H10A0.64270.91800.56310.045*
H10B0.47440.84610.54470.045*
Cl10.44676 (12)0.65139 (8)0.36000 (6)0.0695 (3)
Cl20.19519 (11)0.85280 (7)0.25806 (4)0.0545 (2)
Cl30.01438 (13)0.61475 (8)0.33742 (5)0.0689 (3)
Cl40.15637 (12)0.84172 (8)0.44790 (4)0.0573 (2)
Fe10.19494 (6)0.73961 (4)0.35064 (2)0.04185 (15)
N10.6607 (3)0.75470 (18)0.59891 (11)0.0334 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0511 (19)0.062 (2)0.062 (2)0.0149 (16)0.0058 (17)0.0060 (18)
C20.0437 (16)0.0405 (16)0.0406 (16)0.0044 (13)0.0042 (13)0.0069 (13)
C30.070 (2)0.054 (2)0.070 (2)0.0133 (18)0.019 (2)0.0038 (18)
C40.0472 (17)0.0459 (17)0.0345 (16)0.0019 (13)0.0081 (13)0.0029 (13)
C50.0479 (19)0.063 (2)0.054 (2)0.0124 (16)0.0105 (16)0.0036 (17)
C60.0431 (17)0.0526 (19)0.0360 (17)0.0029 (14)0.0102 (13)0.0059 (13)
C70.059 (2)0.060 (2)0.082 (3)0.0044 (17)0.013 (2)0.024 (2)
C80.0496 (18)0.0484 (19)0.055 (2)0.0031 (14)0.0012 (16)0.0073 (15)
C90.0500 (18)0.0488 (19)0.0435 (18)0.0055 (14)0.0069 (15)0.0042 (14)
C100.0403 (15)0.0357 (15)0.0356 (15)0.0025 (12)0.0003 (12)0.0038 (12)
Cl10.0624 (6)0.0570 (6)0.0882 (7)0.0174 (4)0.0131 (5)0.0005 (5)
Cl20.0583 (5)0.0617 (5)0.0438 (4)0.0026 (4)0.0076 (4)0.0148 (4)
Cl30.0789 (6)0.0675 (6)0.0597 (6)0.0330 (5)0.0095 (5)0.0051 (5)
Cl40.0683 (6)0.0638 (6)0.0397 (4)0.0043 (4)0.0026 (4)0.0073 (4)
Fe10.0475 (3)0.0410 (3)0.0368 (3)0.00288 (18)0.00255 (19)0.00161 (18)
N10.0337 (12)0.0370 (13)0.0294 (12)0.0002 (10)0.0008 (10)0.0057 (9)
Geometric parameters (Å, º) top
C1—C21.488 (4)C6—H6B0.9700
C1—H1A0.9600C7—C81.498 (5)
C1—H1B0.9600C7—H7A0.9600
C1—H1C0.9600C7—H7B0.9600
C2—N11.498 (3)C7—H7C0.9600
C2—H2A0.9700C8—C91.501 (4)
C2—H2B0.9700C8—H8A0.9700
C3—C41.497 (4)C8—H8B0.9700
C3—H3A0.9600C9—C101.492 (4)
C3—H3B0.9600C9—H9A0.9700
C3—H3C0.9600C9—H9B0.9700
C4—N11.504 (3)C10—N11.496 (3)
C4—H4A0.9700C10—H10A0.9700
C4—H4B0.9700C10—H10B0.9700
C5—C61.486 (4)Cl1—Cl10.0000 (18)
C5—H5A0.9600Cl1—Fe12.1804 (10)
C5—H5B0.9600Cl2—Fe12.1611 (9)
C5—H5C0.9600Cl3—Fe12.1695 (10)
C6—N11.504 (3)Cl4—Fe12.1823 (10)
C6—H6A0.9700Fe1—Cl12.1804 (10)
C2—C1—H1A109.5C8—C7—H7C109.5
C2—C1—H1B109.5H7A—C7—H7C109.5
H1A—C1—H1B109.5H7B—C7—H7C109.5
C2—C1—H1C109.5C7—C8—C9112.6 (3)
H1A—C1—H1C109.5C7—C8—H8A109.1
H1B—C1—H1C109.5C9—C8—H8A109.1
C1—C2—N1116.3 (2)C7—C8—H8B109.1
C1—C2—H2A108.2C9—C8—H8B109.1
N1—C2—H2A108.2H8A—C8—H8B107.8
C1—C2—H2B108.2C10—C9—C8110.4 (3)
N1—C2—H2B108.2C10—C9—H9A109.6
H2A—C2—H2B107.4C8—C9—H9A109.6
C4—C3—H3A109.5C10—C9—H9B109.6
C4—C3—H3B109.5C8—C9—H9B109.6
H3A—C3—H3B109.5H9A—C9—H9B108.1
C4—C3—H3C109.5C9—C10—N1116.6 (2)
H3A—C3—H3C109.5C9—C10—H10A108.1
H3B—C3—H3C109.5N1—C10—H10A108.1
C3—C4—N1115.4 (3)C9—C10—H10B108.1
C3—C4—H4A108.4N1—C10—H10B108.1
N1—C4—H4A108.4H10A—C10—H10B107.3
C3—C4—H4B108.4Cl1—Cl1—Fe10 (10)
N1—C4—H4B108.4Cl2—Fe1—Cl3109.72 (4)
H4A—C4—H4B107.5Cl2—Fe1—Cl1109.41 (5)
C6—C5—H5A109.5Cl3—Fe1—Cl1109.55 (5)
C6—C5—H5B109.5Cl2—Fe1—Cl1109.41 (5)
H5A—C5—H5B109.5Cl3—Fe1—Cl1109.55 (5)
C6—C5—H5C109.5Cl1—Fe1—Cl10.00 (7)
H5A—C5—H5C109.5Cl2—Fe1—Cl4108.71 (4)
H5B—C5—H5C109.5Cl3—Fe1—Cl4110.18 (5)
C5—C6—N1115.2 (2)Cl1—Fe1—Cl4109.26 (5)
C5—C6—H6A108.5Cl1—Fe1—Cl4109.26 (5)
N1—C6—H6A108.5C10—N1—C2111.0 (2)
C5—C6—H6B108.5C10—N1—C6111.5 (2)
N1—C6—H6B108.5C2—N1—C6106.5 (2)
H6A—C6—H6B107.5C10—N1—C4106.3 (2)
C8—C7—H7A109.5C2—N1—C4110.8 (2)
C8—C7—H7B109.5C6—N1—C4110.8 (2)
H7A—C7—H7B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···Cl3i0.962.873.790 (4)162
C4—H4A···Cl10.972.923.859 (3)163
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C10H24N)[FeCl4]
Mr355.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.6197 (15), 11.671 (2), 18.473 (4)
β (°) 91.51 (3)
V3)1642.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.655, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
16819, 3754, 2766
Rint0.052
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.117, 1.10
No. of reflections3754
No. of parameters149
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.53

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···Cl3i0.962.873.790 (4)162.0
C4—H4A···Cl10.972.923.859 (3)162.7
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The author thanks the Ordered Matter Science Research Centre, Southeast University.

References

First citationHay, M. T. & Geib, S. J. (2005). Acta Cryst. E61, m190–m191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Chen, L. Z., Gou, M., Li, Y. H., Fu, D. W. & Xiong, R. G. (2010). Cryst. Growth Des. 10, 1025–1027.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds