research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure, Hirshfeld surface analysis and energy frameworks of 2-[2-(meth­­oxy­carbon­yl)-3,6-bis­­(meth­­oxy­meth­­oxy)phen­yl]acetic acid

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 11 May 2020; accepted 15 June 2020; online 19 June 2020)

In the title compound, C14H18O8, (I), the meth­oxy­carbonyl [–C(=O)OCH3] and the acetic acid [–CH2C(=O)OH] groups are inclined to the benzene ring by 79.24 (11) and 76.71 (13)°, respectively, and are normal to each other with a dihedral angle of 90.00 (13)°. In the crystal, mol­ecules are linked by a pair of O—H⋯O hydrogen bonds forming the familiar acetic acid inversion dimer. The dimers are linked by two C—H⋯O hydrogen bonds and an offset ππ inter­action [inter­centroid distance = 3.6405 (14) Å], forming layers lying parallel to the (10[\overline{1}]) plane. The layers are linked by a third C—H⋯O hydrogen bond and a C—H⋯π inter­action to form a supra­molecular framework.

1. Chemical context

Isocoumarins are among the phytotoxins produced by the Ceratocystis fimbriata species. The latter are pathogenic agents responsible for the infections of coffee and plane trees (Gremaud & Tabacchi, 1994[Gremaud, G. & Tabacchi, R. (1994). Nat. Prod. Lett. 5, 95-103.]; Bürki et al., 2003[Bürki, N., Michel, A. & Tabacchi, R. (2003). Phytopathol. Mediterr. 42, 191-198.]). The analysis of the culture medium of Ophiostoma ulmi, a pathogenic agent responsible for elm disease and classified in the family of Ceratocystis, enabled Michel (2001[Michel, A. (2001). PhD Thesis. University of Neuchâtel, Switzerland.]) to isolate sixteen metabolites including four isocoumarins without apparent toxicity and a new natural product, 3-methyl-3,5,8-trihy­droxy-3,4-di­hydro­isocoumarin, found in the extract of diseased wood. Qualitatively, the latter is present in trace amounts; however, the toxicity of this metabolite is possible, since the activity is not necessarily proportional to the concentration.

[Scheme 1]

The title compound (I), is a key inter­mediate for the proposed total synthesis of 3-methyl-3,5,8-trihy­droxy-3,4-di­hydro­isocoumarin, and its synthesis is illustrated in Fig. 1[link] (Tiouabi, 2005[Tiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland. Available from https://doc.rero.ch/record]). It was synthesized from hydro­quinone (1), which was first brominated to give compound 2. The latter was then reacted with NaH and ClCH2OCH3 to give compound 3, so protecting the hydroxyl groups. Reacting 3 with tetra­methyl­piper­idene with n-butyl­lithium and CH2(CO2CH3)2 resulted in the formation of compound 4. Finally 4 was reacted with various qu­anti­ties of KOH in methanol/water (2:1) to give the title compound, I. The highest yield (81%) was obtained by reacting 20 equivalents of KOH in methanol/water (2:1) at 298 K under stirring for 16 h. Inter­estingly, the same reaction with reflux for 30 minutes yielded the diacid, 2-(carb­oxy­meth­yl)-3,6-di­hydroxy­benzoic acid (5), with a yield of 82% (Fig. 1[link]).

[Figure 1]
Figure 1
The reaction scheme resulting in the formation of the title compound, I.

2. Structural commentary

The mol­ecular structure of compound I is illustrated in Fig. 2[link]. The meth­oxy­methyl group (mean plane 1: C2/C7/O1/O2/C8; r.m.s. deviation = 0.009 Å) is inclined to the benzene ring by 79.24 (11)°. The plane of the acetic acid unit (mean plane 2: C13/C14/O7/O8; r.m.s. deviation = 0.014 Å) is inclined to the benzene ring by 76.71 (13) °. Planes 1 and 2 are normal to each other with a dihedral angle of 90.00 (13)°. The meth­oxy­meth­oxy side chains (O3–C9–O4–C10 and O5–C11–O6–C12) are displaced to opposite sides of the benzene ring. They have twisted conformations as seen from the torsion angles given in Table 3[link].

Table 3
Selected torsion angles (°) in compound I compared to those in compounds GEZPUZ, GEZQAG and IVIQIP

I  
C3—O3—C9—O4 −77.8 (2)
C10—O4—C9—O3 −67.6 (2)
C6—O5—C11—O6 −61.3 (2)
C12—O6—C11—O5 −65.5 (2)
   
GEZPUZa  
C7—O4—C13—O1 67.1 (3)
C16—O1—C13—O4 56.3 (3)
C8—O5—C12—O6 −80.1 (2)
C17—O6—C12—O5 −65.8 (3)
   
GEZQAGa  
C7—O2—C12—O7 −71.2 (8)
C16—O7—C12—O2 −67.6 (9)
C9—O3—C10—O6 86.1 (7)
C17—O6—C10—O3 76.6 (8)
   
IVIQIPb,c  
C1—O1—C8—O2 −68.9 (2)
C9—O2—C8—O1 −66.1 (2)
(a) Nakayama et al. (2018[Nakayama, A., Sata, H., Karanjit, S., Hayashi, N., Oda, M. & Namba, K. (2018). Eur. J. Org. Chem. pp. 4013-4017.]); (b) Zhang et al. (2017[Zhang, J. N., Kang, H., Li, N., Zhou, S. M., Sun, H. M., Yin, S. W., Zhao, N. & Tang, B. Z. (2017). Chem. Sci. 8, 577-582.]); (c) compound IVIQIP possesses inversion symmetry.
[Figure 2]
Figure 2
The mol­ecular structure of compound I, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of I, mol­ecules are linked by a pair of O—H⋯O hydrogen bonds (O8—H8⋯O7i) forming an inversion dimer with an R22(8) ring motif (Fig. 3[link] and Table 1[link]). The dimers are linked by two C—H⋯O hydrogen bonds (C9—H9B⋯O6ii and C11—H11A⋯O1iii) and offset ππ inter­actions between inversion-related benzene rings, so forming layers lying parallel to (10[\overline{1}]). The layers are linked by a third C—H⋯O hydrogen bond (C13—H13B⋯O4iv) and a C—H⋯π inter­action to form a supra­molecular framework (Table 1[link] and Fig. 4[link]). Details of the offset ππ inter­action are as follows: CgCgiii = 3.6405 (14) Å, where Cg is the centroid of the C1–C6 benzene ring; inter­planar distance = 3.5911 (9) Å; offset = 0.597 Å; symmetry code: (iii) −x, −y + 1, −z.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O7i 0.84 1.85 2.676 (2) 168
C9—H9B⋯O6ii 0.99 2.43 3.256 (3) 140
C11—H11A⋯O1iii 0.99 2.38 3.366 (3) 175
C13—H13B⋯O4iv 0.99 2.50 3.421 (3) 155
C12—H12BCgv 0.98 2.66 3.451 (3) 138
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z; (iii) -x, -y+1, -z; (iv) x+1, y, z; (v) -x, -y+1, -z+1.
[Figure 3]
Figure 3
A view normal to plane (10[\overline{1}]) of the layer structure in the crystal of compound I. Hydrogen bonds (Table 1[link]) are shown as dashed lines and offset ππ inter­actions as orange double arrows. For clarity, only the H atoms involved in the inter­molecular inter­actions have been included.
[Figure 4]
Figure 4
A view along the b axis of the crystal packing of compound I. The hydrogen bonds (Table 1[link]) are shown as dashed lines. The offset ππ inter­actions are indicated by orange double arrows, and the C—H⋯π inter­actions by blue dashed arrows. For clarity, only the H atoms involved in the inter­molecular inter­actions have been included.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), the associated two-dimensional fingerprint plots and the calculation of the energy frameworks (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) were performed with CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]), following the protocol outlined in the recent article by Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The Hirshfeld surface is colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The energy frameworks (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]; Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) are represented by cylinders joining the centroids of mol­ecular pairs using red, green and blue colour codes for the electrostatic (Eele), dispersion (Edis) and total energy (Etot) components, respectively. The radius of the cylinder is proportional to the magnitude of the inter­action energy.

A view of the Hirshfeld surface of I mapped over dnorm is shown in Fig. 5[link]. The short inter­atomic O⋯H/H⋯O contacts are indicated by the large red spots. Other C—H⋯O contacts are indicated by faint red spots. A full list of short inter­atomic contacts in the crystal of I are given in Table 2[link]. The majority of the significant contacts are O⋯H and C⋯H contacts, as confirmed by the two-dimensional fingerprint plots (Fig. 6[link]). The principal inter­molecular contacts for I are delineated into H⋯H (48.0%) (Fig. 6[link]b), O⋯H/H⋯O (41.1%) (Fig. 6[link]c), C⋯H/H⋯C (7.2%) (Fig. 6[link]d) and C⋯C (2.7%) (Fig. 6[link]e) contacts. The inter­molecular contacts are therefore almost equally distributed between electrostatic and dispersion forces, as shown in Fig. 7[link]a and 7b. The energy frameworks (Fig. 7[link]) were adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within a radius of 5 Å about a central mol­ecule, and were obtained using the wave function calculated at the HF/3-21G level of theory.

Table 2
Short inter­atomic contacts (Å)a in the crystal of compound I

Atom1 Atom2 Length Length − VdW
O7 H8i 1.850 −0.870
O7 O8i 2.676 −0.364
O1 H11Aiii 2.379 −0.341
O6 H9Bvi 2.432 −0.288
O4 H13Bv 2.501 −0.219
H8 C14i 2.703 −0.197
O5 H10Ciii 2.637 −0.083
C12 H9Bvi 2.882 −0.018
O4 H8Av 2.723 0.003
O7 C8viii 3.223 0.003
O7 H8Bviii 2.726 0.006
O2 H8Bviii 2.731 0.011
H8 H8i 2.416 0.016
C2 H12Bvii 2.932 0.032
O6 C9vi 3.256 0.036
H8B C14viii 2.954 0.054
C9 H8Av 2.957 0.057
C1 H12Bvii 2.968 0.068
C3 H12Bvii 2.968 0.068
H10C C11iii 2.969 0.069
H9B H8Av 2.482 0.082
(a) Calculated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (iii) −x, −y + 1, −z; (v) x − 1, y, z; (vi) x, y − 1, z; (vii) −x, −y + 1, −z + 1; (viii) −x + 1, −y + 2, −z + 1.
[Figure 5]
Figure 5
The Hirshfeld surface of compound I mapped over dnorm, in the colour range −0.6996 to 1.3669 a.u..
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot for compound I, and fingerprint plots delineated into (b) H⋯H (48.0%), (c) O⋯H/H⋯O (41.1%), (d) C⋯H/H⋯C (7.2%) and (e) C⋯C (2.7%) contacts.
[Figure 7]
Figure 7
The energy frameworks for I viewed down the c-axis direction comprising, (a) electrostatic potential forces (Eele), (b) dispersion forces (Edis) and (c) total (Etot) energy for a cluster about a reference mol­ecule of I. The energy frameworks were adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within a 5 Å radius of a selected central mol­ecule.

The calculation of the energy framework results in a colour-coded mol­ecular cluster related to the specific inter­action energy, see Fig. 8[link]a. The individual energy components, electrostatic (Eele), polarization (Epol), dispersion (Edis) and repulsion (Erep) energies and the sum of these components (Etot) for the inter­actions relative to a reference mol­ecule (*) are shown in Fig. 8[link]b.

[Figure 8]
Figure 8
The colour-coding inter­action mapping within 5 Å of the centering (*) mol­ecular cluster.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, last update March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 3,6-bis­(meth­oxy­meth­oxy)phenyl substructure gave only six hits. Three compounds are of particular inter­est, namely 1-[2-bromo-3,6-bis­(meth­oxy­meth­oxy)phen­yl]-1-meth­oxy­hep­tan-2-ol (CSD refcode GEZPUZ; Nakayama et al., 2018[Nakayama, A., Sata, H., Karanjit, S., Hayashi, N., Oda, M. & Namba, K. (2018). Eur. J. Org. Chem. pp. 4013-4017.]), 7-bromo-4-meth­oxy-5,8-bis­(meth­oxy­meth­oxy)-3-pentyl-3,4-di­hydro-1H-2-benzo­pyran-1-one (GEZQAG; Nakayama et al., 2018[Nakayama, A., Sata, H., Karanjit, S., Hayashi, N., Oda, M. & Namba, K. (2018). Eur. J. Org. Chem. pp. 4013-4017.]) and 2,2′-{[2,5-bis­(meth­oxy­meth­oxy)-1,4-phenyl­ene]di­methylyl­idene}dimalono­nitrile (IVIQIP; Zhang et al., 2017[Zhang, J. N., Kang, H., Li, N., Zhou, S. M., Sun, H. M., Yin, S. W., Zhao, N. & Tang, B. Z. (2017). Chem. Sci. 8, 577-582.]). The first two, GEZPUZ and GEZQAG [compounds 17 and 20 in the publication by Nakayama et al. (2018[Nakayama, A., Sata, H., Karanjit, S., Hayashi, N., Oda, M. & Namba, K. (2018). Eur. J. Org. Chem. pp. 4013-4017.])], are key inter­mediates in the synthesis of the di­hydro­isocoumarin-type natural products, eurotiumide A and eurotiumide B. Compound IVIQIP [compound 1c in the publication by Zhang et al. (2017[Zhang, J. N., Kang, H., Li, N., Zhou, S. M., Sun, H. M., Yin, S. W., Zhao, N. & Tang, B. Z. (2017). Chem. Sci. 8, 577-582.])] was synthesized in a study of organic solid fluoro­phores. The conformation of the –O–CH2–O–CH3 side chains are compared to that in compound I in Fig. 9[link] and Table 3[link]. In GEZPUZ and GEZQAG these side chains are twisted and directed to the same side of the benzene ring. In IVIQIP they are also twisted but directed to opposite sides of the benzene ring as in compound I.

[Figure 9]
Figure 9
A view of the mol­ecular structures of I, GEZPUZ, GEZQAGr and IVIQIP. The original atom-labelling schemes have been used for the latter three compounds. For clarity, H atoms have been omitted

A search of the CSD for the substructure 2-(2-(meth­oxy­carbon­yl)phen­yl)acetic acid gave zero hits.

6. Synthesis and crystallization

The synthesis of compound I is illustrated in Fig. 1[link]. Full details of the syntheses and spectroscopic and analytical data for compounds 25 and I are available in the PhD thesis of Tiouabi (2005[Tiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland. Available from https://doc.rero.ch/record]). It can be downloaded from the website https://doc.rero.ch/record, a digital library where many theses of Swiss universities are deposited. Colourless block-like crystals of I were obtained by slow evaporation of a solution in acetone-d6.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.84 Å, C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(OH and C-meth­yl) and 1.2Ueq(C) for other H-atoms.

Table 4
Experimental details

Crystal data
Chemical formula C14H18O8
Mr 314.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.5628 (12), 9.6623 (13), 9.9767 (12)
α, β, γ (°) 112.534 (14), 94.744 (15), 97.999 (16)
V3) 746.60 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.30 × 0.30 × 0.20
 
Data collection
Diffractometer Stoe IPDS 1
Absorption correction Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])
Tmin, Tmax 0.827, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6011, 2752, 1557
Rint 0.065
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.108, 0.83
No. of reflections 2752
No. of parameters 204
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.23
Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2004[Stoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Intensity data were measured using a Stoe IPDS I, a one-circle diffractometer. For the triclinic system often only 93% of the Ewald sphere is accessible, which explains why the alert diffrn_reflns_laue_measured_fraction_full value (0.942) below minimum (0.95) is given. This involves 155 random reflections out of the expected 2692 for the IUCr cutoff limit of sin θ/λ = 0.60.

Supporting information


Computing details top

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2004); cell refinement: CELL in IPDS-I (Stoe & Cie, 2004); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

2-[2-(Methoxycarbonyl)-3,6-bis(methoxymethoxy)phenyl]acetic acid top
Crystal data top
C14H18O8Z = 2
Mr = 314.28F(000) = 332
Triclinic, P1Dx = 1.398 Mg m3
a = 8.5628 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6623 (13) ÅCell parameters from 3063 reflections
c = 9.9767 (12) Åθ = 2.2–25.8°
α = 112.534 (14)°µ = 0.12 mm1
β = 94.744 (15)°T = 173 K
γ = 97.999 (16)°Block, colourless
V = 746.60 (19) Å30.30 × 0.30 × 0.20 mm
Data collection top
Stoe IPDS 1
diffractometer
2752 independent reflections
Radiation source: fine-focus sealed tube1557 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.065
φ rotation scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(MULABS; Spek, 2020)
h = 1010
Tmin = 0.827, Tmax = 1.000k = 1111
6011 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0527P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max < 0.001
2752 reflectionsΔρmax = 0.25 e Å3
204 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25754 (19)0.8960 (2)0.1239 (2)0.0457 (5)
O20.30589 (19)0.94409 (18)0.3608 (2)0.0427 (5)
O30.08148 (17)0.86702 (16)0.21564 (19)0.0354 (4)
O40.36196 (18)0.82093 (18)0.1605 (2)0.0411 (5)
O50.12039 (17)0.34010 (16)0.18992 (18)0.0313 (4)
O60.07328 (18)0.23819 (17)0.29737 (19)0.0357 (4)
O70.35707 (18)0.58696 (18)0.45712 (19)0.0373 (4)
O80.52484 (19)0.4650 (2)0.3133 (2)0.0449 (5)
H80.5480840.4418880.3845330.067*
C10.1715 (2)0.5912 (2)0.2067 (2)0.0255 (5)
C20.1204 (2)0.7231 (2)0.2130 (2)0.0255 (5)
C30.0431 (2)0.7295 (2)0.2044 (3)0.0266 (5)
C40.1531 (2)0.6025 (2)0.1876 (3)0.0290 (5)
H40.2636250.6060430.1799390.035*
C50.1034 (2)0.4714 (2)0.1817 (3)0.0292 (5)
H50.1799380.3848820.1702460.035*
C60.0580 (2)0.4643 (2)0.1925 (2)0.0262 (5)
C70.2333 (2)0.8614 (2)0.2243 (3)0.0284 (5)
C80.4160 (3)1.0825 (3)0.3806 (3)0.0494 (7)
H8A0.4958751.0561740.3145720.074*
H8B0.4694291.1317750.4824490.074*
H8C0.3566641.1525570.3579970.074*
C90.2285 (3)0.8986 (3)0.2679 (3)0.0376 (6)
H9A0.2381270.8694740.3522190.045*
H9B0.2267691.0095730.3032530.045*
C100.3713 (3)0.8721 (3)0.0443 (3)0.0509 (7)
H10A0.3623560.9831640.0853570.076*
H10B0.4738120.8242400.0197810.076*
H10C0.2842220.8440620.0126230.076*
C110.0113 (3)0.2090 (2)0.1794 (3)0.0314 (5)
H11A0.0650270.1720920.0875380.038*
H11B0.0711620.1269170.1740370.038*
C120.0227 (3)0.2754 (3)0.4335 (3)0.0487 (7)
H12A0.0788020.1917110.4268200.073*
H12B0.0449870.2911780.5106760.073*
H12C0.1006610.3688630.4571370.073*
C130.3446 (2)0.5742 (3)0.2107 (3)0.0313 (6)
H13A0.3564920.4905020.1184040.038*
H13B0.4098560.6693210.2152950.038*
C140.4080 (2)0.5412 (2)0.3378 (3)0.0305 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0385 (9)0.0556 (11)0.0457 (13)0.0099 (8)0.0036 (8)0.0315 (9)
O20.0435 (10)0.0378 (9)0.0348 (12)0.0124 (7)0.0001 (8)0.0095 (8)
O30.0246 (8)0.0319 (8)0.0551 (13)0.0073 (7)0.0093 (7)0.0217 (8)
O40.0259 (8)0.0473 (10)0.0627 (14)0.0081 (7)0.0063 (8)0.0351 (9)
O50.0300 (8)0.0276 (8)0.0384 (11)0.0054 (6)0.0041 (7)0.0156 (7)
O60.0350 (9)0.0405 (9)0.0339 (12)0.0031 (7)0.0048 (7)0.0189 (8)
O70.0339 (9)0.0460 (9)0.0320 (12)0.0076 (7)0.0029 (8)0.0159 (8)
O80.0354 (9)0.0633 (11)0.0482 (14)0.0216 (8)0.0067 (8)0.0311 (10)
C10.0224 (10)0.0305 (11)0.0229 (14)0.0026 (9)0.0015 (9)0.0112 (9)
C20.0245 (11)0.0282 (11)0.0243 (15)0.0007 (9)0.0016 (9)0.0127 (9)
C30.0269 (11)0.0283 (11)0.0281 (15)0.0075 (9)0.0032 (9)0.0144 (10)
C40.0219 (11)0.0340 (12)0.0320 (16)0.0036 (9)0.0019 (9)0.0151 (10)
C50.0239 (11)0.0299 (12)0.0312 (15)0.0015 (9)0.0006 (9)0.0123 (10)
C60.0266 (11)0.0283 (11)0.0248 (15)0.0060 (9)0.0022 (9)0.0118 (10)
C70.0233 (11)0.0333 (12)0.0313 (16)0.0057 (9)0.0019 (10)0.0161 (11)
C80.0392 (14)0.0377 (14)0.055 (2)0.0118 (11)0.0019 (13)0.0082 (12)
C90.0320 (12)0.0371 (13)0.0486 (19)0.0120 (10)0.0119 (11)0.0191 (12)
C100.0426 (15)0.0641 (17)0.060 (2)0.0190 (13)0.0137 (13)0.0355 (15)
C110.0370 (13)0.0257 (11)0.0293 (16)0.0006 (9)0.0014 (10)0.0111 (10)
C120.0506 (16)0.0578 (17)0.0354 (19)0.0046 (13)0.0034 (12)0.0187 (13)
C130.0237 (11)0.0346 (12)0.0395 (17)0.0064 (9)0.0054 (10)0.0186 (11)
C140.0206 (11)0.0317 (12)0.0389 (18)0.0009 (9)0.0013 (10)0.0158 (11)
Geometric parameters (Å, º) top
O1—C71.196 (3)C4—C51.374 (3)
O2—C71.329 (3)C4—H40.9500
O2—C81.461 (3)C5—C61.391 (3)
O3—C31.379 (2)C5—H50.9500
O3—C91.429 (3)C8—H8A0.9800
O4—C91.400 (3)C8—H8B0.9800
O4—C101.425 (3)C8—H8C0.9800
O5—C61.372 (2)C9—H9A0.9900
O5—C111.429 (2)C9—H9B0.9900
O6—C111.390 (3)C10—H10A0.9800
O6—C121.417 (3)C10—H10B0.9800
O7—C141.240 (3)C10—H10C0.9800
O8—C141.308 (3)C11—H11A0.9900
O8—H80.8400C11—H11B0.9900
C1—C21.386 (3)C12—H12A0.9800
C1—C61.408 (3)C12—H12B0.9800
C1—C131.513 (3)C12—H12C0.9800
C2—C31.406 (3)C13—C141.499 (3)
C2—C71.496 (3)C13—H13A0.9900
C3—C41.383 (3)C13—H13B0.9900
C7—O2—C8115.27 (19)O4—C9—O3113.0 (2)
C3—O3—C9116.23 (16)O4—C9—H9A109.0
C9—O4—C10113.21 (19)O3—C9—H9A109.0
C6—O5—C11117.44 (16)O4—C9—H9B109.0
C11—O6—C12113.99 (18)O3—C9—H9B109.0
C14—O8—H8109.5H9A—C9—H9B107.8
C2—C1—C6119.14 (18)O4—C10—H10A109.5
C2—C1—C13123.33 (18)O4—C10—H10B109.5
C6—C1—C13117.51 (18)H10A—C10—H10B109.5
C1—C2—C3120.27 (18)O4—C10—H10C109.5
C1—C2—C7122.31 (18)H10A—C10—H10C109.5
C3—C2—C7117.40 (18)H10B—C10—H10C109.5
O3—C3—C4124.46 (18)O6—C11—O5112.89 (17)
O3—C3—C2115.83 (17)O6—C11—H11A109.0
C4—C3—C2119.71 (18)O5—C11—H11A109.0
C5—C4—C3120.44 (19)O6—C11—H11B109.0
C5—C4—H4119.8O5—C11—H11B109.0
C3—C4—H4119.8H11A—C11—H11B107.8
C4—C5—C6120.48 (18)O6—C12—H12A109.5
C4—C5—H5119.8O6—C12—H12B109.5
C6—C5—H5119.8H12A—C12—H12B109.5
O5—C6—C5125.22 (17)O6—C12—H12C109.5
O5—C6—C1114.84 (17)H12A—C12—H12C109.5
C5—C6—C1119.94 (19)H12B—C12—H12C109.5
O1—C7—O2122.7 (2)C14—C13—C1113.74 (19)
O1—C7—C2125.0 (2)C14—C13—H13A108.8
O2—C7—C2112.25 (19)C1—C13—H13A108.8
O2—C8—H8A109.5C14—C13—H13B108.8
O2—C8—H8B109.5C1—C13—H13B108.8
H8A—C8—H8B109.5H13A—C13—H13B107.7
O2—C8—H8C109.5O7—C14—O8123.2 (2)
H8A—C8—H8C109.5O7—C14—C13122.6 (2)
H8B—C8—H8C109.5O8—C14—C13114.1 (2)
C6—C1—C2—C30.3 (3)C13—C1—C6—O52.6 (3)
C13—C1—C2—C3178.2 (2)C2—C1—C6—C51.4 (3)
C6—C1—C2—C7178.5 (2)C13—C1—C6—C5177.2 (2)
C13—C1—C2—C70.0 (3)C8—O2—C7—O11.1 (3)
C9—O3—C3—C424.5 (3)C8—O2—C7—C2178.97 (19)
C9—O3—C3—C2154.8 (2)C1—C2—C7—O199.6 (3)
C1—C2—C3—O3178.31 (19)C3—C2—C7—O178.6 (3)
C7—C2—C3—O33.4 (3)C1—C2—C7—O280.3 (3)
C1—C2—C3—C41.0 (3)C3—C2—C7—O2101.5 (2)
C7—C2—C3—C4177.3 (2)C10—O4—C9—O367.6 (2)
O3—C3—C4—C5178.0 (2)C3—O3—C9—O477.8 (2)
C2—C3—C4—C51.2 (3)C12—O6—C11—O565.5 (2)
C3—C4—C5—C60.1 (3)C6—O5—C11—O661.3 (2)
C11—O5—C6—C51.9 (3)C2—C1—C13—C14119.8 (2)
C11—O5—C6—C1178.44 (19)C6—C1—C13—C1461.7 (3)
C4—C5—C6—O5179.1 (2)C1—C13—C14—O729.8 (3)
C4—C5—C6—C11.2 (3)C1—C13—C14—O8152.52 (19)
C2—C1—C6—O5178.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O40.952.413.022 (3)122
O8—H8···O7i0.841.852.676 (2)168
C9—H9B···O6ii0.992.433.256 (3)140
C11—H11A···O1iii0.992.383.366 (3)175
C13—H13B···O4iv0.992.503.421 (3)155
C12—H12B···Cgv0.982.663.451 (3)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x, y+1, z+1.
Short interatomic contacts (Å)a in the crystal of compound I top
Atom1Atom2LengthLength-VdW
O7H8i1.850-0.870
O7O8i2.676-0.364
O1H11Aiii2.379-0.341
O6H9Bvi2.432-0.288
O4H13Bv2.501-0.219
H8C14i2.703-0.197
O5H10Ciii2.637-0.083
C12H9Bvi2.882-0.018
O4H8Av2.7230.003
O7C8viii3.2230.003
O7H8Bviii2.7260.006
O2H8Bviii2.7310.011
H8H8i2.4160.016
C2H12Bvii2.9320.032
O6C9vi3.2560.036
H8BC14viii2.9540.054
C9H8Av2.9570.057
C1H12Bvii2.9680.068
C3H12Bvii2.9680.068
H10CC11iii2.9690.069
H9BH8Av2.4820.082
(a) Calculated using Mercury (Macrae et al., 2020). Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z; (v) x - 1, y, z; (vi) x, y - 1, z; (vii) -x, -y + 1, -z + 1; (viii) -x + 1, -y + 2, -z + 1.
Selected torsion angles (°) in compound I compared to those in compounds GEZPUZ, GEZQAG and IVIQIP top
I
C3—O3—C9—O4-77.8 (2)
C10—O4—C9—O3-67.6 (2)
C6—O5—C11—O6-61.3 (2)
C12—O6—C11—O5-65.5 (2)
GEZPUZa
C7—O4—C13—O167.1 (3)
C16—O1—C13—O456.3 (3)
C8—O5—C12—O6-80.1 (2)
C17—O6—C12—O5-65.8 (3)
GEZQAGa
C7—O2—C12—O7-71.2 (8)
C16—O7—C12—O2-67.6 (9)
C9—O3—C10—O686.1 (7)
C17—O6—C10—O376.6 (8)
IVIQIPb,c
C1—O1—C8—O2-68.9 (2)
C9—O2—C8—O1-66.1 (2)
(a) Nakayama et al. (2018); (b) Zhang et al. (2017); (c) compound IVIQIP possesses inversion symmetry.
 

Acknowledgements

RT and HSE are grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by: Swiss National Science Foundation and the University of Neuchâtel.

References

First citationBürki, N., Michel, A. & Tabacchi, R. (2003). Phytopathol. Mediterr. 42, 191–198.  Google Scholar
First citationGremaud, G. & Tabacchi, R. (1994). Nat. Prod. Lett. 5, 95–103.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationMichel, A. (2001). PhD Thesis. University of Neuchâtel, Switzerland.  Google Scholar
First citationNakayama, A., Sata, H., Karanjit, S., Hayashi, N., Oda, M. & Namba, K. (2018). Eur. J. Org. Chem. pp. 4013–4017.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland. Available from https://doc.rero.ch/record  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J. N., Kang, H., Li, N., Zhou, S. M., Sun, H. M., Yin, S. W., Zhao, N. & Tang, B. Z. (2017). Chem. Sci. 8, 577–582.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds