metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1593-m1594

catena-Poly[[di-μ-chlorido-bis­­{[6-meth­oxy-2-(4-methyl­phenyl­iminio­methyl)phenolato-κ2O,O′]cadmium(II)}]-di-μ2-thio­cyanato-κ2N:S;κ2S:N]

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 9 October 2008; accepted 16 November 2008; online 22 November 2008)

The asymmetric unit of the title compound, [Cd2Cl2(NCS)2(C15H15NO2)2]n, contains the Schiff base 2-[(4-methyl­phenyl­imino)meth­yl]-6-methoxy­phenol (HL) ligand, one thio­cyanate and one chloride ligand coordinated to a cadmium centre. The cadmium centers are linked to each other via two thio­cyanate and two chloride bridges alternately, resulting in centrosymmetric zigzag chains running parallel to the a axis. The CdII coordination environment contains two Cl atoms, one thio­cyanate (SCN) S atom, one isothio­cyanate (NCS) N atom and two O atoms from the HL ligand. The Schiff base ligand is in the trans conformation.

Related literature

For related literature regarding Schiff bases and their complexes, see: Mondal et al. (1999[Mondal, A., Mostafa, G., Ghosh, A., Laskar, I. R. & Chaudhuri, N. R. (1999). J. Chem. Soc. Dalton Trans. pp. 9-10.]); Sen et al. (2006[Sen, S., Talukder, P., Dey, S. K., Mitra, S., Rosair, G., Hughes, D. L., Yap, G. P. A., Pilet, G., Gramlich, V. & Matsushita, T. (2006). Dalton Trans. pp. 1758-1767.]); Yi et al. (2004[Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). Inorg. Chem. 43, 33-43.]); Yu et al. (2007[Yu, Y. Y., Zhao, G. L. & Wen, Y. H. (2007). Chin. J. Struct. Chem. 26, 1395-1402.]); Zhao et al. (2007[Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267-m268.]); Zhou & Zhao (2007[Zhou, Y.-H. & Zhao, G.-L. (2007). Acta Cryst. E63, m43-m44.]). For related structures, see: Ding et al. (2006[Ding, B., Yi, L., Wang, Y., Cheng, P., Liao, D. Z., Yan, S. P., Jiang, Z. H., Song, H. B. & Wang, H. G. (2006). Dalton Trans. pp. 665-675.]); Suh et al. (2007[Suh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2Cl2(NCS)2(C15H15NO2)2]

  • Mr = 447.23

  • Triclinic, [P \overline 1]

  • a = 9.0485 (2) Å

  • b = 9.7321 (2) Å

  • c = 10.6676 (3) Å

  • α = 71.518 (2)°

  • β = 77.444 (2)°

  • γ = 80.732 (2)°

  • V = 865.32 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 296 (2) K

  • 0.27 × 0.11 × 0.08 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.82, Tmax = 0.882

  • 13032 measured reflections

  • 3940 independent reflections

  • 3225 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 1.01

  • 3940 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

salen-type Schiff bases are capable of forming complexes with different coordination modes, with certain metal ions. Some of these compounds have promising applications in catalysis, enzyme models and optical and magnetic materials (Sen et al., 2006). In addition, the unusual coordination modes of Schiff base ligands leads to unusual structures of the complexes. In previous articles (Zhou & Zhao, 2007; Yu et al., 2007; Zhao et al., 2007), we reported the synthesis and the ligating properties of the title Schiff base ligand, HL, derived from the condensation of o-vanillin and p-toluidine, to several transition and rare earth metals with different anions. In addition, many coordination polymers of one-, two-, and three-dimensional infinite frameworks involving cadmium(II) ions have been synthesized and studied due to their potential applications (Mondal et al., 1999). Coordination polymers of cadmium(II) have been exploited using anionic ligands, e.g., Cl-, Br-, I-, SCN-, N3-, SeCN-, etc., which are also an essential part of the coordination polyhedron, besides the organic ligand (Yi et al., 2004). Here we decribe the synthesis and crystal structure of a new cadmium(II) complex (Figure 1), [Cd(HL)(SCN)Cl]n, involving the Schiff base HL.

As shown in Fig. 1 and 2, each CdII atom is hexacoordinated by two Cl atoms, one thiocyanate S atom, one isothiocyanate N atom and two O atoms from the Schiff base ligand, HL. The HL ligand is in the trans conformation. The geometry around the CdII atom is a distorted octahedron. Neighbouring octahedral Cd centres are bridged by, alternately, the SCN and NCS ligands and two Cl ligands to form alternating eight-membered Cd—S—C—N—Cd—S—C—N– and four-membered Cd—Cl—Cd—Cl- rings. These chains run parallel to the a axis. The Cd—SSCN bond length is longer than the Cd—NNCS distance [2.7096 (11) versus 2.2484 (26) Å], which, together with the bond angles, are similar to related compounds in the literatures (Suh et al., 2007; Ding et al., 2006).

Related literature top

For related literature regarding Schiff bases and their complexes, see: Mondal et al. (1999); Sen et al. (2006); Yi et al. (2004); Yu et al. (2007); Zhao et al. (2007); Zhou & Zhao (2007). For related structures, see: Ding et al. (2006); Suh et al. (2007).

Experimental top

First, the ligand was prepared by the direct solid-phase reaction of o-vanillin (10 mmol, 1.5251 g) and p-toluidine (10 mmol, 1.0700 g). The reactants were ground in an agate mortar. The color of the mixture changed from light yellow to orange. Then, for the preparation of the complex, a solution of CdCl2. 2.5H2O (1 mmol, 0.2931 g) and KSCN (0.1945 g, 2 mmol) in methanol (10 ml) was added to a methanol (30 ml) solution of the Schiff base ligand (2 mmol, 0.4826 g). Yellow crystals were obtained after 10 days.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H=0.93 Å, aliphatic C—H = 0.97 (2) Å, N—H=0.86 Å, Uiso(H) = 1.2Ueq(C,N)].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination around the cadmium(II) center, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A perspective view of the title compound along the b axis. H atoms have been omitted for clarity.
catena-Poly[[di-µ-chlorido-bis{[6-methoxy-2-(4- methylphenyliminiomethyl)phenolato-κ2O,O']cadmium(II)}]- di-µ2-thiocyanato-κ2N:S;κ2S:N] top
Crystal data top
[Cd2Cl2(NCS)2(C15H15NO2)2]Z = 2
Mr = 447.23F(000) = 444
Triclinic, P1Dx = 1.717 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0485 (2) ÅCell parameters from 4749 reflections
b = 9.7321 (2) Åθ = 2.1–27.4°
c = 10.6676 (3) ŵ = 1.55 mm1
α = 71.518 (2)°T = 296 K
β = 77.444 (2)°Block, red
γ = 80.732 (2)°0.27 × 0.11 × 0.08 mm
V = 865.32 (4) Å3
Data collection top
Bruker APEXII
diffractometer
3940 independent reflections
Radiation source: fine-focus sealed tube3225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.82, Tmax = 0.882k = 1212
13032 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1806P]
where P = (Fo2 + 2Fc2)/3
3940 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cd2Cl2(NCS)2(C15H15NO2)2]γ = 80.732 (2)°
Mr = 447.23V = 865.32 (4) Å3
Triclinic, P1Z = 2
a = 9.0485 (2) ÅMo Kα radiation
b = 9.7321 (2) ŵ = 1.55 mm1
c = 10.6676 (3) ÅT = 296 K
α = 71.518 (2)°0.27 × 0.11 × 0.08 mm
β = 77.444 (2)°
Data collection top
Bruker APEXII
diffractometer
3940 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3225 reflections with I > 2σ(I)
Tmin = 0.82, Tmax = 0.882Rint = 0.029
13032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.01Δρmax = 0.54 e Å3
3940 reflectionsΔρmin = 0.52 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.16960 (2)0.06238 (2)0.54427 (2)0.04022 (10)
Cl10.05869 (9)0.10606 (10)0.33628 (8)0.0508 (2)
O10.0129 (2)0.2707 (2)0.5970 (2)0.0479 (5)
N10.2771 (3)0.0247 (3)0.9681 (2)0.0380 (5)
H1D0.27670.02670.88820.046*
C10.6806 (5)0.4746 (4)1.2474 (5)0.0786 (13)
H1A0.67770.46481.33470.118*
H1B0.78250.46851.19770.118*
H1C0.64820.56721.25690.118*
S10.64223 (10)0.27344 (10)0.58734 (12)0.0690 (3)
O20.1735 (2)0.0798 (2)0.7460 (2)0.0448 (5)
C20.5752 (4)0.3537 (4)1.1732 (4)0.0549 (9)
N20.3597 (3)0.1180 (3)0.5586 (3)0.0555 (7)
C30.4944 (4)0.2504 (4)1.2320 (4)0.0538 (9)
H3A0.50660.25551.31780.065*
C40.3960 (4)0.1396 (4)1.1679 (3)0.0472 (8)
H4A0.34280.07121.20970.057*
C50.3782 (3)0.1326 (3)1.0407 (3)0.0385 (7)
C60.4605 (4)0.2321 (4)0.9780 (4)0.0541 (9)
H6A0.45100.22540.89110.065*
C70.5572 (4)0.3416 (4)1.0452 (4)0.0645 (10)
H7A0.61160.40911.00290.077*
C80.1852 (3)0.0767 (3)1.0080 (3)0.0405 (7)
H8A0.18350.08241.09370.049*
C90.0880 (3)0.1784 (3)0.9282 (3)0.0373 (6)
C100.0067 (4)0.2857 (4)0.9810 (3)0.0543 (9)
H10A0.00470.28761.06730.065*
C110.0998 (4)0.3851 (4)0.9058 (4)0.0604 (10)
H11A0.16040.45600.94040.073*
C120.1062 (3)0.3829 (3)0.7766 (3)0.0464 (8)
H12A0.17180.45140.72670.056*
C130.0171 (3)0.2811 (3)0.7232 (3)0.0369 (6)
C140.0858 (3)0.1752 (3)0.7971 (3)0.0334 (6)
C150.1276 (4)0.3549 (4)0.5233 (3)0.0516 (8)
H15A0.18010.42710.56540.077*
H15B0.19870.29210.52210.077*
H15C0.08120.40190.43300.077*
C160.4777 (4)0.1803 (3)0.5696 (3)0.0441 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03390 (14)0.05451 (16)0.03464 (15)0.00929 (10)0.01210 (9)0.01906 (11)
Cl10.0445 (4)0.0800 (6)0.0284 (4)0.0077 (4)0.0083 (3)0.0144 (4)
O10.0485 (12)0.0591 (13)0.0372 (12)0.0207 (10)0.0209 (10)0.0196 (10)
N10.0383 (13)0.0445 (13)0.0308 (14)0.0031 (11)0.0115 (10)0.0104 (11)
C10.056 (2)0.062 (2)0.100 (3)0.0001 (19)0.035 (2)0.012 (2)
S10.0392 (5)0.0516 (5)0.0980 (8)0.0070 (4)0.0190 (5)0.0023 (5)
O20.0492 (13)0.0502 (12)0.0392 (12)0.0204 (10)0.0211 (10)0.0226 (10)
C20.0390 (18)0.0470 (19)0.068 (3)0.0045 (15)0.0191 (17)0.0037 (17)
N20.0361 (15)0.0505 (16)0.076 (2)0.0055 (13)0.0112 (14)0.0172 (15)
C30.052 (2)0.063 (2)0.040 (2)0.0058 (17)0.0179 (16)0.0018 (16)
C40.0464 (18)0.0571 (19)0.0355 (18)0.0009 (15)0.0106 (14)0.0105 (15)
C50.0341 (15)0.0419 (16)0.0375 (17)0.0010 (12)0.0119 (13)0.0066 (13)
C60.052 (2)0.061 (2)0.051 (2)0.0156 (16)0.0234 (17)0.0204 (17)
C70.057 (2)0.062 (2)0.079 (3)0.0174 (18)0.025 (2)0.030 (2)
C80.0395 (17)0.0526 (18)0.0284 (16)0.0012 (14)0.0054 (13)0.0125 (13)
C90.0336 (15)0.0459 (16)0.0314 (16)0.0038 (13)0.0064 (12)0.0132 (13)
C100.056 (2)0.069 (2)0.0392 (19)0.0146 (17)0.0108 (16)0.0249 (17)
C110.058 (2)0.069 (2)0.058 (2)0.0254 (18)0.0117 (18)0.0367 (19)
C120.0386 (17)0.0500 (18)0.0453 (19)0.0127 (14)0.0117 (14)0.0123 (15)
C130.0337 (15)0.0425 (16)0.0338 (16)0.0011 (12)0.0088 (12)0.0106 (13)
C140.0290 (14)0.0377 (15)0.0323 (16)0.0005 (11)0.0056 (11)0.0104 (12)
C150.0463 (19)0.062 (2)0.044 (2)0.0107 (16)0.0222 (15)0.0110 (16)
C160.0392 (17)0.0434 (17)0.048 (2)0.0021 (14)0.0039 (14)0.0144 (14)
Geometric parameters (Å, º) top
Cd1—O22.2191 (19)C3—C41.383 (4)
Cd1—N22.244 (3)C3—H3A0.9300
Cd1—Cl12.5187 (8)C4—C51.381 (4)
Cd1—O12.529 (2)C4—H4A0.9300
Cd1—Cl1i2.6833 (9)C5—C61.379 (4)
Cd1—S1ii2.7107 (10)C6—C71.380 (5)
Cl1—Cd1i2.6833 (9)C6—H6A0.9300
O1—C131.373 (3)C7—H7A0.9300
O1—C151.428 (4)C8—C91.410 (4)
N1—C81.303 (4)C8—H8A0.9300
N1—C51.421 (4)C9—C141.413 (4)
N1—H1D0.8600C9—C101.420 (4)
C1—C21.515 (5)C10—C111.352 (5)
C1—H1A0.9600C10—H10A0.9300
C1—H1B0.9600C11—C121.400 (5)
C1—H1C0.9600C11—H11A0.9300
S1—C161.629 (3)C12—C131.362 (4)
S1—Cd1ii2.7107 (10)C12—H12A0.9300
O2—C141.299 (3)C13—C141.430 (4)
C2—C71.376 (5)C15—H15A0.9600
C2—C31.379 (5)C15—H15B0.9600
N2—C161.150 (4)C15—H15C0.9600
O2—Cd1—N292.93 (9)C3—C4—H4A120.7
O2—Cd1—Cl1155.30 (6)C6—C5—C4120.3 (3)
N2—Cd1—Cl1110.91 (8)C6—C5—N1117.0 (3)
O2—Cd1—O167.95 (7)C4—C5—N1122.7 (3)
N2—Cd1—O1160.37 (10)C5—C6—C7119.4 (3)
Cl1—Cd1—O188.62 (5)C5—C6—H6A120.3
O2—Cd1—Cl1i86.93 (6)C7—C6—H6A120.3
N2—Cd1—Cl1i96.98 (7)C2—C7—C6121.8 (3)
Cl1—Cd1—Cl1i83.92 (3)C2—C7—H7A119.1
O1—Cd1—Cl1i86.77 (6)C6—C7—H7A119.1
O2—Cd1—S1ii94.23 (6)N1—C8—C9123.5 (3)
N2—Cd1—S1ii93.69 (8)N1—C8—H8A118.3
Cl1—Cd1—S1ii90.71 (3)C9—C8—H8A118.3
O1—Cd1—S1ii83.73 (6)C8—C9—C14120.8 (2)
Cl1i—Cd1—S1ii169.20 (3)C8—C9—C10118.9 (3)
Cd1—Cl1—Cd1i96.08 (3)C14—C9—C10120.3 (3)
C13—O1—C15118.3 (2)C11—C10—C9119.9 (3)
C13—O1—Cd1113.42 (16)C11—C10—H10A120.0
C15—O1—Cd1126.96 (18)C9—C10—H10A120.0
C8—N1—C5127.9 (3)C10—C11—C12121.0 (3)
C8—N1—H1D116.1C10—C11—H11A119.5
C5—N1—H1D116.1C12—C11—H11A119.5
C2—C1—H1A109.5C13—C12—C11120.5 (3)
C2—C1—H1B109.5C13—C12—H12A119.7
H1A—C1—H1B109.5C11—C12—H12A119.7
C2—C1—H1C109.5C12—C13—O1125.2 (3)
H1A—C1—H1C109.5C12—C13—C14121.0 (3)
H1B—C1—H1C109.5O1—C13—C14113.9 (2)
C16—S1—Cd1ii100.35 (12)O2—C14—C9121.3 (3)
C14—O2—Cd1123.29 (18)O2—C14—C13121.4 (3)
C7—C2—C3117.5 (3)C9—C14—C13117.3 (2)
C7—C2—C1121.8 (4)O1—C15—H15A109.5
C3—C2—C1120.7 (4)O1—C15—H15B109.5
C16—N2—Cd1160.6 (3)H15A—C15—H15B109.5
C2—C3—C4122.3 (3)O1—C15—H15C109.5
C2—C3—H3A118.8H15A—C15—H15C109.5
C4—C3—H3A118.8H15B—C15—H15C109.5
C5—C4—C3118.6 (3)N2—C16—S1178.1 (3)
C5—C4—H4A120.7
O2—Cd1—Cl1—Cd1i68.87 (15)C8—N1—C5—C6177.7 (3)
N2—Cd1—Cl1—Cd1i95.17 (8)C8—N1—C5—C42.6 (5)
O1—Cd1—Cl1—Cd1i86.90 (6)C4—C5—C6—C72.1 (5)
Cl1i—Cd1—Cl1—Cd1i0.0N1—C5—C6—C7178.2 (3)
S1ii—Cd1—Cl1—Cd1i170.61 (3)C3—C2—C7—C60.9 (6)
O2—Cd1—O1—C132.23 (18)C1—C2—C7—C6179.6 (3)
N2—Cd1—O1—C1316.0 (4)C5—C6—C7—C20.7 (6)
Cl1—Cd1—O1—C13169.75 (19)C5—N1—C8—C9179.5 (3)
Cl1i—Cd1—O1—C1385.76 (19)N1—C8—C9—C140.1 (5)
S1ii—Cd1—O1—C1399.38 (19)N1—C8—C9—C10179.3 (3)
O2—Cd1—O1—C15169.0 (3)C8—C9—C10—C11179.4 (3)
N2—Cd1—O1—C15177.2 (3)C14—C9—C10—C110.2 (5)
Cl1—Cd1—O1—C153.0 (2)C9—C10—C11—C121.0 (6)
Cl1i—Cd1—O1—C1581.0 (2)C10—C11—C12—C130.8 (6)
S1ii—Cd1—O1—C1593.8 (2)C11—C12—C13—O1178.9 (3)
N2—Cd1—O2—C14177.8 (2)C11—C12—C13—C140.6 (5)
Cl1—Cd1—O2—C1417.1 (3)C15—O1—C13—C1211.6 (5)
O1—Cd1—O2—C142.4 (2)Cd1—O1—C13—C12179.6 (3)
Cl1i—Cd1—O2—C1485.3 (2)C15—O1—C13—C14169.9 (3)
S1ii—Cd1—O2—C1483.9 (2)Cd1—O1—C13—C141.9 (3)
O2—Cd1—N2—C1659.5 (9)Cd1—O2—C14—C9177.4 (2)
Cl1—Cd1—N2—C16127.1 (9)Cd1—O2—C14—C132.4 (4)
O1—Cd1—N2—C1646.8 (10)C8—C9—C14—O20.5 (4)
Cl1i—Cd1—N2—C16146.8 (9)C10—C9—C14—O2178.7 (3)
S1ii—Cd1—N2—C1634.9 (9)C8—C9—C14—C13179.3 (3)
C7—C2—C3—C41.3 (5)C10—C9—C14—C131.4 (4)
C1—C2—C3—C4179.2 (3)C12—C13—C14—O2178.5 (3)
C2—C3—C4—C50.1 (5)O1—C13—C14—O20.0 (4)
C3—C4—C5—C61.8 (5)C12—C13—C14—C91.7 (4)
C3—C4—C5—N1178.5 (3)O1—C13—C14—C9179.8 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd2Cl2(NCS)2(C15H15NO2)2]
Mr447.23
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.0485 (2), 9.7321 (2), 10.6676 (3)
α, β, γ (°)71.518 (2), 77.444 (2), 80.732 (2)
V3)865.32 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.27 × 0.11 × 0.08
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.82, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
13032, 3940, 3225
Rint0.029
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.01
No. of reflections3940
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.52

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, B., Yi, L., Wang, Y., Cheng, P., Liao, D. Z., Yan, S. P., Jiang, Z. H., Song, H. B. & Wang, H. G. (2006). Dalton Trans. pp. 665–675.  Web of Science CSD CrossRef Google Scholar
First citationMondal, A., Mostafa, G., Ghosh, A., Laskar, I. R. & Chaudhuri, N. R. (1999). J. Chem. Soc. Dalton Trans. pp. 9–10.  Web of Science CSD CrossRef Google Scholar
First citationSen, S., Talukder, P., Dey, S. K., Mitra, S., Rosair, G., Hughes, D. L., Yap, G. P. A., Pilet, G., Gramlich, V. & Matsushita, T. (2006). Dalton Trans. pp. 1758–1767.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYi, L., Ding, B., Zhao, B., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). Inorg. Chem. 43, 33–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYu, Y. Y., Zhao, G. L. & Wen, Y. H. (2007). Chin. J. Struct. Chem. 26, 1395–1402.  CAS Google Scholar
First citationZhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267–m268.  CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Y.-H. & Zhao, G.-L. (2007). Acta Cryst. E63, m43–m44.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1593-m1594
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds