metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m734-m735

catena-Poly[bis­­(μ3-2-methyl­benzoato)disilver(I)]

aDepartment of Chemistry, University of Gujrat, Department of Chemistry, Hafiz Hayat Campus, Gujrat, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 27 March 2011; accepted 4 May 2011; online 7 May 2011)

The crystal structure of the title compound, [Ag2(C8H7O2)2]n, features polymeric chains extending along the a axis, with the two Ag+ cations in a distorted trigonal coordination. The range of Ag—O bond lengths is 2.169 (2)–2.433 (2) Å, whereas the Ag⋯Ag separations are in the range 2.8674 (4)–3.6256 (5) Å. The 2-methyl­benzoate groups are oriented at a dihedral angle of 60.7 (1)° with respect to each other.

Related literature

For metal complexes of o-toluic acid, see: Danish et al. (2010a[Danish, M., Ghafoor, S., Tahir, M. N., Ahmad, N. & Hamid, M. (2010a). Acta Cryst. E66, m1268-m1269.],b[Danish, M., Saleem, I., Ahmad, N., Starosta, W. & Leciejewicz, J. (2010b). Acta Cryst. E66, m4.],c[Danish, M., Saleem, I., Tahir, M. N., Ahmad, N. & Raza, A. R. (2010c). Acta Cryst. E66, m528.]). For the crystal structures of related silver complexes, see: Tahir et al. (1996[Tahir, M. N., Ülkü, D. & Muvsumov, E. M. (1996). Acta Cryst. C52, 593-595.], 2009[Tahir, M. N., Atakol, O. & Tariq, M. I. (2009). Acta Cryst. E65, m580.]); Ülkü et al. (1996[Ülkü, D., Tahir, M. N. & Movsumov, E. M. (1996). Acta Cryst. C52, 2678-2680.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C8H7O2)2]

  • Mr = 486.01

  • Monoclinic, P 21 /c

  • a = 5.6607 (3) Å

  • b = 27.1493 (18) Å

  • c = 10.2455 (7) Å

  • β = 100.538 (3)°

  • V = 1548.01 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.54 mm−1

  • T = 296 K

  • 0.28 × 0.15 × 0.13 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.465, Tmax = 0.555

  • 12447 measured reflections

  • 3486 independent reflections

  • 2487 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.061

  • S = 1.04

  • 3486 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—O1 2.433 (2)
Ag1—O3 2.268 (2)
Ag1—O2i 2.169 (2)
Ag2—O1 2.305 (2)
Ag2—O3 2.414 (2)
Ag2—O4ii 2.186 (3)
O1—Ag1—O3 79.34 (8)
O1—Ag1—O2i 121.02 (8)
O2i—Ag1—O3 153.38 (10)
O1—Ag2—O3 79.04 (8)
O1—Ag2—O4ii 149.80 (9)
O3—Ag2—O4ii 122.08 (9)
Ag1—O1—Ag2 99.83 (9)
Ag1—O3—Ag2 101.47 (9)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) is a continuation of our work on the synthesis of metal complexes of o-toluic acid, where we have reported the crystal structures of (II), catena-poly[[trimethyltin(IV)]-µ-2-methylbenzoato-κ2O:O'] (Danish et al., 2010a), (III), tetrakis(-2-methylbenzoato-κ2O:O')bis[(methanol-κO)copper(II)] (Danish et al., 2010b) and (IV), octamethylbis(2–2-methylbenzoato-κ2O:O')bis(2-methylbenzoato-κO) di-µ3-oxido-tetratin(IV) (Danish et al., 2010c).

We have also reported the crystal structures of silver complexes such as (V), poly[bis(p-nitrosalicylato-O:O')disilver(I)—O3:Ag';Ag:O3'] (Tahir et al., 1996), (VI), poly[bis(3,5-dinitrobenzoato-O1:O2)disilver(I)—O2:Ag;Ag':O2'] (Ülkü et al., 1996) and (VII), poly[(µ-benzene-1,2,4,5-tetracarboxylato)tetrasilver(I)] (Tahir et al., 2009).

In the title compound, the toluine groups A (C2—C8) and B (C10—C16) are planar with r.m.s. deviation of 0.0063 and 0.0086 Å. The carboxylate groups C (O1/C1/O2) and D (O3/C9/O4) are of course planar with dihedral angles between A/C, B/D & A/B of 34.6 (3)°, 37.5 (3)° and 60.7 (1)°, respectively. The title compound essentially consists of non-centrosymmetric dimers with central core E (Ag1/O2/C1/O1/Ag2/O4/C9/O3) which is not planar (Fig. 1). These dimers are interlinked via Ag—O bonds to form one-dimensional polymeric chains extending along the a-axis (Fig. 2). The parallel polymeric chains are further interlinked by Ag—O bonds into dimeric polymeric chains. In the central core the range of Ag—O bond distances is 2.268 (2)–2.433 (2) Å whereas to adjacent units they are 2.169 (2) and 2.186 (3) Å. The Ag···Ag distance for the central core is 2.8674 (4) Å, whereas it is 3.6256 (5) Å for the symmetry related adjacent units forming the four membered ring F (Ag2O2). The Ag···Ag separations for adjacent chains are 3.1292 (6) and 3.2314 (6) Å. The important bond distances and angles are given in Table 1.

Related literature top

For metal complexes of o-toluic acid, see: Danish et al. (2010a,b,c). For the crystal structures of related silver complexes, see: Tahir et al. (1996, 2009); Ülkü et al. (1996).

Experimental top

Aqueous solutions of silver nitrate (0.17 g, 1.0 mmol) and the sodium salt of o-toluic acid (0.122 g, 1.0 mmol) were prepared separately in 5.0 and 10.0 ml of water, respectively. The aqueous silver nitrate was added dropwise to the solution of the sodium salt of o-toluic acid with continuous stirring until a white precipitate appeared. The reaction mixture was filtered after treatment with liquid ammonia. It was concentrated and kept in the dark for crystallization. White needle-like crystals appeared within two months.

Melting point: 473 K.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram (PLATON; Spek, 2009) which shows that the molecules are interlinked to form polymeric chains.
[Figure 3] Fig. 3. A partial packing diagram (PLATON; Spek, 2009) which shows that the polymeric chains are linked into pairs.
catena-Poly[bis(µ3-2-methylbenzoato)disilver(I)] top
Crystal data top
[Ag2(C8H7O2)2]F(000) = 944
Mr = 486.01Dx = 2.085 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2487 reflections
a = 5.6607 (3) Åθ = 3.0–27.6°
b = 27.1493 (18) ŵ = 2.54 mm1
c = 10.2455 (7) ÅT = 296 K
β = 100.538 (3)°Needle, colorless
V = 1548.01 (17) Å30.28 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3486 independent reflections
Radiation source: fine-focus sealed tube2487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 7.60 pixels mm-1θmax = 27.6°, θmin = 3.0°
ω scansh = 67
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 3035
Tmin = 0.465, Tmax = 0.555l = 1313
12447 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0203P)2]
where P = (Fo2 + 2Fc2)/3
3486 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Ag2(C8H7O2)2]V = 1548.01 (17) Å3
Mr = 486.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6607 (3) ŵ = 2.54 mm1
b = 27.1493 (18) ÅT = 296 K
c = 10.2455 (7) Å0.28 × 0.15 × 0.13 mm
β = 100.538 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3486 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2487 reflections with I > 2σ(I)
Tmin = 0.465, Tmax = 0.555Rint = 0.036
12447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
3486 reflectionsΔρmin = 0.54 e Å3
201 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag11.07402 (5)0.04830 (1)0.59037 (3)0.0523 (1)
Ag20.51817 (5)0.00478 (1)0.65370 (3)0.0479 (1)
O10.6443 (4)0.06445 (8)0.5558 (3)0.0400 (9)
O20.3299 (4)0.10785 (8)0.5914 (3)0.0575 (12)
O30.9407 (4)0.02228 (8)0.6706 (3)0.0422 (9)
O41.3029 (4)0.03844 (9)0.7865 (3)0.0552 (10)
C10.5350 (6)0.10473 (12)0.5654 (3)0.0377 (12)
C20.6596 (5)0.15172 (11)0.5403 (3)0.0342 (11)
C30.8070 (6)0.15067 (13)0.4455 (4)0.0464 (14)
C40.9228 (7)0.19266 (16)0.4135 (4)0.0632 (17)
C50.8928 (8)0.23558 (16)0.4780 (6)0.075 (2)
C60.7493 (7)0.23710 (14)0.5728 (5)0.0678 (18)
C70.6290 (6)0.19559 (13)0.6056 (4)0.0496 (14)
C80.4769 (7)0.19959 (15)0.7121 (5)0.078 (2)
C91.0825 (6)0.04380 (12)0.7643 (4)0.0347 (12)
C100.9718 (6)0.07847 (12)0.8498 (4)0.0362 (11)
C110.7793 (6)0.10729 (12)0.7884 (4)0.0491 (14)
C120.6741 (7)0.14127 (14)0.8585 (5)0.0678 (19)
C130.7550 (8)0.14592 (16)0.9913 (6)0.076 (2)
C140.9405 (9)0.11792 (16)1.0530 (5)0.0698 (19)
C151.0591 (7)0.08369 (13)0.9848 (4)0.0482 (16)
C161.2646 (8)0.05403 (15)1.0582 (5)0.0762 (19)
H30.828090.121190.402900.0558*
H41.019200.191660.349130.0756*
H50.970140.264030.457790.0903*
H60.732270.266670.615910.0815*
H8A0.519610.173730.775930.1167*
H8B0.310200.196630.672350.1167*
H8C0.504190.230950.755500.1167*
H110.721150.103380.698090.0586*
H120.548780.160900.815820.0812*
H130.682750.168431.040060.0910*
H140.991290.121511.144090.0837*
H16A1.235860.019691.039350.1139*
H16B1.410640.063851.030490.1139*
H16C1.278760.059561.151890.1139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0348 (2)0.0527 (2)0.0712 (3)0.0063 (1)0.0144 (2)0.0106 (2)
Ag20.0333 (2)0.0541 (2)0.0570 (2)0.0083 (1)0.0100 (1)0.0043 (2)
O10.0319 (13)0.0331 (13)0.0546 (18)0.0010 (10)0.0068 (11)0.0059 (11)
O20.0373 (15)0.0417 (15)0.098 (3)0.0036 (11)0.0243 (14)0.0008 (14)
O30.0315 (13)0.0450 (14)0.0498 (18)0.0013 (11)0.0068 (12)0.0130 (12)
O40.0298 (14)0.0739 (19)0.060 (2)0.0071 (12)0.0036 (12)0.0187 (14)
C10.038 (2)0.037 (2)0.036 (2)0.0049 (16)0.0015 (16)0.0030 (16)
C20.0287 (18)0.0309 (19)0.040 (2)0.0002 (14)0.0016 (15)0.0043 (16)
C30.046 (2)0.040 (2)0.053 (3)0.0019 (17)0.0085 (18)0.0061 (19)
C40.058 (3)0.061 (3)0.074 (3)0.003 (2)0.021 (2)0.022 (2)
C50.073 (3)0.043 (3)0.110 (5)0.018 (2)0.016 (3)0.015 (3)
C60.074 (3)0.037 (2)0.089 (4)0.007 (2)0.006 (3)0.007 (2)
C70.053 (2)0.040 (2)0.053 (3)0.0025 (18)0.002 (2)0.0024 (19)
C80.093 (4)0.072 (3)0.073 (4)0.004 (3)0.028 (3)0.027 (3)
C90.032 (2)0.035 (2)0.037 (2)0.0027 (16)0.0064 (16)0.0004 (16)
C100.0333 (19)0.036 (2)0.041 (2)0.0093 (16)0.0114 (16)0.0070 (17)
C110.043 (2)0.043 (2)0.062 (3)0.0039 (18)0.0111 (19)0.011 (2)
C120.057 (3)0.054 (3)0.095 (4)0.006 (2)0.021 (3)0.019 (3)
C130.080 (4)0.062 (3)0.097 (5)0.005 (3)0.044 (3)0.032 (3)
C140.099 (4)0.069 (3)0.047 (3)0.026 (3)0.028 (3)0.026 (2)
C150.062 (3)0.043 (2)0.041 (3)0.0166 (19)0.013 (2)0.0033 (19)
C160.102 (4)0.081 (3)0.040 (3)0.007 (3)0.002 (3)0.007 (2)
Geometric parameters (Å, º) top
Ag1—O12.433 (2)C10—C151.388 (6)
Ag1—O32.268 (2)C11—C121.370 (6)
Ag1—O2i2.169 (2)C12—C131.360 (8)
Ag2—O12.305 (2)C13—C141.356 (7)
Ag2—O32.414 (2)C14—C151.405 (6)
Ag2—O4ii2.186 (3)C15—C161.499 (6)
O1—C11.269 (4)C3—H30.9300
O2—C11.241 (4)C4—H40.9300
O3—C91.275 (5)C5—H50.9300
O4—C91.235 (4)C6—H60.9300
C1—C21.503 (4)C8—H8A0.9600
C2—C31.392 (5)C8—H8B0.9600
C2—C71.392 (5)C8—H8C0.9600
C3—C41.384 (6)C11—H110.9300
C4—C51.365 (6)C12—H120.9300
C5—C61.376 (7)C13—H130.9300
C6—C71.389 (5)C14—H140.9300
C7—C81.512 (6)C16—H16A0.9600
C9—C101.499 (5)C16—H16B0.9600
C10—C111.395 (5)C16—H16C0.9600
O1—Ag1—O379.34 (8)C11—C12—C13119.2 (4)
O1—Ag1—O2i121.02 (8)C12—C13—C14120.3 (5)
O2i—Ag1—O3153.38 (10)C13—C14—C15122.6 (5)
O1—Ag2—O379.04 (8)C10—C15—C14116.6 (4)
O1—Ag2—O4ii149.80 (9)C10—C15—C16123.2 (4)
O3—Ag2—O4ii122.08 (9)C14—C15—C16120.2 (4)
Ag1—O1—Ag299.83 (9)C2—C3—H3119.00
Ag1—O1—C1129.2 (2)C4—C3—H3119.00
Ag2—O1—C1118.4 (2)C3—C4—H4121.00
Ag1ii—O2—C1126.8 (2)C5—C4—H4121.00
Ag1—O3—Ag2101.47 (9)C4—C5—H5120.00
Ag1—O3—C9117.0 (2)C6—C5—H5120.00
Ag2—O3—C9128.6 (2)C5—C6—H6119.00
Ag2i—O4—C9126.4 (3)C7—C6—H6119.00
O1—C1—O2124.3 (3)C7—C8—H8A109.00
O1—C1—C2117.9 (3)C7—C8—H8B109.00
O2—C1—C2117.8 (3)C7—C8—H8C109.00
C1—C2—C3117.5 (3)H8A—C8—H8B109.00
C1—C2—C7122.7 (3)H8A—C8—H8C110.00
C3—C2—C7119.7 (3)H8B—C8—H8C109.00
C2—C3—C4121.3 (3)C10—C11—H11119.00
C3—C4—C5118.8 (4)C12—C11—H11119.00
C4—C5—C6120.6 (4)C11—C12—H12120.00
C5—C6—C7121.7 (4)C13—C12—H12120.00
C2—C7—C6117.9 (3)C12—C13—H13120.00
C2—C7—C8123.1 (3)C14—C13—H13120.00
C6—C7—C8119.0 (3)C13—C14—H14119.00
O3—C9—O4124.1 (3)C15—C14—H14119.00
O3—C9—C10117.1 (3)C15—C16—H16A109.00
O4—C9—C10118.9 (3)C15—C16—H16B109.00
C9—C10—C11117.7 (3)C15—C16—H16C109.00
C9—C10—C15122.4 (3)H16A—C16—H16B109.00
C11—C10—C15119.9 (3)H16A—C16—H16C109.00
C10—C11—C12121.3 (4)H16B—C16—H16C109.00
O3—Ag1—O1—Ag24.46 (10)Ag2i—O4—C9—C10164.8 (2)
O3—Ag1—O1—C1144.3 (3)O1—C1—C2—C333.9 (4)
O2i—Ag1—O1—Ag2157.03 (10)O1—C1—C2—C7147.5 (3)
O2i—Ag1—O1—C117.2 (3)O2—C1—C2—C3144.7 (3)
O1—Ag1—O3—Ag24.28 (10)O2—C1—C2—C734.0 (5)
O1—Ag1—O3—C9149.1 (3)C1—C2—C3—C4178.1 (3)
O2i—Ag1—O3—Ag2138.32 (17)C7—C2—C3—C40.7 (5)
O2i—Ag1—O3—C96.5 (4)C1—C2—C7—C6178.7 (3)
O1—Ag1—O2i—C1i155.1 (3)C1—C2—C7—C82.9 (5)
O3—Ag1—O2i—C1i69.1 (4)C3—C2—C7—C60.1 (5)
O3—Ag2—O1—Ag14.20 (10)C3—C2—C7—C8178.5 (4)
O3—Ag2—O1—C1149.6 (3)C2—C3—C4—C50.8 (6)
O4ii—Ag2—O1—Ag1133.77 (16)C3—C4—C5—C60.2 (7)
O4ii—Ag2—O1—C111.6 (4)C4—C5—C6—C70.5 (7)
O1—Ag2—O3—Ag14.53 (11)C5—C6—C7—C20.7 (6)
O1—Ag2—O3—C9143.6 (3)C5—C6—C7—C8179.1 (4)
O4ii—Ag2—O3—Ag1152.06 (10)O3—C9—C10—C1137.4 (5)
O4ii—Ag2—O3—C913.0 (3)O3—C9—C10—C15144.7 (4)
O1—Ag2—O4ii—C9ii73.6 (4)O4—C9—C10—C11141.2 (4)
O3—Ag2—O4ii—C9ii157.3 (3)O4—C9—C10—C1536.7 (5)
Ag1—O1—C1—O2153.9 (3)C9—C10—C11—C12177.4 (3)
Ag1—O1—C1—C227.7 (4)C15—C10—C11—C120.5 (5)
Ag2—O1—C1—O220.2 (4)C9—C10—C15—C14179.2 (4)
Ag2—O1—C1—C2161.5 (2)C9—C10—C15—C162.4 (6)
Ag1ii—O2—C1—O112.7 (5)C11—C10—C15—C141.4 (5)
Ag1ii—O2—C1—C2165.7 (2)C11—C10—C15—C16179.8 (3)
Ag1—O3—C9—O422.9 (5)C10—C11—C12—C131.9 (6)
Ag1—O3—C9—C10158.5 (2)C11—C12—C13—C141.3 (7)
Ag2—O3—C9—O4156.8 (3)C12—C13—C14—C150.8 (7)
Ag2—O3—C9—C1024.7 (4)C13—C14—C15—C102.1 (6)
Ag2i—O4—C9—O313.8 (5)C13—C14—C15—C16179.5 (4)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ag2(C8H7O2)2]
Mr486.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.6607 (3), 27.1493 (18), 10.2455 (7)
β (°) 100.538 (3)
V3)1548.01 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.54
Crystal size (mm)0.28 × 0.15 × 0.13
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.465, 0.555
No. of measured, independent and
observed [I > 2σ(I)] reflections
12447, 3486, 2487
Rint0.036
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.061, 1.04
No. of reflections3486
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.54

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Ag1—O12.433 (2)Ag2—O12.305 (2)
Ag1—O32.268 (2)Ag2—O32.414 (2)
Ag1—O2i2.169 (2)Ag2—O4ii2.186 (3)
O1—Ag1—O379.34 (8)O1—Ag2—O4ii149.80 (9)
O1—Ag1—O2i121.02 (8)O3—Ag2—O4ii122.08 (9)
O2i—Ag1—O3153.38 (10)Ag1—O1—Ag299.83 (9)
O1—Ag2—O379.04 (8)Ag1—O3—Ag2101.47 (9)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanish, M., Ghafoor, S., Tahir, M. N., Ahmad, N. & Hamid, M. (2010a). Acta Cryst. E66, m1268–m1269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDanish, M., Saleem, I., Ahmad, N., Starosta, W. & Leciejewicz, J. (2010b). Acta Cryst. E66, m4.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDanish, M., Saleem, I., Tahir, M. N., Ahmad, N. & Raza, A. R. (2010c). Acta Cryst. E66, m528.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Atakol, O. & Tariq, M. I. (2009). Acta Cryst. E65, m580.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Ülkü, D. & Muvsumov, E. M. (1996). Acta Cryst. C52, 593–595.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationÜlkü, D., Tahir, M. N. & Movsumov, E. M. (1996). Acta Cryst. C52, 2678–2680.  CSD CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m734-m735
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds