research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of a new chiral α-amino­oxime nickel(II) complex

crossmark logo

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences, BP 2121, Université Abdelmalek Essaadi, Tétouan, Morocco, and bUniv. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
*Correspondence e-mail: mathieu.sauthier@univ-lille.fr

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 25 August 2021; accepted 11 October 2021; online 19 October 2021)

A dinuclear nickel complex with (S)-limonene based amino­oxime ligand has been isolated and its crystal structure determined. The resolved structure of dichloridobis­{(2S,5R)-2-methyl-5-(prop-1-en-2-yl)-2-[(pyridin-2-yl)methyl­amino]­cyclo­hexan-1-one oxime}dinickel(II), [Ni2Cl2(C16H23ClN3O)2], at 100 K has monoclinic (P21) symmetry. The two NiII ions in the dinuclear complex are each coordinated in a distorted octa­hedral environment by three nitro­gen atoms, a terminal chloride and two μ bridging chlorides. Each oxime ligand is coordinated to nickel(II) by the three nitro­gen atoms, leading to two five-membered chelate rings, each displaying an envelope conformation. In the crystal, numerous inter­molecular and intra­molecular hydrogen bonds lead to the formation of a three-dimensional network structure.

1. Chemical context

Asymmetric synthesis allows the preparation of enanti­omerically enriched compounds either by using a chiral auxiliary, which will be temporarily introduced, or by using catalytic procedures (Gawley & Aubé, 2012[Gawley, R. E. & Aubé, J. (2012). Principles and applications of asymmetric synthesis, 2nd ed. Amsterdam: Elsevier Science]). This latter method is particularly attractive as it contributes to the development of green chemistry, which maximizes efficiency and minimizes haza­rdous effects on human health and the environment (Anastas & Zimmerman, 2013[Anastas, P. T. & Zimmerman, J. B. (2013). Environ. Sci. Technol. 37, 95A-101A.]). Thus, asymmetric catalysis avoids synthetic steps and only catalytic amounts of the optically pure auxiliary are needed (Ojima, 2010[Ojima, I. (2010). Catalytic asymmetric synthesis, 3rd ed. Hoboken: Wiley]). As part of the development of this chemistry, the synthesis of new chiral organometallic complexes is always challenging. The pivotal point is then the synthesis of optically pure ligands, which will be coordinated to the metal center. In terms of sustainable chemistry, using the chiral pool to develop new ligands is most inter­esting (Elalami et al., 2015[El Alami, M. S. I., El Amrani, M. A., Agbossou-Niedercorn, F., Suisse, I. & Mortreux, A. (2015). Chem. Eur. J. 21, 1398-1413.]). Coord­ination metal complexes containing terpenoid fragments are widely used in the pharmaceutical field and in catalysis. We have therefore developed ligands based on terpenes such as pinene and limonene (El Alami et al., 2009[Elalami, M. S., Dahdouh, A. A., Mansour, A. I., ElAmrani, M. A., Suisse, I., Mortreux, A. & Agbossou-Niedercorn, F. (2009). C. R. Chim. 12, 1253-1258.], 2015[El Alami, M. S. I., El Amrani, M. A., Agbossou-Niedercorn, F., Suisse, I. & Mortreux, A. (2015). Chem. Eur. J. 21, 1398-1413.]; Chahboun et al., 2012[Chahboun, G., Brito, J. A., Royo, B., El Amrani, M. A., Gómez-Bengoa, E., Mosquera, M. E. G., Cuenca, T. & Royo, E. (2012). Eur. J. Inorg. Chem. pp. 2940-2949.]). In particular, the synthesis of optically pure amino-oxime ligands has been performed successfully from (R)-limonene (El Alami et al., 2012[El Alami, M. S. I., El Amrani, M. A., Dahdouh, A., Roussel, P., Suisse, I. & Mortreux, A. (2012). Chirality, 24, 675-682.]). These compounds possess structures with two or three nitro­gen atoms as donor heteroatoms that could coordinate to the metal center. They have advantageously replaced phosphine ligands, which are generally unstable under air. Ruthenium (Benabdelouahab et al., 2015[Benabdelouahab, Y., Muñoz-Moreno, L., Frik, M., de la Cueva-Alique, I., El Amrani, M. A., Contel, M., Bajo, A. M., Cuenca, T. & Royo, E. (2015). Eur. J. Inorg. Chem. pp. 2295-2307.]) and palladium (de la Cueva-Alique et al., 2019[Cueva-Alique, I. de la, Muñoz-Moreno, L., de la Torre-Rubio, E., Bajo, A. M., Gude, L., Cuenca, T. & Royo, E. (2019). Dalton Trans. 48, 14279-14293.]) complexes have already been synthezised with these ligands. Here we report the first synthesis of a limonene-based α-amino­oxime nickel complex and its crystal structure. In the dinuclear title complex, each nickel ion is coordinated by (1S,4R)-1-picolyl­amino-p-menth-8-en-2-one oxime. The ligand was first synthesized from (R)-limonene through the addition of nitrosyl chloride, NOCl, to a picolyl­amine moiety, allowing the formation of the oxime moiety.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the monoclinic space group P21 with two chiral mol­ecules per unit cell. The two NiII ions in the dinuclear complex are each coordinated by three nitro­gen atoms, a terminal chloride and two μ bridging chlorides. The environment around each metal center can then be described as a distorted octa­hedron with N1—Ni1—N2 and Cl1—Ni1—Cl3 angles of 79.91 (13) and 91.99 (4)°, respectively, together with Cl1—Ni1—N2 and Cl2—Ni1—N1 angles of 165.04 (11) and 88.69 (10)°, respectively. A similar arrange­ment can be found around the Ni2 atom [N4—Ni2—N5, Cl2—Ni2—Cl4, Cl4—Ni2—N5 and Cl4—Ni2—N4 = 79.7 (2), 99.38 (4), 166.04 (12) and 93.24 (16)°, respectively].

[Figure 1]
Figure 1
Displacement ellipsoid plot at the 50% probability level for Ni2(amino-oxime)2Cl4. H atoms are omitted for clarity.

Each amino­oxime ligand is coordinated to nickel(II) by the three nitro­gen atoms, leading to two five-membered chelate rings, each displaying an envelope conformation (with N2 as the flap for Ni1/N1/C5/C6/N2 and N5 for Ni2/N4/C21/C22/N5). The six-membered carbocycles of the limonene units adopt a chair conformation. The lengths of the Ni1—N1, Ni1—N2 and Ni1—N3 bonds are 2.077 (3), 2.126 (4) and 2.041 (3) Å, respectively, while Ni2—N4, Ni2—N5 and Ni2—N6 are 2.095 (4), 2.103 (4) and 2.027 (3) Å. Atoms Cl1 and Cl4 are in a trans-position at distances of 2.4408 (12) and 2.4077 (14) Å from the metal centers Ni1 and Ni2, respectively. The two metal centers are linked by two bridging Cl atoms with an average Ni—Cl distance of 2.42 Å, which is normal for these bond lengths. All these values compare well with literature values. The two nickel ions are separated by a distance of 3.5198 (7) Å, which is similar to average values (Zheng et al., 2010[Zheng, L., Zhang, S., Li, K., Chen, W., Chen, Y., Xu, B., Hu, B., Li, Y. & Li, W. (2010). J. Mol. Struct. 984, 153-156.]; Cheng et al., 2012[Cheng, T.-P., Liao, B.-S., Liu, Y.-H., Peng, S.-M. & Liu, S.-T. (2012). Dalton Trans. 41, 3468-3473.]).

3. Supra­molecular features

The crystal structure is stabilized by numerous inter­molecular and intra­molecular hydrogen bonds (Table 1[link]), which link the component into a three-dimensional network (Figs. 2[link] and 3[link]). In particular, the two {Ni(aminoxime)μ-Cl}Cl units are slightly asymmetrical with the existence of a hydrogen-bonding inter­action between the amine N2—H2 linked to Ni1 and the chlorine atom Cl4 linked to Ni2. In addition, the two oxygen atoms O1 and O2 of the oxime groups are involved in intra­molecular O1—H1⋯Cl1 and O2—H2A⋯Cl4 hydrogen bonds and in inter­molecular C3—H3⋯O1 and C26—H26⋯O2 inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.85 (7) 2.32 (6) 3.009 (4) 139 (6)
N2—H2⋯Cl4 0.77 (5) 2.46 (5) 3.209 (4) 166 (5)
O2—H2A⋯Cl4 0.76 (8) 2.31 (7) 2.978 (4) 147 (7)
C3—H3⋯O1i 0.95 2.58 3.432 (5) 149
C1—H1A⋯Cl1 0.95 2.75 3.369 (5) 124
C6—H6A⋯Cl2 0.99 2.76 3.309 (5) 115
C11—H11B⋯Cl3ii 0.99 2.64 3.573 (5) 156
C17—H17⋯Cl4 0.95 2.69 3.327 (6) 125
C26—H26⋯O2iii 1.00 2.56 3.489 (6) 154
C22—H22B⋯Cl2 0.99 2.81 3.352 (6) 115
C19—H19⋯Cl1iv 0.95 2.64 3.570 (7) 167
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x, y+{\script{1\over 2}}, -z]; (iv) [-x+1, y-{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
Inter­molecular and intra­molecular hydrogen bonds in the structure, shown as dashed lines.
[Figure 3]
Figure 3
Packing diagram.

4. Database survey

The amino­oxime ligand used in this study was previously reacted with palladium and platinum precursors, generating three N-coordinated cationic complexes as enanti­opure compounds (de la Cueva-Alique et al., 2019[Cueva-Alique, I. de la, Muñoz-Moreno, L., de la Torre-Rubio, E., Bajo, A. M., Gude, L., Cuenca, T. & Royo, E. (2019). Dalton Trans. 48, 14279-14293.]). A heteronuclear TiIV/PdII complex has also been described. The compounds were studied to assess their potential biological activity, a high anti­cancer activity (de la Cueva-Alique et al., 2019[Cueva-Alique, I. de la, Muñoz-Moreno, L., de la Torre-Rubio, E., Bajo, A. M., Gude, L., Cuenca, T. & Royo, E. (2019). Dalton Trans. 48, 14279-14293.]).

5. Synthesis and crystallization

To a solution of NiII chloride ethyl­ene glycol dimethyl ether (0.15 g, 1.48 mmol) in MeOH (5 mL) was added (1S,4R)-1-picolyl­amino-p-menth-8-en-2-one-oxime (0.101 g, 0.36 mmol) dissolved in MeOH (3 mL). The solution turned green. The mixture was stirred overnight at room temperature during which time the mixture changed color to blue–green. The solvent was then evaporated to produce a crude solid that was washed with diethyl ether before crystallization. Single crystals were grown by slow diffusion at room temperature of diethyl ether into a di­chloro­methane solution. Elemental analysis calculated for C32H46Cl4N6Ni2O2: C, 46.33; H, 5.54; N, 9.65. Found: C, 46.35; H, 5.672; N, 9.77.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. N- and O-bound atoms were refined with the restraint Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). H atoms were positioned geometrically(C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl)

Table 2
Experimental details

Crystal data
Chemical formula [Ni2Cl2(C16H23ClN3O)2]
Mr 805.97
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 13.3729 (9), 8.9363 (7), 16.4248 (16)
β (°) 114.014 (2)
V3) 1792.9 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.39
Crystal size (mm) 0.21 × 0.17 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.669, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 42747, 10769, 9436
Rint 0.037
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.05
No. of reflections 10769
No. of parameters 431
No. of restraints 13
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.50, −1.19
Absolute structure Flack x determined using 3850 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.009 (4)
Computer programs: APEX2 and SAINT (Bruker, 2019[Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT(Bruker, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dichloridobis{(2S,5R)-2-methyl-5-(prop-1-en-2-yl)-2-[(pyridin-2-yl)methylamino]cyclohexan-1-one oxime}dinickel(II) top
Crystal data top
[Ni2Cl2(C16H23ClN3O)2]F(000) = 840
Mr = 805.97Dx = 1.493 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 13.3729 (9) ÅCell parameters from 9996 reflections
b = 8.9363 (7) Åθ = 2.7–30.0°
c = 16.4248 (16) ŵ = 1.39 mm1
β = 114.014 (2)°T = 100 K
V = 1792.9 (3) Å3Block, green
Z = 20.21 × 0.17 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
9436 reflections with I > 2σ(I)
Radiation source: microfocus sealed X-ray tubeRint = 0.037
φ and ω scansθmax = 30.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1719
Tmin = 0.669, Tmax = 0.746k = 1212
42747 measured reflectionsl = 2321
10769 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.9636P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
10769 reflectionsΔρmax = 1.50 e Å3
431 parametersΔρmin = 1.18 e Å3
13 restraintsAbsolute structure: Flack x determined using 3850 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.009 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.66455 (4)0.50226 (6)0.35327 (3)0.01526 (11)
Ni20.41917 (4)0.48960 (6)0.15985 (3)0.01813 (12)
Cl20.61155 (8)0.45928 (14)0.19208 (7)0.0259 (2)
Cl30.48342 (7)0.60270 (12)0.30567 (7)0.0212 (2)
Cl10.74487 (8)0.75170 (12)0.37010 (7)0.0249 (2)
Cl40.38501 (9)0.25191 (13)0.21270 (9)0.0336 (3)
O10.7388 (3)0.6301 (4)0.5389 (2)0.0244 (7)
H10.740 (5)0.705 (7)0.507 (4)0.037*
N10.8111 (3)0.3926 (4)0.3786 (2)0.0182 (7)
N30.6939 (2)0.5043 (5)0.4853 (2)0.0183 (6)
N20.6216 (3)0.2811 (4)0.3745 (2)0.0183 (7)
H20.563 (4)0.289 (6)0.339 (3)0.022*
O20.1908 (3)0.4533 (5)0.1497 (2)0.0339 (9)
H2A0.226 (6)0.389 (9)0.176 (5)0.051*
C80.6846 (3)0.3877 (5)0.5258 (3)0.0203 (8)
C50.8008 (3)0.2431 (5)0.3699 (3)0.0202 (8)
N60.2619 (3)0.5471 (4)0.1318 (2)0.0212 (8)
N50.4081 (3)0.6943 (5)0.0936 (3)0.0394 (12)
H50.468 (5)0.736 (8)0.140 (4)0.047*
C120.7001 (3)0.1123 (6)0.5107 (3)0.0250 (9)
H12A0.6602980.0226530.4781120.030*
H12B0.7704640.1174880.5041590.030*
C140.9033 (3)0.2356 (6)0.6758 (3)0.0257 (9)
C30.9925 (4)0.2136 (6)0.4131 (3)0.0301 (11)
H31.0548990.1519430.4253620.036*
C90.7192 (4)0.3765 (6)0.6253 (3)0.0279 (10)
H9A0.6533620.3788430.6385230.034*
H9B0.7649960.4642640.6544440.034*
C10.9109 (3)0.4531 (5)0.4044 (3)0.0220 (9)
H1A0.9184640.5586770.4107770.026*
C300.0369 (4)0.6416 (7)0.1114 (4)0.0357 (12)
N40.3669 (3)0.4143 (6)0.0282 (3)0.0361 (11)
C21.0041 (3)0.3660 (6)0.4222 (3)0.0277 (10)
H2B1.0740960.4113700.4401610.033*
C250.1029 (4)0.7072 (7)0.0546 (4)0.0384 (13)
H25A0.0950900.7866710.0936290.046*
H25B0.0599720.6194930.0586730.046*
C70.6314 (3)0.2540 (5)0.4678 (3)0.0206 (8)
C40.8897 (4)0.1499 (6)0.3860 (3)0.0278 (10)
H40.8801830.0446990.3785330.033*
C240.2208 (4)0.6641 (5)0.0869 (3)0.0258 (10)
C60.6855 (3)0.1848 (5)0.3402 (3)0.0218 (8)
H6A0.6499550.1825030.2742600.026*
H6B0.6873130.0814000.3623110.026*
C100.7844 (4)0.2319 (6)0.6644 (3)0.0281 (10)
H100.7856690.2192650.7252500.034*
C230.2999 (4)0.7724 (5)0.0732 (4)0.0365 (12)
C150.9419 (4)0.3220 (6)0.6296 (3)0.0301 (10)
H15A1.0166030.3148170.6387110.036*
H15B0.8949160.3911860.5874690.036*
C310.0663 (3)0.5006 (7)0.0931 (3)0.0322 (10)
H31A0.0530200.4309990.1400770.039*
H31B0.1008010.4684850.0328260.039*
C130.5139 (3)0.2394 (7)0.4628 (3)0.0314 (11)
H13A0.4711610.3277320.4331100.047*
H13B0.5166360.2317140.5231470.047*
H13C0.4793780.1494690.4288060.047*
C110.7236 (4)0.0951 (6)0.6094 (3)0.0306 (11)
H11A0.7685170.0043250.6330400.037*
H11B0.6536970.0818210.6157490.037*
C160.9776 (4)0.1259 (6)0.7427 (3)0.0313 (11)
H16A0.9809400.1497580.8020430.047*
H16B1.0511720.1321860.7436210.047*
H16C0.9489650.0242700.7261300.047*
C180.2741 (6)0.2441 (10)0.0937 (4)0.0582 (18)
H180.2346020.1537470.1150220.070*
C170.3151 (5)0.2832 (8)0.0055 (4)0.0493 (16)
H170.3066600.2137120.0350330.059*
C260.0565 (4)0.7638 (7)0.0421 (4)0.0423 (14)
H260.0161600.8104470.0541670.051*
C210.3804 (4)0.5139 (10)0.0254 (4)0.0504 (17)
C280.2479 (5)0.8323 (7)0.0237 (4)0.0486 (16)
H28A0.2932850.9151840.0300270.058*
H28B0.2472560.7514830.0650830.058*
C320.0176 (7)0.6926 (9)0.2067 (4)0.068 (2)
H32A0.0328900.7560350.2208910.101*
H32B0.0836600.7498580.2151410.101*
H32C0.0377510.6052560.2461680.101*
C220.4373 (5)0.6511 (10)0.0162 (4)0.064 (2)
H22A0.4161910.7327650.0283570.077*
H22B0.5173650.6358500.0381730.077*
C270.1312 (6)0.8883 (7)0.0493 (4)0.0552 (18)
H27A0.1018140.9264920.1111980.066*
H27B0.1320100.9720600.0096040.066*
C290.3272 (7)0.8968 (8)0.1403 (5)0.068 (2)
H29A0.3688910.8564920.2001430.102*
H29B0.2594250.9424650.1378440.102*
H29C0.3711640.9725340.1267050.102*
C190.2927 (7)0.3391 (10)0.1474 (5)0.069 (2)
H190.2700150.3124550.2083040.082*
C200.3427 (6)0.4734 (12)0.1196 (4)0.070 (2)
H200.3531140.5398530.1606080.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01393 (19)0.0171 (2)0.0136 (2)0.0000 (2)0.00431 (17)0.0017 (2)
Ni20.0158 (2)0.0210 (3)0.0153 (2)0.0019 (2)0.00406 (17)0.0011 (2)
Cl20.0180 (4)0.0431 (7)0.0155 (4)0.0016 (4)0.0057 (3)0.0037 (4)
Cl30.0178 (4)0.0225 (5)0.0194 (5)0.0017 (4)0.0034 (4)0.0031 (4)
Cl10.0240 (5)0.0198 (5)0.0244 (5)0.0048 (4)0.0031 (4)0.0052 (4)
Cl40.0301 (5)0.0180 (5)0.0367 (7)0.0042 (4)0.0027 (5)0.0021 (5)
O10.0275 (15)0.0233 (17)0.0205 (16)0.0014 (13)0.0077 (13)0.0051 (13)
N10.0159 (14)0.0249 (19)0.0133 (16)0.0017 (13)0.0054 (13)0.0017 (14)
N30.0163 (13)0.0206 (17)0.0170 (15)0.0001 (15)0.0056 (12)0.0000 (16)
N20.0122 (13)0.0204 (19)0.0200 (18)0.0019 (13)0.0044 (13)0.0019 (14)
O20.0186 (14)0.052 (3)0.0312 (19)0.0003 (14)0.0099 (13)0.0128 (17)
C80.0184 (18)0.026 (2)0.020 (2)0.0079 (16)0.0113 (16)0.0058 (17)
C50.0221 (18)0.025 (2)0.0146 (19)0.0034 (17)0.0086 (15)0.0006 (17)
N60.0182 (15)0.028 (2)0.0163 (17)0.0011 (13)0.0055 (14)0.0007 (14)
N50.029 (2)0.040 (3)0.033 (2)0.0178 (19)0.0040 (18)0.020 (2)
C120.0200 (18)0.025 (2)0.027 (2)0.0009 (17)0.0064 (17)0.0088 (19)
C140.0249 (19)0.033 (3)0.016 (2)0.0063 (18)0.0045 (16)0.0044 (19)
C30.025 (2)0.036 (3)0.029 (3)0.0125 (19)0.0111 (19)0.004 (2)
C90.032 (2)0.037 (3)0.018 (2)0.011 (2)0.0145 (18)0.006 (2)
C10.0194 (17)0.028 (2)0.019 (2)0.0006 (16)0.0077 (15)0.0024 (17)
C300.035 (2)0.041 (3)0.033 (3)0.006 (2)0.015 (2)0.000 (2)
N40.0223 (18)0.061 (3)0.021 (2)0.0157 (19)0.0044 (16)0.005 (2)
C20.0149 (17)0.041 (3)0.028 (2)0.0019 (18)0.0097 (17)0.007 (2)
C250.033 (2)0.047 (3)0.031 (3)0.022 (2)0.009 (2)0.001 (2)
C70.0174 (16)0.025 (2)0.022 (2)0.0014 (16)0.0105 (15)0.0077 (18)
C40.025 (2)0.032 (3)0.027 (2)0.0106 (18)0.0114 (18)0.002 (2)
C240.029 (2)0.025 (2)0.017 (2)0.0080 (18)0.0041 (18)0.0052 (18)
C60.0243 (19)0.017 (2)0.024 (2)0.0046 (16)0.0094 (17)0.0026 (17)
C100.030 (2)0.034 (3)0.024 (2)0.007 (2)0.0142 (18)0.012 (2)
C230.048 (3)0.015 (2)0.032 (3)0.003 (2)0.001 (2)0.006 (2)
C150.0204 (19)0.036 (3)0.028 (2)0.0014 (18)0.0032 (18)0.008 (2)
C310.0267 (19)0.033 (2)0.032 (2)0.005 (2)0.0058 (18)0.001 (3)
C130.0198 (19)0.040 (3)0.034 (3)0.001 (2)0.0108 (18)0.010 (2)
C110.026 (2)0.033 (3)0.035 (3)0.0008 (19)0.015 (2)0.018 (2)
C160.033 (2)0.037 (3)0.024 (2)0.009 (2)0.0120 (19)0.011 (2)
C180.059 (4)0.067 (4)0.032 (3)0.026 (4)0.003 (3)0.011 (3)
C170.040 (3)0.057 (4)0.032 (3)0.025 (3)0.004 (2)0.020 (3)
C260.043 (3)0.047 (4)0.028 (3)0.027 (3)0.005 (2)0.002 (2)
C210.030 (2)0.091 (5)0.031 (3)0.024 (3)0.013 (2)0.016 (3)
C280.053 (3)0.029 (3)0.043 (3)0.005 (3)0.002 (3)0.018 (3)
C320.115 (7)0.050 (4)0.026 (3)0.028 (4)0.016 (4)0.002 (3)
C220.033 (3)0.113 (7)0.049 (4)0.010 (3)0.020 (3)0.057 (4)
C270.069 (4)0.029 (3)0.041 (3)0.017 (3)0.004 (3)0.007 (3)
C290.091 (5)0.027 (3)0.051 (4)0.000 (3)0.007 (4)0.001 (3)
C190.093 (6)0.071 (5)0.055 (4)0.014 (4)0.044 (4)0.020 (4)
C200.068 (4)0.104 (6)0.040 (3)0.030 (4)0.025 (3)0.035 (4)
Geometric parameters (Å, º) top
Ni1—Cl22.4762 (11)C2—H2B0.9500
Ni1—Cl32.3964 (10)C25—H25A0.9900
Ni1—Cl12.4408 (12)C25—H25B0.9900
Ni1—N12.077 (3)C25—C241.495 (6)
Ni1—N32.041 (3)C25—C261.536 (8)
Ni1—N22.126 (4)C7—C131.545 (5)
Ni2—Cl22.4216 (10)C4—H40.9500
Ni2—Cl32.4128 (12)C24—C231.516 (7)
Ni2—Cl42.4077 (14)C6—H6A0.9900
Ni2—N62.027 (3)C6—H6B0.9900
Ni2—N52.103 (4)C10—H101.0000
Ni2—N42.095 (4)C10—C111.540 (8)
O1—H10.85 (7)C23—C281.550 (8)
O1—N31.403 (5)C23—C291.502 (9)
N1—C51.345 (6)C15—H15A0.9500
N1—C11.338 (5)C15—H15B0.9500
N3—C81.269 (6)C31—H31A0.9500
N2—H20.77 (5)C31—H31B0.9500
N2—C71.503 (5)C13—H13A0.9800
N2—C61.477 (5)C13—H13B0.9800
O2—H2A0.76 (8)C13—H13C0.9800
O2—N61.385 (5)C11—H11A0.9900
C8—C91.509 (6)C11—H11B0.9900
C8—C71.513 (7)C16—H16A0.9800
C5—C41.385 (6)C16—H16B0.9800
C5—C61.508 (6)C16—H16C0.9800
N6—C241.269 (6)C18—H180.9500
N5—H50.93 (7)C18—C171.370 (8)
N5—C231.517 (7)C18—C191.318 (12)
N5—C221.524 (9)C17—H170.9500
C12—H12A0.9900C26—H261.0000
C12—H12B0.9900C26—C271.532 (10)
C12—C71.555 (6)C21—C221.457 (12)
C12—C111.528 (7)C21—C201.465 (10)
C14—C101.523 (6)C28—H28A0.9900
C14—C151.326 (7)C28—H28B0.9900
C14—C161.506 (7)C28—C271.525 (9)
C3—H30.9500C32—H32A0.9800
C3—C21.373 (8)C32—H32B0.9800
C3—C41.384 (7)C32—H32C0.9800
C9—H9A0.9900C22—H22A0.9900
C9—H9B0.9900C22—H22B0.9900
C9—C101.545 (7)C27—H27A0.9900
C1—H1A0.9500C27—H27B0.9900
C1—C21.396 (6)C29—H29A0.9800
C30—C311.318 (8)C29—H29B0.9800
C30—C261.521 (8)C29—H29C0.9800
C30—C321.503 (8)C19—H190.9500
N4—C171.359 (8)C19—C201.360 (13)
N4—C211.314 (8)C20—H200.9500
Cl3—Ni1—Cl284.13 (4)C8—C7—C13108.0 (4)
Cl3—Ni1—Cl191.99 (4)C13—C7—C12110.9 (4)
Cl1—Ni1—Cl2100.61 (4)C5—C4—H4120.7
N1—Ni1—Cl288.69 (10)C3—C4—C5118.5 (5)
N1—Ni1—Cl3171.31 (10)C3—C4—H4120.7
N1—Ni1—Cl194.14 (11)N6—C24—C25124.3 (5)
N1—Ni1—N279.91 (13)N6—C24—C23116.7 (4)
N3—Ni1—Cl2170.10 (12)C25—C24—C23118.8 (4)
N3—Ni1—Cl394.30 (9)N2—C6—C5110.5 (4)
N3—Ni1—Cl189.21 (12)N2—C6—H6A109.6
N3—Ni1—N191.94 (13)N2—C6—H6B109.6
N3—Ni1—N277.38 (15)C5—C6—H6A109.6
N2—Ni1—Cl293.02 (10)C5—C6—H6B109.6
N2—Ni1—Cl395.56 (9)H6A—C6—H6B108.1
N2—Ni1—Cl1165.04 (11)C14—C10—C9114.7 (4)
Cl3—Ni2—Cl284.97 (4)C14—C10—H10106.7
Cl4—Ni2—Cl299.38 (4)C14—C10—C11111.4 (4)
Cl4—Ni2—Cl393.14 (5)C9—C10—H10106.7
N6—Ni2—Cl2171.72 (12)C11—C10—C9110.3 (4)
N6—Ni2—Cl392.13 (11)C11—C10—H10106.7
N6—Ni2—Cl488.51 (11)N5—C23—C28112.0 (5)
N6—Ni2—N579.29 (16)C24—C23—N5109.5 (4)
N6—Ni2—N488.11 (15)C24—C23—C28108.9 (4)
N5—Ni2—Cl293.15 (13)C29—C23—N5104.7 (5)
N5—Ni2—Cl394.06 (15)C29—C23—C24109.9 (5)
N5—Ni2—Cl4166.04 (12)C29—C23—C28111.8 (5)
N4—Ni2—Cl293.92 (11)C14—C15—H15A120.0
N4—Ni2—Cl3173.62 (15)C14—C15—H15B120.0
N4—Ni2—Cl493.24 (16)H15A—C15—H15B120.0
N4—Ni2—N579.7 (2)C30—C31—H31A120.0
Ni2—Cl2—Ni191.88 (4)C30—C31—H31B120.0
Ni1—Cl3—Ni294.09 (4)H31A—C31—H31B120.0
N3—O1—H1111 (4)C7—C13—H13A109.5
C5—N1—Ni1113.6 (3)C7—C13—H13B109.5
C1—N1—Ni1127.6 (3)C7—C13—H13C109.5
C1—N1—C5118.8 (4)H13A—C13—H13B109.5
O1—N3—Ni1121.4 (3)H13A—C13—H13C109.5
C8—N3—Ni1122.2 (3)H13B—C13—H13C109.5
C8—N3—O1115.9 (3)C12—C11—C10112.0 (4)
Ni1—N2—H293 (4)C12—C11—H11A109.2
C7—N2—Ni1113.6 (3)C12—C11—H11B109.2
C7—N2—H2116 (4)C10—C11—H11A109.2
C6—N2—Ni1104.0 (2)C10—C11—H11B109.2
C6—N2—H2109 (4)H11A—C11—H11B107.9
C6—N2—C7118.1 (3)C14—C16—H16A109.5
N6—O2—H2A105 (5)C14—C16—H16B109.5
N3—C8—C9124.7 (4)C14—C16—H16C109.5
N3—C8—C7116.1 (4)H16A—C16—H16B109.5
C9—C8—C7119.2 (4)H16A—C16—H16C109.5
N1—C5—C4122.3 (4)H16B—C16—H16C109.5
N1—C5—C6115.1 (4)C17—C18—H18121.9
C4—C5—C6122.6 (4)C19—C18—H18121.9
O2—N6—Ni2122.4 (3)C19—C18—C17116.1 (8)
C24—N6—Ni2120.3 (3)N4—C17—C18124.7 (7)
C24—N6—O2116.7 (4)N4—C17—H17117.7
Ni2—N5—H594 (4)C18—C17—H17117.7
C23—N5—Ni2112.0 (3)C30—C26—C25114.3 (5)
C23—N5—H5115 (4)C30—C26—H26107.1
C23—N5—C22118.6 (4)C30—C26—C27112.5 (5)
C22—N5—Ni2102.9 (4)C25—C26—H26107.1
C22—N5—H5110 (4)C27—C26—C25108.5 (5)
H12A—C12—H12B107.8C27—C26—H26107.1
C7—C12—H12A109.0N4—C21—C22116.4 (5)
C7—C12—H12B109.0N4—C21—C20117.2 (8)
C11—C12—H12A109.0C22—C21—C20126.3 (7)
C11—C12—H12B109.0C23—C28—H28A109.2
C11—C12—C7113.0 (4)C23—C28—H28B109.2
C15—C14—C10124.9 (4)H28A—C28—H28B107.9
C15—C14—C16120.2 (4)C27—C28—C23112.2 (6)
C16—C14—C10114.9 (4)C27—C28—H28A109.2
C2—C3—H3120.1C27—C28—H28B109.2
C2—C3—C4119.7 (4)C30—C32—H32A109.5
C4—C3—H3120.1C30—C32—H32B109.5
C8—C9—H9A109.2C30—C32—H32C109.5
C8—C9—H9B109.2H32A—C32—H32B109.5
C8—C9—C10112.2 (4)H32A—C32—H32C109.5
H9A—C9—H9B107.9H32B—C32—H32C109.5
C10—C9—H9A109.2N5—C22—H22A109.7
C10—C9—H9B109.2N5—C22—H22B109.7
N1—C1—H1A119.0C21—C22—N5110.0 (4)
N1—C1—C2122.1 (4)C21—C22—H22A109.7
C2—C1—H1A119.0C21—C22—H22B109.7
C31—C30—C26124.8 (5)H22A—C22—H22B108.2
C31—C30—C32120.1 (5)C26—C27—H27A109.3
C32—C30—C26115.1 (5)C26—C27—H27B109.3
C17—N4—Ni2126.7 (4)C28—C27—C26111.5 (5)
C21—N4—Ni2113.2 (4)C28—C27—H27A109.3
C21—N4—C17119.9 (5)C28—C27—H27B109.3
C3—C2—C1118.6 (4)H27A—C27—H27B108.0
C3—C2—H2B120.7C23—C29—H29A109.5
C1—C2—H2B120.7C23—C29—H29B109.5
H25A—C25—H25B107.9C23—C29—H29C109.5
C24—C25—H25A109.2H29A—C29—H29B109.5
C24—C25—H25B109.2H29A—C29—H29C109.5
C24—C25—C26112.1 (4)H29B—C29—H29C109.5
C26—C25—H25A109.2C18—C19—H19118.5
C26—C25—H25B109.2C18—C19—C20123.0 (7)
N2—C7—C8109.8 (3)C20—C19—H19118.5
N2—C7—C12112.5 (3)C21—C20—H20120.5
N2—C7—C13107.1 (3)C19—C20—C21119.0 (7)
C8—C7—C12108.5 (3)C19—C20—H20120.5
Ni1—N1—C5—C4178.5 (3)N4—C21—C20—C192.4 (9)
Ni1—N1—C5—C62.4 (4)C2—C3—C4—C50.9 (7)
Ni1—N1—C1—C2177.8 (3)C25—C24—C23—N5168.7 (4)
Ni1—N3—C8—C9171.5 (3)C25—C24—C23—C2845.9 (6)
Ni1—N3—C8—C710.6 (5)C25—C24—C23—C2976.9 (6)
Ni1—N2—C7—C87.7 (4)C25—C26—C27—C2859.6 (6)
Ni1—N2—C7—C12128.6 (3)C7—N2—C6—C583.5 (4)
Ni1—N2—C7—C13109.3 (4)C7—C8—C9—C1047.9 (5)
Ni1—N2—C6—C543.4 (4)C7—C12—C11—C1057.9 (5)
Ni2—N6—C24—C25173.2 (4)C4—C5—C6—N2148.6 (4)
Ni2—N6—C24—C2312.5 (6)C4—C3—C2—C10.6 (7)
Ni2—N5—C23—C2413.2 (5)C24—C25—C26—C3073.6 (6)
Ni2—N5—C23—C28134.2 (4)C24—C25—C26—C2752.8 (6)
Ni2—N5—C23—C29104.5 (5)C24—C23—C28—C2749.5 (6)
Ni2—N5—C22—C2144.6 (5)C6—N2—C7—C8114.5 (4)
Ni2—N4—C17—C18174.2 (4)C6—N2—C7—C126.5 (5)
Ni2—N4—C21—C225.4 (6)C6—N2—C7—C13128.6 (4)
Ni2—N4—C21—C20178.0 (4)C6—C5—C4—C3180.0 (4)
O1—N3—C8—C90.7 (6)C23—N5—C22—C2179.6 (6)
O1—N3—C8—C7177.3 (3)C23—C28—C27—C2659.7 (7)
N1—C5—C4—C31.0 (7)C15—C14—C10—C924.5 (7)
N1—C5—C6—N232.3 (5)C15—C14—C10—C11101.6 (6)
N1—C1—C2—C30.2 (7)C31—C30—C26—C256.7 (8)
N3—C8—C9—C10134.2 (4)C31—C30—C26—C27117.5 (6)
N3—C8—C7—N211.5 (5)C11—C12—C7—N2172.3 (3)
N3—C8—C7—C12134.8 (4)C11—C12—C7—C850.6 (4)
N3—C8—C7—C13104.9 (4)C11—C12—C7—C1367.8 (5)
O2—N6—C24—C251.3 (6)C16—C14—C10—C9158.2 (4)
O2—N6—C24—C23175.6 (4)C16—C14—C10—C1175.7 (5)
C8—C9—C10—C1477.6 (5)C18—C19—C20—C211.5 (12)
C8—C9—C10—C1149.1 (5)C17—N4—C21—C22179.7 (5)
C5—N1—C1—C20.3 (6)C17—N4—C21—C203.0 (7)
N6—C24—C23—N516.7 (6)C17—C18—C19—C204.4 (11)
N6—C24—C23—C28139.5 (5)C26—C25—C24—N6136.7 (5)
N6—C24—C23—C2997.7 (5)C26—C25—C24—C2349.2 (7)
N5—C23—C28—C27170.8 (5)C21—N4—C17—C180.0 (8)
C14—C10—C11—C1272.9 (5)C32—C30—C26—C25174.8 (6)
C9—C8—C7—N2170.4 (3)C32—C30—C26—C2760.9 (7)
C9—C8—C7—C1247.1 (5)C22—N5—C23—C24106.3 (6)
C9—C8—C7—C1373.2 (5)C22—N5—C23—C2814.6 (6)
C9—C10—C11—C1255.6 (5)C22—N5—C23—C29135.9 (6)
C1—N1—C5—C40.6 (6)C22—C21—C20—C19178.6 (6)
C1—N1—C5—C6179.7 (4)C29—C23—C28—C2772.1 (7)
C30—C26—C27—C2867.9 (6)C19—C18—C17—N43.8 (9)
N4—C21—C22—N535.0 (7)C20—C21—C22—N5148.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.85 (7)2.32 (6)3.009 (4)139 (6)
N2—H2···Cl40.77 (5)2.46 (5)3.209 (4)166 (5)
O2—H2A···Cl40.76 (8)2.31 (7)2.978 (4)147 (7)
C3—H3···O1i0.952.583.432 (5)149
C1—H1A···Cl10.952.753.369 (5)124
C6—H6A···Cl20.992.763.309 (5)115
C11—H11B···Cl3ii0.992.643.573 (5)156
C17—H17···Cl40.952.693.327 (6)125
C26—H26···O2iii1.002.563.489 (6)154
C22—H22B···Cl20.992.813.352 (6)115
C19—H19···Cl1iv0.952.643.570 (7)167
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x, y+1/2, z; (iv) x+1, y1/2, z.
 

Acknowledgements

We would like to thank Céline Delabre for the elemental analysis.

Funding information

The authors thank the Ministère de l'Enseignement Supérieur de la Recherche et de l'Innovation (France) and the Ministère de la Recherche (Morocco) for financial support. The Chevreul Institute (FR 2638), Ministry of Higher Education, Research and Innovation, Région Hauts de France and FEDER are recognized for funding of X-ray diffractometers.

References

First citationAnastas, P. T. & Zimmerman, J. B. (2013). Environ. Sci. Technol. 37, 95A–101AGoogle Scholar
First citationBenabdelouahab, Y., Muñoz-Moreno, L., Frik, M., de la Cueva-Alique, I., El Amrani, M. A., Contel, M., Bajo, A. M., Cuenca, T. & Royo, E. (2015). Eur. J. Inorg. Chem. pp. 2295–2307.  CrossRef Google Scholar
First citationBruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationChahboun, G., Brito, J. A., Royo, B., El Amrani, M. A., Gómez-Bengoa, E., Mosquera, M. E. G., Cuenca, T. & Royo, E. (2012). Eur. J. Inorg. Chem. pp. 2940–2949.  CSD CrossRef Google Scholar
First citationCheng, T.-P., Liao, B.-S., Liu, Y.-H., Peng, S.-M. & Liu, S.-T. (2012). Dalton Trans. 41, 3468–3473.  CSD CrossRef CAS PubMed Google Scholar
First citationCueva-Alique, I. de la, Muñoz-Moreno, L., de la Torre-Rubio, E., Bajo, A. M., Gude, L., Cuenca, T. & Royo, E. (2019). Dalton Trans. 48, 14279–14293.  PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElalami, M. S., Dahdouh, A. A., Mansour, A. I., ElAmrani, M. A., Suisse, I., Mortreux, A. & Agbossou-Niedercorn, F. (2009). C. R. Chim. 12, 1253–1258.  CrossRef CAS Google Scholar
First citationEl Alami, M. S. I., El Amrani, M. A., Agbossou-Niedercorn, F., Suisse, I. & Mortreux, A. (2015). Chem. Eur. J. 21, 1398–1413.  PubMed Google Scholar
First citationGawley, R. E. & Aubé, J. (2012). Principles and applications of asymmetric synthesis, 2nd ed. Amsterdam: Elsevier Science  Google Scholar
First citationEl Alami, M. S. I., El Amrani, M. A., Dahdouh, A., Roussel, P., Suisse, I. & Mortreux, A. (2012). Chirality, 24, 675–682.  PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationOjima, I. (2010). Catalytic asymmetric synthesis, 3rd ed. Hoboken: Wiley  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZheng, L., Zhang, S., Li, K., Chen, W., Chen, Y., Xu, B., Hu, B., Li, Y. & Li, W. (2010). J. Mol. Struct. 984, 153–156.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds