research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and fluorescence study of (μ-N-[(3,5-di­methyl-1H-pyrrol-2-yl)methyl­­idene]-N-{4-[(3,5-di­methyl-1H-pyrrol-2-yl)methyl­­idene­aza­nium­yl]phen­yl}aza­nium)bis­­[di­fluorido­boron(IV)]

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: tjyinzm@aliyun.com

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 2 December 2020; accepted 13 January 2021; online 15 January 2021)

The title mol­ecule, C20H20B2F4N4, assumes a planar conformation with all atoms apart from the F atoms lying on the symmetry plane. Each boron atom is four-coordinated by two fluorine atoms, a pyrrole N atom and an imine N atom. Both imine CH=N groups adopt a trans conformation. In the crystal, the mol­ecules self-assemble into a pillar structure through C—H⋯F hydrogen bonds and ππ inter­actions. The UV–vis spectrum and fluorescence spectra of the title compound are also reported.

1. Chemical context

Fluorescent materials are gradually becoming a necessity in modern chemistry and biology because of their unique advantages in the characterization of life activities in living organisms (Zhang et al., 2019[Zhang, J., Chai, X., He, X.-P., Kim, H.-J., Yoon, J. & Tian, H. (2019). Chem. Soc. Rev. 48, 683-722.]). Boron-dipyrromethene (BODIPY) is a frequently reported fluorescent structure (Boens et al., 2015[Boens, N., Verbelen, B. & Dehaen, W. (2015). Eur. J. Org. Chem. pp. 6577-6595.]). Its planar structure endows BODIPY compounds with strong fluorescence emission under the action of excitation light. Such compounds also have high molar absorption coefficient, good light stability and excitation wavelengths in the visible to near infrared region. In addition, their structures can easily be modified and they are not easily affected by the environment (Loudet & Burgess, 2007[Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891-4932.]). The success of BODIPY dyes has led to research on similar structures such as aza-BODIPY structures (Bodio & Goze, 2019[Bodio, E. & Goze, C. (2019). Dyes Pigments, 160, 700-710.]), boron complexes of imino­pyrrolide ligands (BOIMPY; Suresh et al., 2012[Suresh, D., Gomes, C. S. B., Gomes, P. T., Di Paolo, R. E., Macanica, A. L., Calhorda, M. J., Charas, A., Morgado, J. & Duarte, M. T. (2012). Dalton Trans. 41, 8902-8905.], 2015[Suresh, D., Gomes, C. S. B., Lopes, P. S., Figueira, C. A., Ferreira, B., Gomes, P. T., Di Paolo, R. E., Maçanita, A. L., Duarte, M. T., Charas, A., Morgado, J., Vila-Viçosa, D. & Calhorda, M. J. (2015). Chem. Eur. J. 21, 9133-9149.]; Lee et al., 2016[Lee, B., Park, B. G., Cho, W., Lee, H. Y., Olasz, A., Chen, C.-H., Park, S. B. & Lee, D. (2016). Chem. Eur. J. 22, 17321-17328.]), bis­(di­fluoro­boron)-1,2-bis­{(pyrrol-2-yl)methyl­ene}hydrazine (BOPHY; Boodts et al., 2018[Boodts, S., Fron, E., Hofkens, J. & Dehaen, W. (2018). Coord. Chem. Rev. 371, 1-10.]) structures and other novel organoboron fluorescence materials (Frath et al., 2014[Frath, D., Massue, J., Ulrich, G. & Ziessel, R. (2014). Angew. Chem. Int. Ed. 53, 2290-2310.]).

BOIMPY has a similar structure to BODIPY, in which the pyrrole ring is located in the same plane as the aromatic ring, the boron atom and the methyl­ene bridge. More importantly, BOIMPY has the advantage of lower mol­ecular symmetry, which can overcome the shortcoming of the short Stokes shifts of BODIPY (Lee et al., 2016[Lee, B., Park, B. G., Cho, W., Lee, H. Y., Olasz, A., Chen, C.-H., Park, S. B. & Lee, D. (2016). Chem. Eur. J. 22, 17321-17328.]). In contrast to BODIPY, studies on BOIMPY are still rare. Herein, we report the synthesis, crystal structure and spectroscopic properties of a new BOIMPY compound, bis­(di­fluoro­boron)bis­(pyrrol-2-yl)meth­yl­enedi­amino­phenyl­ene.

2. Structural commentary

The structure of the title compound is shown in Fig. 1[link]. All atoms lie on the symmetry plane except for the F atoms, which deviate from it by 1.136 (1) Å (F1) and 1.135 (1) Å (F2) on the same side of the mol­ecule. Each boron atom is four-coordinated by two fluorine atoms, a pyrrole N atom and an imine N atom. The N1—B1, N2—B1, N3—B2 and N4—B2 bond lengths [1.544 (4), 1.604 (4), 1.610 (4) and 1.538 (4) Å, respectively] are longer than the accepted mean value for a B—N bond (1.54–1.55Å) in BODIPY compounds reported in the literature (Madhu & Ravikanth, 2014[Madhu, I. & Ravikanth, M. (2014). Inorg. Chem. 53, 1646-1653.]). The two imine CH=N groups adopt a trans conformation and at 1.339 (4) and 1.321 (4) Å their bond lengths are longer than that in the free imino-pyrrole ligand (1.263 Å; Xu et al., 2010[Xu, L., Liu, S. Y. & Yin, Z. (2010). Chin. J. Struct. Chem. 29, 613-617.]) while the C8—N2 and C11—N3 bonds [both 1.408 (4) Å] are shorter than in the free imino-pyrrole ligand (1.424 Å; Xu et al., 2010[Xu, L., Liu, S. Y. & Yin, Z. (2010). Chin. J. Struct. Chem. 29, 613-617.]).

[Scheme 1]
[Figure 1]
Figure 1
ORTEP diagrams for the title compound, (a) top view and (b) side view, with displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by C6—H6B⋯F2 hydrogen bonds between methyl group and the fluorine atom (Table 1[link]), and ππ inter­actions between benzene rings [Cg1⋯Cg1(−x + 1, y + [{1\over 2}], −z + 1) = 3.7521 (2) Å; Cg1 is the centroid of the C8–C13 ring] into one-dimensional pillars along the b-axis direction. Within the pillar, neighbouring mol­ecules are oriented in opposite directions (Fig. 2[link]). The pillars are held together by van der Waals inter­actions, forming a herringbone structure. A perspective view of the crystal packing within the unit cell is depicted in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯F2i 0.96 2.49 3.336 (3) 147
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Part of the pillar structure showing mol­ecules linked by C—H⋯Fi hydrogen bonds and ππ inter­action [symmetry code: (i) −x + 1, y + [{1\over 2}], −z + 1].
[Figure 3]
Figure 3
Part of the packing diagram for the title compound.

4. Database survey

A search in the Cambridge Structural Database (CSD, version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) returned 21 entries for imino­pyrrolyl boron complexes. Two di­phenyl­boron analogues of the title compound were reported by Gomes and coworkers [KEDHIM (Suresh et al., 2012[Suresh, D., Gomes, C. S. B., Gomes, P. T., Di Paolo, R. E., Macanica, A. L., Calhorda, M. J., Charas, A., Morgado, J. & Duarte, M. T. (2012). Dalton Trans. 41, 8902-8905.]) and TUJFOV (Suresh et al., 2015[Suresh, D., Gomes, C. S. B., Lopes, P. S., Figueira, C. A., Ferreira, B., Gomes, P. T., Di Paolo, R. E., Maçanita, A. L., Duarte, M. T., Charas, A., Morgado, J., Vila-Viçosa, D. & Calhorda, M. J. (2015). Chem. Eur. J. 21, 9133-9149.])]. In their crystals, the respective dihedral angles between the 2-formimino­pyrrolyl unit and the phenyl ring are −47.2 (3) and 46.1 (11)°.

5. UV–vis spectrum and fluorescence spectra

The UV–vis spectrum and fluorescence spectra of the title compound are shown in Figs. 4[link] and 5[link], respectively. The UV–vis spectrum is solvent independent. A THF solution of the title compound displays intense broad absorption at 474 nm, which can be assigned to the nπ* transition of the imino­pyrrolyl group. The title compound has two emission peaks at 528 nm and 574 nm. It can be seen that the fluorescence intensity of title compound is greatly affected by the solvents. In the polar solvent DMSO, the fluorescence intensity is much weaker than that in the apolar solvent CHCl3, which is similar to a previous report (Li et al., 2018[Li, T., Xu, L. & Yin, Z. (2018). Chinese J. Struct. Chem, 37, 809-904.]). The title compound shows substantial bathochromic shifts in both absorption and emission when compared to the di­phenyl­boron analogues reported by Gomes and coworkers (Suresh et al., 2012[Suresh, D., Gomes, C. S. B., Gomes, P. T., Di Paolo, R. E., Macanica, A. L., Calhorda, M. J., Charas, A., Morgado, J. & Duarte, M. T. (2012). Dalton Trans. 41, 8902-8905.]), which can be ascribed to the planar structure of the title compound.

[Figure 4]
Figure 4
UV–vis spectrum of the title compound in THF solution (1 × 10 −5 M).
[Figure 5]
Figure 5
Fluorescence spectra of the title compound in different solutions (1 × 10 −5 M).

6. Synthesis and crystallization

To a solution of bis­(pyrrol-2-yl)methyl­enedi­amino­phenyl­ene (1 mmol, 0.32 g) and tri­ethyl­amine (4.2 mmol, 6 mL) in dry di­chloro­methane (15 mL) was slowly added boron trifluoride ethyl ether (7.2 mmol, 2 mL). The resulting solution was stirred overnight, and then saturated potassium carbonate solution was added and stirred for 30 minutes. The resulting solution was extracted and evaporated under vacuum to dryness. The residue was purified by column chromatography eluting with CH2Cl2 and petroleum ether (v:v 1:2) to give an orange product, m.p. 435 K. 1H NMR (400 MHz, CDCl3) δ 8.101 (s, 2H, =CH–), 7.519 (s, 4H, Ar C—H), 6.007 (s, 2H, pyrrole CH), 2.412 (s, 6H, –CH3), 2.270 (s, 6H, –CH3). HRMS (ESI) m/z: calculated for C20H20B2F4N4, (M + H)+ 415.01521; found 415.01533.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were located in a difference-Fourier map, placed in calculated positions (C—H = 0.93 or 0.96 Å) and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). Idealized methyl groups were refined as rotating groups.

Table 2
Experimental details

Crystal data
Chemical formula C20H20B2F4N4
Mr 414.02
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 110
a, b, c (Å) 20.2495 (9), 6.8046 (5), 13.4969 (5)
V3) 1859.74 (17)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.99
Crystal size (mm) 0.25 × 0.14 × 0.13
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku, OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.478, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4486, 1815, 1375
Rint 0.046
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.01
No. of reflections 1815
No. of parameters 179
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.32
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku, OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(µ-N-[(3,5-Dimethyl-1H-pyrrol-2-yl)methylidene]N-{{4-[(3,5-dimethyl-1H-pyrrol-2-yl)methylideneazaniumyl]phenyl}azanium)bis[difluoridoboron(IV)] top
Crystal data top
C20H20B2F4N4Dx = 1.479 Mg m3
Mr = 414.02Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PnmaCell parameters from 1337 reflections
a = 20.2495 (9) Åθ = 3.9–73.0°
b = 6.8046 (5) ŵ = 0.99 mm1
c = 13.4969 (5) ÅT = 110 K
V = 1859.74 (17) Å3Block, brown
Z = 40.25 × 0.14 × 0.13 mm
F(000) = 856
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
diffractometer
1815 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1375 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 5.2740 pixels mm-1θmax = 67.1°, θmin = 3.9°
ω scansh = 1724
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 78
Tmin = 0.478, Tmax = 1.000l = 1316
4486 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0648P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1815 reflectionsΔρmax = 0.27 e Å3
179 parametersΔρmin = 0.32 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.47574 (6)0.5830 (2)0.79642 (10)0.0251 (3)
F20.27560 (6)0.58327 (19)0.39551 (9)0.0214 (3)
N10.57949 (12)0.7500000.83332 (18)0.0181 (6)
N20.54122 (11)0.7500000.66808 (19)0.0152 (5)
N30.37529 (11)0.7500000.33323 (18)0.0146 (5)
N40.27854 (11)0.7500000.2358 (2)0.0167 (6)
C10.63149 (14)0.7500000.7670 (2)0.0175 (6)
C20.60426 (15)0.7500000.9262 (2)0.0196 (7)
C30.67356 (15)0.7500000.9190 (2)0.0215 (7)
H30.7027420.7500000.9722270.026*
C40.69141 (14)0.7500000.8194 (2)0.0183 (6)
C50.56119 (16)0.7500001.0158 (2)0.0256 (7)
H5A0.5507540.6170601.0337090.038*0.5
H5B0.5211630.8202491.0016780.038*0.5
H5C0.5839110.8126921.0696020.038*0.5
C60.76010 (14)0.7500000.7777 (3)0.0223 (7)
H6A0.7884060.8270090.8195380.034*0.5
H6B0.7595210.8054180.7123250.034*0.5
H6C0.7763180.6175730.7746720.034*0.5
C70.60731 (14)0.7500000.6711 (2)0.0174 (6)
H70.6339910.7500000.6150070.021*
C80.50243 (14)0.7500000.5815 (2)0.0153 (6)
C90.43380 (14)0.7500000.5922 (2)0.0190 (7)
H90.4152530.7500000.6552060.023*
C100.39326 (14)0.7500000.5099 (2)0.0212 (7)
H100.3476880.7500000.5184660.025*
C110.41924 (14)0.7500000.4141 (2)0.0150 (6)
C120.48845 (14)0.7500000.4035 (2)0.0169 (6)
H120.5070810.7500000.3405660.020*
C130.52863 (13)0.7500000.4856 (2)0.0183 (7)
H130.5742120.7500000.4771370.022*
C140.39064 (13)0.7500000.2381 (2)0.0172 (6)
H140.4337690.7500000.2143970.021*
C150.33467 (13)0.7500000.1766 (2)0.0169 (6)
C160.31589 (16)0.7500000.0770 (2)0.0199 (7)
C170.24674 (15)0.7500000.0784 (2)0.0208 (7)
H170.2195020.7500000.0228960.025*
C180.22542 (14)0.7500000.1769 (2)0.0192 (7)
C190.35899 (15)0.7500000.0125 (2)0.0260 (7)
H19A0.3581130.6222950.0427340.039*0.5
H19B0.4034410.7816390.0063820.039*0.5
H19C0.3431840.8460660.0589100.039*0.5
C200.15647 (15)0.7500000.2183 (3)0.0276 (8)
H20A0.1389640.8810660.2164940.041*0.5
H20B0.1573890.7040990.2855350.041*0.5
H20C0.1290330.6648350.1792830.041*0.5
B10.51243 (16)0.7500000.7788 (2)0.0164 (7)
B20.29629 (15)0.7500000.3467 (3)0.0163 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0203 (6)0.0351 (8)0.0197 (6)0.0089 (6)0.0011 (5)0.0052 (6)
F20.0177 (6)0.0275 (7)0.0190 (6)0.0052 (5)0.0007 (5)0.0037 (6)
N10.0159 (12)0.0255 (14)0.0128 (12)0.0000.0019 (10)0.000
N20.0108 (10)0.0211 (13)0.0137 (12)0.0000.0022 (10)0.000
N30.0109 (11)0.0196 (12)0.0133 (12)0.0000.0000 (10)0.000
N40.0114 (11)0.0199 (13)0.0187 (13)0.0000.0012 (10)0.000
C10.0144 (13)0.0195 (15)0.0186 (15)0.0000.0019 (12)0.000
C20.0233 (15)0.0194 (15)0.0163 (15)0.0000.0034 (13)0.000
C30.0203 (15)0.0230 (16)0.0213 (15)0.0000.0064 (13)0.000
C40.0147 (13)0.0166 (14)0.0235 (15)0.0000.0078 (12)0.000
C50.0239 (14)0.0358 (19)0.0169 (15)0.0000.0045 (13)0.000
C60.0140 (13)0.0262 (17)0.0267 (17)0.0000.0062 (13)0.000
C70.0115 (13)0.0221 (15)0.0185 (15)0.0000.0007 (12)0.000
C80.0136 (13)0.0182 (14)0.0142 (15)0.0000.0024 (11)0.000
C90.0136 (13)0.0309 (17)0.0126 (14)0.0000.0015 (12)0.000
C100.0099 (12)0.0345 (17)0.0193 (16)0.0000.0000 (12)0.000
C110.0128 (13)0.0179 (14)0.0144 (14)0.0000.0024 (11)0.000
C120.0123 (13)0.0259 (15)0.0124 (14)0.0000.0029 (11)0.000
C130.0085 (12)0.0255 (16)0.0209 (16)0.0000.0008 (12)0.000
C140.0118 (13)0.0200 (15)0.0198 (15)0.0000.0010 (12)0.000
C150.0119 (12)0.0179 (14)0.0209 (16)0.0000.0006 (12)0.000
C160.0213 (14)0.0212 (15)0.0173 (14)0.0000.0064 (13)0.000
C170.0196 (14)0.0264 (17)0.0166 (15)0.0000.0093 (13)0.000
C180.0158 (14)0.0235 (16)0.0183 (15)0.0000.0044 (12)0.000
C190.0229 (15)0.0370 (18)0.0182 (16)0.0000.0004 (13)0.000
C200.0148 (14)0.045 (2)0.0234 (17)0.0000.0037 (13)0.000
B10.0160 (15)0.0232 (18)0.0100 (16)0.0000.0018 (13)0.000
B20.0092 (14)0.0238 (18)0.0158 (15)0.0000.0036 (13)0.000
Geometric parameters (Å, º) top
F1—B11.378 (2)C6—H6C0.9600
F2—B21.377 (2)C7—H70.9300
N1—C11.382 (4)C8—C91.397 (4)
N1—C21.350 (4)C8—C131.399 (4)
N1—B11.544 (4)C9—H90.9300
N2—C71.339 (4)C9—C101.381 (4)
N2—C81.408 (4)C10—H100.9300
N2—B11.604 (4)C10—C111.396 (4)
N3—C111.408 (4)C11—C121.409 (4)
N3—C141.321 (4)C12—H120.9300
N3—B21.610 (4)C12—C131.374 (4)
N4—C151.389 (4)C13—H130.9300
N4—C181.338 (4)C14—H140.9300
N4—B21.538 (4)C14—C151.404 (4)
C1—C41.404 (4)C15—C161.398 (4)
C1—C71.384 (4)C16—C171.400 (4)
C2—C31.407 (4)C16—C191.491 (5)
C2—C51.491 (5)C17—H170.9300
C3—H30.9300C17—C181.398 (5)
C3—C41.393 (5)C18—C201.504 (4)
C4—C61.500 (4)C19—H19A0.9600
C5—H5A0.9600C19—H19B0.9600
C5—H5B0.9600C19—H19C0.9600
C5—H5C0.9600C20—H20A0.9600
C6—H6A0.9600C20—H20B0.9600
C6—H6B0.9600C20—H20C0.9600
C1—N1—B1111.2 (2)N3—C11—C12123.4 (3)
C2—N1—C1108.6 (2)C10—C11—N3118.7 (2)
C2—N1—B1140.2 (3)C10—C11—C12117.9 (3)
C7—N2—C8125.6 (3)C11—C12—H12119.7
C7—N2—B1109.6 (2)C13—C12—C11120.5 (3)
C8—N2—B1124.8 (2)C13—C12—H12119.7
C11—N3—B2122.7 (2)C8—C13—H13119.3
C14—N3—C11127.2 (2)C12—C13—C8121.4 (3)
C14—N3—B2110.1 (2)C12—C13—H13119.3
C15—N4—B2111.6 (2)N3—C14—H14123.7
C18—N4—C15108.4 (3)N3—C14—C15112.6 (3)
C18—N4—B2140.0 (3)C15—C14—H14123.7
N1—C1—C4109.4 (3)N4—C15—C14108.7 (3)
N1—C1—C7109.6 (2)N4—C15—C16109.3 (2)
C7—C1—C4140.9 (3)C16—C15—C14142.0 (3)
N1—C2—C3107.9 (3)C15—C16—C17105.0 (3)
N1—C2—C5122.4 (3)C15—C16—C19128.4 (3)
C3—C2—C5129.8 (3)C17—C16—C19126.6 (3)
C2—C3—H3125.5C16—C17—H17125.6
C4—C3—C2109.0 (3)C18—C17—C16108.7 (3)
C4—C3—H3125.5C18—C17—H17125.6
C1—C4—C6127.8 (3)N4—C18—C17108.5 (3)
C3—C4—C1105.2 (3)N4—C18—C20121.7 (3)
C3—C4—C6127.1 (3)C17—C18—C20129.8 (3)
C2—C5—H5A109.5C16—C19—H19A109.5
C2—C5—H5B109.5C16—C19—H19B109.5
C2—C5—H5C109.5C16—C19—H19C109.5
H5A—C5—H5B109.5H19A—C19—H19B109.5
H5A—C5—H5C109.5H19A—C19—H19C109.5
H5B—C5—H5C109.5H19B—C19—H19C109.5
C4—C6—H6A109.5C18—C20—H20A109.5
C4—C6—H6B109.5C18—C20—H20B109.5
C4—C6—H6C109.5C18—C20—H20C109.5
H6A—C6—H6B109.5H20A—C20—H20B109.5
H6A—C6—H6C109.5H20A—C20—H20C109.5
H6B—C6—H6C109.5H20B—C20—H20C109.5
N2—C7—C1112.5 (3)F1—B1—F1i111.1 (3)
N2—C7—H7123.8F1—B1—N1113.08 (16)
C1—C7—H7123.8F1i—B1—N1113.08 (16)
C9—C8—N2118.0 (3)F1—B1—N2110.87 (17)
C9—C8—C13118.2 (3)F1i—B1—N2110.87 (17)
C13—C8—N2123.8 (3)N1—B1—N297.1 (2)
C8—C9—H9119.7F2—B2—F2i110.9 (2)
C10—C9—C8120.6 (3)F2—B2—N3110.86 (15)
C10—C9—H9119.7F2i—B2—N3110.86 (15)
C9—C10—H10119.3F2—B2—N4113.23 (15)
C9—C10—C11121.4 (3)F2i—B2—N4113.23 (15)
C11—C10—H10119.3N4—B2—N397.0 (2)
N1—C1—C4—C30.000 (1)C11—N3—C14—C15180.000 (1)
N1—C1—C4—C6180.000 (1)C11—N3—B2—F2i61.82 (18)
N1—C1—C7—N20.000 (1)C11—N3—B2—F261.81 (18)
N1—C2—C3—C40.000 (1)C11—N3—B2—N4180.000 (1)
N2—C8—C9—C10180.000 (1)C11—C12—C13—C80.000 (1)
N2—C8—C13—C12180.000 (1)C13—C8—C9—C100.000 (1)
N3—C11—C12—C13180.000 (1)C14—N3—C11—C10180.000 (1)
N3—C14—C15—N40.000 (1)C14—N3—C11—C120.000 (1)
N3—C14—C15—C16180.000 (1)C14—N3—B2—F2118.19 (18)
N4—C15—C16—C170.000 (1)C14—N3—B2—F2i118.18 (18)
N4—C15—C16—C19180.000 (1)C14—N3—B2—N40.000 (1)
C1—N1—C2—C30.000 (1)C14—C15—C16—C17180.000 (1)
C1—N1—C2—C5180.000 (1)C14—C15—C16—C190.000 (1)
C1—N1—B1—F1i116.3 (2)C15—N4—C18—C170.000 (1)
C1—N1—B1—F1116.3 (2)C15—N4—C18—C20180.000 (1)
C1—N1—B1—N20.000 (1)C15—N4—B2—F2i116.33 (18)
C2—N1—C1—C40.000 (1)C15—N4—B2—F2116.32 (18)
C2—N1—C1—C7180.000 (1)C15—N4—B2—N30.000 (1)
C2—N1—B1—F163.7 (2)C15—C16—C17—C180.000 (1)
C2—N1—B1—F1i63.7 (2)C16—C17—C18—N40.000 (1)
C2—N1—B1—N2180.000 (1)C16—C17—C18—C20180.000 (1)
C2—C3—C4—C10.000 (1)C18—N4—C15—C14180.000 (1)
C2—C3—C4—C6180.000 (1)C18—N4—C15—C160.000 (1)
C4—C1—C7—N2180.000 (1)C18—N4—B2—F2i63.67 (18)
C5—C2—C3—C4180.000 (1)C18—N4—B2—F263.68 (18)
C7—N2—C8—C9180.000 (1)C18—N4—B2—N3180.000 (1)
C7—N2—C8—C130.000 (1)C19—C16—C17—C18180.0
C7—N2—B1—F1i118.07 (18)B1—N1—C1—C4180.000 (1)
C7—N2—B1—F1118.07 (18)B1—N1—C1—C70.000 (1)
C7—N2—B1—N10.000 (1)B1—N1—C2—C3180.000 (1)
C7—C1—C4—C3180.000 (1)B1—N1—C2—C50.000 (1)
C7—C1—C4—C60.000 (1)B1—N2—C7—C10.000 (1)
C8—N2—C7—C1180.000 (1)B1—N2—C8—C90.000 (1)
C8—N2—B1—F1i61.93 (18)B1—N2—C8—C13180.000 (1)
C8—N2—B1—F161.93 (18)B2—N3—C11—C100.000 (1)
C8—N2—B1—N1180.000 (1)B2—N3—C11—C12180.000 (1)
C8—C9—C10—C110.000 (1)B2—N3—C14—C150.000 (1)
C9—C8—C13—C120.000 (1)B2—N4—C15—C140.000 (1)
C9—C10—C11—N3180.000 (1)B2—N4—C15—C16180.000 (1)
C9—C10—C11—C120.000 (1)B2—N4—C18—C17180.000 (1)
C10—C11—C12—C130.000 (1)B2—N4—C18—C200.000 (1)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···F2ii0.962.493.336 (3)147
Symmetry code: (ii) x+1, y+1/2, z+1.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award No. 21172174).

References

First citationBodio, E. & Goze, C. (2019). Dyes Pigments, 160, 700–710.  Web of Science CrossRef CAS Google Scholar
First citationBoens, N., Verbelen, B. & Dehaen, W. (2015). Eur. J. Org. Chem. pp. 6577–6595.  Web of Science CrossRef Google Scholar
First citationBoodts, S., Fron, E., Hofkens, J. & Dehaen, W. (2018). Coord. Chem. Rev. 371, 1–10.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrath, D., Massue, J., Ulrich, G. & Ziessel, R. (2014). Angew. Chem. Int. Ed. 53, 2290–2310.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, B., Park, B. G., Cho, W., Lee, H. Y., Olasz, A., Chen, C.-H., Park, S. B. & Lee, D. (2016). Chem. Eur. J. 22, 17321–17328.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, T., Xu, L. & Yin, Z. (2018). Chinese J. Struct. Chem, 37, 809–904.  Google Scholar
First citationLoudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMadhu, I. & Ravikanth, M. (2014). Inorg. Chem. 53, 1646–1653.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku, OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuresh, D., Gomes, C. S. B., Gomes, P. T., Di Paolo, R. E., Macanica, A. L., Calhorda, M. J., Charas, A., Morgado, J. & Duarte, M. T. (2012). Dalton Trans. 41, 8902–8905.  Web of Science CSD CrossRef Google Scholar
First citationSuresh, D., Gomes, C. S. B., Lopes, P. S., Figueira, C. A., Ferreira, B., Gomes, P. T., Di Paolo, R. E., Maçanita, A. L., Duarte, M. T., Charas, A., Morgado, J., Vila-Viçosa, D. & Calhorda, M. J. (2015). Chem. Eur. J. 21, 9133–9149.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXu, L., Liu, S. Y. & Yin, Z. (2010). Chin. J. Struct. Chem. 29, 613–617.  CAS Google Scholar
First citationZhang, J., Chai, X., He, X.-P., Kim, H.-J., Yoon, J. & Tian, H. (2019). Chem. Soc. Rev. 48, 683–722.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds