metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[pyridinecopper(II)]-(μ-2-oxido­naphthalene-1-carbaldehyde pico­linoylhydrazonato)-[pyridinecopper(II)]-μ-sulfato] di­ethyl ether hemisolvate]

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng62@lcu.edu.cn

(Received 18 February 2009; accepted 3 April 2009; online 18 April 2009)

The title compound, {[Cu2(C17H11N3O)(SO4)(C5H5N)2]·0.5C4H10O}n, was syn­thesized by the reaction of 2-hydr­oxy-1-naphthyl­aldehyde-2-pyridine­carboxyl­hydrazone with copper sulfonate. A one-dimensional polymer was obtained via self-assembly. Each Cu ion is located in a distorted square-pyramidal coordination environment, with one Cu ion coordinated by two N and three O atoms, while the other links to two O and three N atoms. In the crystal, weak inter­molecular C—H⋯O inter­actions connect the chains into a two-dimensional network.

Related literature

For the biological activity of aroylhydrazones, see Armstrong et al. (2003[Armstrong, C. M., Bernhardt, P. V., Chin, P. & Richardson, D. R. (2003). Eur. J. Inorg. Chem. pp. 1145-1156.]). For the crystal structure of a copper complex with a related picolinoylhydrazone derivative, see: Bai et al. (2006[Bai, Y., Dang, D. B., Cao, X., Duan, C. Y. & Meng, Q. J. (2006). Inorg. Chem. Commun. pp. 86-89.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C17H11N3O)(SO4)(C5H5N)2]·0.5C4H10O

  • Mr = 707.69

  • Monoclinic, C 2/c

  • a = 26.484 (2) Å

  • b = 14.0374 (15) Å

  • c = 16.8083 (17) Å

  • β = 108.404 (2)°

  • V = 5929.2 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 298 K

  • 0.38 × 0.32 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.589, Tmax = 0.789

  • 14633 measured reflections

  • 5215 independent reflections

  • 3268 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.01

  • 5215 reflections

  • 394 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.888 (3)
Cu1—N2 1.957 (4)
Cu1—O1 1.964 (3)
Cu1—N4 2.008 (4)
Cu1—O5i 2.389 (3)
Cu2—O3 2.011 (3)
Cu2—N3 2.015 (4)
Cu2—N1 2.016 (4)
Cu2—O4 2.036 (3)
Cu2—N5 2.189 (4)
Symmetry code: (i) [x, -y+2, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯O2i 0.93 2.46 3.386 (7) 174
C5—H5⋯O3ii 0.93 2.43 3.340 (7) 165
C19—H19⋯O7iii 0.93 2.46 3.266 (7) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y, -z-{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone complexes play an important role in the fields of photoelectric materials and medicines due to their biological and pharmacological activities (Armstrong et al., 2003). The molecular structure of the related salicylaldehyde-2-pyridinecarboxyl-hydrazone has been reported (Bai et al., 2006). To throw further light on the coordination characteristics of 2-pyridinecarboxyl-hydrazone and to explore the properties of their complexes, we report the structure of the title complex (I).

The structure of repeating unit of complex I is shown in Fig. 1 and the one-dimensional polymeric chain structure of the complex is shown in Fig. 2. In the complex, each Cu ion is located in a distorted square pyramidal coordination environment. Cu1 is coordinated to two N and three O atoms, while Cu2 links to two O and three N atoms. The Cu—O (2-naphthol) distance [1.888 (3) Å] is slightly shorter than the previously reported Cu—O (phenol) distance [1.954 (3) Å] (Bai et al., 2006), whereas the Cu—O (carbozone) distance [1.964 (3) Å] is longer than the related Cu—O (carbozone) distance of 1.942 (3) Å in the related complex (Bai et al., 2006). In the crystal, weak intermolecular C—H···O interactions connect the chains into a two-dimensional net structure.

Related literature top

For the biological activity of aroylhydrazones, see Armstrong et al. (2003). For the crystal structure of a copper complex with a related picolinoylhydrazone derivative, see: Bai et al. (2006).

Experimental top

The title compound was synthesizd by mixing 2-hydroxy-1-naphthylaldehyde-2-pyridinecarboxyl-hydrazone (0.0291 g, 0.1 mmol) and copper sulfonate (0.0319 g, 0.2 mmol) and stirring in 10 ml of pyridine for 6 h. The product was filtered and then layered with ether. 2 weeks later brown single crystals were obtained. Anal. Calcd (%) for 2(C27 H21 Cu2 N5 O6 S), C4 H10 O (Mr = 1415.44): C:49.22; H:3.70; N:9.90; Found (%): C: 49.30; H: 3.52; N: 9.76

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms, with C—H 0.97 (methylene), C—H 0.93 (pyridine) C—H 0.93 (naphthalene) Å [Uiso(H) = 1.2Ueq(C)], and with C—H 0.96 Å (methyl) [Uiso(H) = 1.5Ueq(C)].

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing 30% probability displacement ellipsoids. Unlabelled atoms are related to the labelled ones by symmetry operation (+x, 2 - y, -1/2 + z). H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The one-dimensional polymeric structure of the title complex.
catena-Poly[[[pyridinecopper(II)]-(µ-2-oxidonaphthalene-1-carbaldehyde picolinoylhydrazonato)-[pyridinecopper(II)]-µ-sulfonato] diethyl ether hemisolvate] top
Crystal data top
[Cu2(C17H11N3O)(SO4)(C5H5N)2]·0.5C4H10OF(000) = 2888
Mr = 707.69Dx = 1.586 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2858 reflections
a = 26.484 (2) Åθ = 2.3–25.3°
b = 14.0374 (15) ŵ = 1.56 mm1
c = 16.8083 (17) ÅT = 298 K
β = 108.404 (2)°Block, brown
V = 5929.2 (10) Å30.38 × 0.32 × 0.16 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5215 independent reflections
Radiation source: fine-focus sealed tube3268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3131
Tmin = 0.589, Tmax = 0.789k = 1616
14633 measured reflectionsl = 1219
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.052P)2 + 19.1978P]
where P = (Fo2 + 2Fc2)/3
5215 reflections(Δ/σ)max = 0.001
394 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu2(C17H11N3O)(SO4)(C5H5N)2]·0.5C4H10OV = 5929.2 (10) Å3
Mr = 707.69Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.484 (2) ŵ = 1.56 mm1
b = 14.0374 (15) ÅT = 298 K
c = 16.8083 (17) Å0.38 × 0.32 × 0.16 mm
β = 108.404 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5215 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3268 reflections with I > 2σ(I)
Tmin = 0.589, Tmax = 0.789Rint = 0.055
14633 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.052P)2 + 19.1978P]
where P = (Fo2 + 2Fc2)/3
5215 reflectionsΔρmax = 0.85 e Å3
394 parametersΔρmin = 0.49 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.19607 (2)0.78202 (4)0.14330 (4)0.0327 (2)
Cu20.14395 (2)1.00409 (4)0.08707 (4)0.03123 (19)
N10.16100 (16)0.9077 (3)0.0066 (2)0.0299 (10)
N20.20801 (16)0.8671 (3)0.0587 (3)0.0297 (10)
N30.06961 (16)0.9731 (3)0.0874 (3)0.0331 (11)
N40.17578 (17)0.6701 (3)0.2012 (3)0.0347 (11)
N50.16690 (18)1.1384 (3)0.0190 (3)0.0368 (11)
O10.12165 (13)0.8167 (3)0.0856 (2)0.0366 (9)
O20.26870 (13)0.7475 (3)0.1794 (2)0.0374 (9)
O30.12067 (13)1.0678 (2)0.2000 (2)0.0355 (9)
O40.20303 (13)0.9942 (2)0.1402 (2)0.0352 (9)
O50.19783 (14)1.1264 (3)0.2360 (2)0.0406 (9)
O60.15828 (16)0.9758 (3)0.2900 (2)0.0449 (10)
O71.00000.6854 (6)0.25000.092 (3)
S10.17080 (5)1.04166 (9)0.22080 (8)0.0293 (3)
C10.1195 (2)0.8746 (4)0.0264 (3)0.0307 (12)
C20.0669 (2)0.9078 (4)0.0292 (3)0.0326 (12)
C30.0197 (2)0.8731 (4)0.0246 (4)0.0456 (15)
H30.01910.82860.01610.055*
C40.0273 (2)0.9056 (5)0.0820 (4)0.0550 (17)
H40.06000.88280.08080.066*
C50.0247 (2)0.9719 (5)0.1405 (4)0.0532 (17)
H50.05570.99480.17940.064*
C60.0243 (2)1.0040 (4)0.1408 (4)0.0442 (15)
H60.02571.04940.18030.053*
C70.2514 (2)0.8798 (3)0.0399 (3)0.0313 (12)
H70.24950.91840.00590.038*
C80.3020 (2)0.8388 (3)0.0846 (3)0.0297 (12)
C90.3072 (2)0.7729 (4)0.1518 (3)0.0321 (12)
C100.3584 (2)0.7317 (4)0.1922 (4)0.0411 (14)
H100.36160.68590.23350.049*
C110.4018 (2)0.7567 (4)0.1727 (4)0.0439 (15)
H110.43450.72990.20240.053*
C120.3994 (2)0.8238 (4)0.1071 (4)0.0396 (14)
C130.3491 (2)0.8645 (4)0.0621 (3)0.0332 (13)
C140.3484 (2)0.9312 (4)0.0009 (4)0.0464 (15)
H140.31620.95850.03190.056*
C150.3939 (3)0.9568 (5)0.0177 (4)0.0624 (19)
H150.39201.00090.05980.075*
C160.4427 (3)0.9177 (5)0.0272 (5)0.067 (2)
H160.47340.93580.01560.080*
C170.4451 (2)0.8525 (5)0.0886 (4)0.0556 (18)
H170.47790.82650.11880.067*
C180.1284 (2)0.6663 (4)0.2132 (4)0.0499 (16)
H180.10680.72000.20120.060*
C190.1099 (3)0.5857 (5)0.2430 (4)0.0609 (19)
H190.07680.58590.25120.073*
C200.1414 (3)0.5058 (5)0.2601 (4)0.0580 (18)
H200.12940.45020.27850.070*
C210.1905 (3)0.5093 (4)0.2498 (4)0.0531 (17)
H210.21290.45670.26280.064*
C220.2066 (2)0.5922 (4)0.2198 (3)0.0404 (14)
H220.23990.59380.21240.048*
C230.1707 (2)1.2197 (4)0.0595 (4)0.0447 (15)
H230.16221.21750.11760.054*
C240.1862 (3)1.3053 (4)0.0203 (4)0.0517 (17)
H240.18771.35980.05100.062*
C250.1995 (3)1.3085 (5)0.0656 (4)0.0590 (18)
H250.21091.36540.09390.071*
C260.1959 (3)1.2281 (5)0.1093 (4)0.0578 (18)
H260.20421.22950.16730.069*
C270.1797 (2)1.1443 (4)0.0646 (4)0.0473 (16)
H270.17761.08940.09430.057*
C280.9808 (4)0.7425 (7)0.1773 (8)0.109 (4)
H28A1.00830.78620.17330.131*
H28B0.95040.77950.17980.131*
C290.9644 (4)0.6756 (9)0.1002 (7)0.136 (4)
H29A0.99540.64390.09520.204*
H29B0.94810.71220.05050.204*
H29C0.93960.62910.10720.204*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0341 (4)0.0334 (4)0.0307 (4)0.0030 (3)0.0104 (3)0.0091 (3)
Cu20.0336 (4)0.0347 (4)0.0247 (3)0.0023 (3)0.0083 (3)0.0051 (3)
N10.028 (2)0.034 (2)0.024 (2)0.005 (2)0.002 (2)0.007 (2)
N20.032 (2)0.028 (2)0.026 (2)0.002 (2)0.004 (2)0.0031 (19)
N30.029 (2)0.038 (3)0.029 (2)0.004 (2)0.004 (2)0.001 (2)
N40.036 (3)0.036 (3)0.033 (3)0.008 (2)0.012 (2)0.005 (2)
N50.049 (3)0.037 (3)0.025 (2)0.004 (2)0.012 (2)0.002 (2)
O10.033 (2)0.044 (2)0.033 (2)0.0032 (17)0.0119 (18)0.0116 (18)
O20.036 (2)0.043 (2)0.034 (2)0.0059 (18)0.0127 (18)0.0159 (18)
O30.034 (2)0.044 (2)0.0280 (19)0.0051 (17)0.0087 (17)0.0052 (17)
O40.034 (2)0.045 (2)0.0258 (19)0.0071 (17)0.0084 (17)0.0092 (17)
O50.050 (2)0.039 (2)0.033 (2)0.0119 (19)0.0138 (19)0.0061 (18)
O60.061 (3)0.044 (2)0.034 (2)0.006 (2)0.020 (2)0.0134 (18)
O70.071 (5)0.065 (5)0.150 (8)0.0000.047 (6)0.000
S10.0337 (7)0.0319 (7)0.0224 (7)0.0006 (6)0.0089 (6)0.0004 (6)
C10.033 (3)0.033 (3)0.026 (3)0.000 (2)0.008 (2)0.002 (2)
C20.030 (3)0.037 (3)0.030 (3)0.000 (2)0.009 (2)0.002 (2)
C30.039 (3)0.053 (4)0.046 (4)0.004 (3)0.016 (3)0.011 (3)
C40.030 (3)0.071 (5)0.064 (4)0.004 (3)0.016 (3)0.006 (4)
C50.033 (3)0.079 (5)0.044 (4)0.009 (3)0.007 (3)0.010 (4)
C60.040 (4)0.053 (4)0.036 (3)0.008 (3)0.007 (3)0.010 (3)
C70.038 (3)0.028 (3)0.029 (3)0.003 (2)0.011 (3)0.000 (2)
C80.032 (3)0.027 (3)0.029 (3)0.000 (2)0.009 (2)0.002 (2)
C90.036 (3)0.029 (3)0.032 (3)0.003 (2)0.012 (3)0.002 (2)
C100.034 (3)0.040 (3)0.045 (3)0.006 (3)0.006 (3)0.008 (3)
C110.031 (3)0.041 (3)0.055 (4)0.008 (3)0.006 (3)0.004 (3)
C120.032 (3)0.035 (3)0.054 (4)0.003 (3)0.016 (3)0.007 (3)
C130.031 (3)0.034 (3)0.037 (3)0.004 (2)0.015 (3)0.007 (3)
C140.043 (4)0.053 (4)0.047 (4)0.005 (3)0.019 (3)0.006 (3)
C150.065 (5)0.069 (5)0.063 (5)0.011 (4)0.034 (4)0.010 (4)
C160.054 (5)0.071 (5)0.085 (6)0.009 (4)0.037 (4)0.003 (4)
C170.043 (4)0.057 (4)0.070 (5)0.003 (3)0.022 (4)0.002 (4)
C180.050 (4)0.047 (4)0.060 (4)0.021 (3)0.028 (3)0.021 (3)
C190.052 (4)0.064 (5)0.080 (5)0.008 (4)0.040 (4)0.027 (4)
C200.059 (4)0.055 (4)0.067 (5)0.004 (4)0.028 (4)0.032 (4)
C210.057 (4)0.041 (4)0.066 (4)0.011 (3)0.024 (4)0.023 (3)
C220.043 (3)0.038 (3)0.044 (4)0.007 (3)0.018 (3)0.008 (3)
C230.060 (4)0.044 (4)0.027 (3)0.003 (3)0.010 (3)0.000 (3)
C240.066 (4)0.036 (3)0.048 (4)0.004 (3)0.011 (3)0.002 (3)
C250.068 (5)0.047 (4)0.055 (4)0.004 (3)0.010 (4)0.016 (3)
C260.072 (5)0.066 (5)0.030 (3)0.006 (4)0.009 (3)0.016 (3)
C270.064 (4)0.047 (4)0.033 (3)0.002 (3)0.017 (3)0.007 (3)
C280.076 (6)0.081 (7)0.184 (12)0.020 (5)0.058 (7)0.039 (7)
C290.115 (9)0.170 (12)0.139 (10)0.002 (8)0.063 (8)0.014 (10)
Geometric parameters (Å, º) top
Cu1—O21.888 (3)C8—C131.459 (7)
Cu1—N21.957 (4)C9—C101.432 (7)
Cu1—O11.964 (3)C10—C111.339 (7)
Cu1—N42.008 (4)C10—H100.9300
Cu1—O5i2.389 (3)C11—C121.436 (8)
Cu2—O32.011 (3)C11—H110.9300
Cu2—N32.015 (4)C12—C171.402 (8)
Cu2—N12.016 (4)C12—C131.426 (7)
Cu2—O42.036 (3)C13—C141.409 (8)
Cu2—N52.189 (4)C14—C151.368 (8)
N1—C11.328 (6)C14—H140.9300
N1—N21.398 (5)C15—C161.388 (9)
N2—C71.296 (6)C15—H150.9300
N3—C61.325 (6)C16—C171.365 (9)
N3—C21.359 (6)C16—H160.9300
N4—C181.333 (7)C17—H170.9300
N4—C221.341 (6)C18—C191.387 (8)
N5—C271.340 (7)C18—H180.9300
N5—C231.349 (7)C19—C201.372 (8)
O1—C11.273 (6)C19—H190.9300
O2—C91.297 (6)C20—C211.367 (8)
O3—S11.520 (4)C20—H200.9300
O4—S11.510 (3)C21—C221.387 (7)
O5—S11.452 (4)C21—H210.9300
O5—Cu1ii2.389 (3)C22—H220.9300
O6—S11.440 (4)C23—C241.371 (8)
O7—C28iii1.416 (10)C23—H230.9300
O7—C281.416 (10)C24—C251.374 (9)
C1—C21.486 (7)C24—H240.9300
C2—C31.366 (7)C25—C261.366 (9)
C3—C41.391 (8)C25—H250.9300
C3—H30.9300C26—C271.389 (8)
C4—C51.371 (8)C26—H260.9300
C4—H40.9300C27—H270.9300
C5—C61.376 (8)C28—C291.547 (13)
C5—H50.9300C28—H28A0.9700
C6—H60.9300C28—H28B0.9700
C7—C81.434 (7)C29—H29A0.9600
C7—H70.9300C29—H29B0.9600
C8—C91.433 (7)C29—H29C0.9600
O2—Cu1—N290.44 (16)C7—C8—C13120.0 (5)
O2—Cu1—O1169.76 (15)O2—C9—C10117.0 (5)
N2—Cu1—O181.79 (16)O2—C9—C8124.6 (5)
O2—Cu1—N492.59 (16)C10—C9—C8118.5 (5)
N2—Cu1—N4163.41 (17)C11—C10—C9122.4 (5)
O1—Cu1—N493.03 (16)C11—C10—H10118.8
O2—Cu1—O5i96.92 (14)C9—C10—H10118.8
N2—Cu1—O5i108.92 (15)C10—C11—C12121.8 (5)
O1—Cu1—O5i91.92 (14)C10—C11—H11119.1
N4—Cu1—O5i86.91 (16)C12—C11—H11119.1
O3—Cu2—N394.91 (16)C17—C12—C13119.7 (6)
O3—Cu2—N1164.13 (16)C17—C12—C11121.7 (5)
N3—Cu2—N180.49 (17)C13—C12—C11118.6 (5)
O3—Cu2—O470.46 (13)C14—C13—C12117.0 (5)
N3—Cu2—O4150.44 (16)C14—C13—C8123.3 (5)
N1—Cu2—O4106.43 (15)C12—C13—C8119.7 (5)
O3—Cu2—N593.57 (15)C15—C14—C13121.7 (6)
N3—Cu2—N5107.27 (17)C15—C14—H14119.1
N1—Cu2—N5102.30 (16)C13—C14—H14119.1
O4—Cu2—N599.37 (16)C14—C15—C16120.9 (6)
C1—N1—N2110.1 (4)C14—C15—H15119.6
C1—N1—Cu2115.5 (3)C16—C15—H15119.6
N2—N1—Cu2134.3 (3)C17—C16—C15119.3 (6)
C7—N2—N1118.2 (4)C17—C16—H16120.3
C7—N2—Cu1128.3 (4)C15—C16—H16120.3
N1—N2—Cu1112.8 (3)C16—C17—C12121.4 (6)
C6—N3—C2117.8 (5)C16—C17—H17119.3
C6—N3—Cu2127.3 (4)C12—C17—H17119.3
C2—N3—Cu2114.7 (3)N4—C18—C19123.0 (5)
C18—N4—C22117.6 (5)N4—C18—H18118.5
C18—N4—Cu1120.9 (4)C19—C18—H18118.5
C22—N4—Cu1121.0 (4)C20—C19—C18118.8 (6)
C27—N5—C23116.2 (5)C20—C19—H19120.6
C27—N5—Cu2122.6 (4)C18—C19—H19120.6
C23—N5—Cu2121.1 (3)C21—C20—C19118.8 (6)
C1—O1—Cu1109.5 (3)C21—C20—H20120.6
C9—O2—Cu1130.7 (3)C19—C20—H20120.6
S1—O3—Cu294.59 (17)C20—C21—C22119.4 (6)
S1—O4—Cu293.93 (17)C20—C21—H21120.3
S1—O5—Cu1ii135.4 (2)C22—C21—H21120.3
C28iii—O7—C28110.9 (11)N4—C22—C21122.3 (5)
O6—S1—O5112.6 (2)N4—C22—H22118.8
O6—S1—O4111.3 (2)C21—C22—H22118.8
O5—S1—O4110.4 (2)N5—C23—C24123.9 (5)
O6—S1—O3110.2 (2)N5—C23—H23118.0
O5—S1—O3111.0 (2)C24—C23—H23118.0
O4—S1—O3100.8 (2)C23—C24—C25118.2 (6)
O1—C1—N1125.7 (5)C23—C24—H24120.9
O1—C1—C2119.5 (5)C25—C24—H24120.9
N1—C1—C2114.8 (5)C26—C25—C24120.0 (6)
N3—C2—C3122.6 (5)C26—C25—H25120.0
N3—C2—C1114.3 (4)C24—C25—H25120.0
C3—C2—C1123.1 (5)C25—C26—C27118.1 (6)
C2—C3—C4118.6 (6)C25—C26—H26121.0
C2—C3—H3120.7C27—C26—H26121.0
C4—C3—H3120.7N5—C27—C26123.6 (6)
C5—C4—C3118.9 (6)N5—C27—H27118.2
C5—C4—H4120.5C26—C27—H27118.2
C3—C4—H4120.5O7—C28—C29107.9 (8)
C4—C5—C6119.1 (6)O7—C28—H28A110.1
C4—C5—H5120.5C29—C28—H28A110.1
C6—C5—H5120.5O7—C28—H28B110.1
N3—C6—C5123.0 (6)C29—C28—H28B110.1
N3—C6—H6118.5H28A—C28—H28B108.4
C5—C6—H6118.5C28—C29—H29A109.5
N2—C7—C8124.8 (5)C28—C29—H29B109.5
N2—C7—H7117.6H29A—C29—H29B109.5
C8—C7—H7117.6C28—C29—H29C109.5
C9—C8—C7120.9 (5)H29A—C29—H29C109.5
C9—C8—C13119.1 (5)H29B—C29—H29C109.5
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y+2, z1/2; (iii) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O2iv0.932.463.386 (7)174
C5—H5···O3v0.932.433.340 (7)165
C19—H19···O7vi0.932.463.266 (7)145
Symmetry codes: (iv) x+1/2, y+1/2, z+1/2; (v) x, y, z1/2; (vi) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C17H11N3O)(SO4)(C5H5N)2]·0.5C4H10O
Mr707.69
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)26.484 (2), 14.0374 (15), 16.8083 (17)
β (°) 108.404 (2)
V3)5929.2 (10)
Z8
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.38 × 0.32 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.589, 0.789
No. of measured, independent and
observed [I > 2σ(I)] reflections
14633, 5215, 3268
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.01
No. of reflections5215
No. of parameters394
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.052P)2 + 19.1978P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.85, 0.49

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O21.888 (3)Cu2—O32.011 (3)
Cu1—N21.957 (4)Cu2—N32.015 (4)
Cu1—O11.964 (3)Cu2—N12.016 (4)
Cu1—N42.008 (4)Cu2—O42.036 (3)
Cu1—O5i2.389 (3)Cu2—N52.189 (4)
Symmetry code: (i) x, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O2ii0.932.463.386 (7)174.2
C5—H5···O3iii0.932.433.340 (7)165.2
C19—H19···O7iv0.932.463.266 (7)144.7
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z1/2; (iv) x+1, y, z+1/2.
 

Acknowledgements

We acknowledge the financial support of the National Natural Science Foundation of China (grant No. 20671048).

References

First citationArmstrong, C. M., Bernhardt, P. V., Chin, P. & Richardson, D. R. (2003). Eur. J. Inorg. Chem. pp. 1145–1156.  CSD CrossRef Google Scholar
First citationBai, Y., Dang, D. B., Cao, X., Duan, C. Y. & Meng, Q. J. (2006). Inorg. Chem. Commun. pp. 86–89.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds