research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di­ethyl 5-(2-cyano­phen­­oxy)isophthalate

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, 202002, (UP), India, bCatalytic Chemistry Research Chair, Department of Chemistry, College of Science, KSU, Riyadh 11451, Saudi Arabia, and cDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: amusheer4@gmail.com, plutenkom@yahoo.com

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 23 March 2020; accepted 1 May 2020; online 22 May 2020)

The title compound, C19H17NO5, obtained by ether bond formation between the reagents, crystallizes in the monoclinic space group P21/c. The compound is non-planar, subtending a dihedral angle of 82.38 (4)° between the plane of hy­droxy isophthalate-based ester and that of the benzo­nitrile moiety. The mol­ecule is bent at the ether linkage, with a Car­yl—O—Car­yl bond angle of 116.74 (11)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and other weak inter­actions forming a supra­molecular framework. A Hirshfeld surface analysis was performed to generate two-dimensional fingerprint plots, which reveal the type of inter­actions occurring in the vicinity of the mol­ecule.

1. Chemical context

5-Hy­droxy­isophthalic acid and its derivatives have been used in the synthesis of several organic ligands. This type of ligand has an isophthalate moiety, which has oxygen-rich carbon chains that are sufficiently reactive to incorporate functionality, followed by conjugation with biomolecular compounds (Calderon et al., 2010[Calderón, M., Quadir, M. A., Sharma, S. K. & Haag, R. (2010). Adv. Mater. 22, 190-218.]; Khandare et al., 2012[Khandare, J., Calderón, M., Dagia, N. M. & Haag, R. (2012). Chem. Soc. Rev. 41, 2824-2848.]). Carboxyl­ate-containing ligands have been used for the synthesis of coordination polymers because of their flexible nature. The flexibility of the ligand and hardness of metal ions improve the stability of coordination polymers (Ahmad et al., 2012[Ahmad, M., Das, R., Lama, P., Poddar, P. & Bharadwaj, P. K. (2012). Cryst. Growth Des. 12, 4624-4632.]). Coordination polymers have been used in various types of applications as a result of their physical properties, which include ferromagnetic behaviour, anti­ferromagnetic ordering, spin canting and metamagnetism (Wang et al., 2005[Wang, X.-L., Qin, C., Wang, E.-B., Li, Y.-G., Su, Z.-M., Xu, L. & Carlucci, L. (2005). Angew. Chem. Int. Ed. 44, 5824-5827.]; Liu et al., 2010[Liu, Q.-Y., Wang, Y.-L., Shan, Z.-M., Cao, R., Jiang, Y.-L., Wang, Z.-J. & Yang, E.-L. (2010). Inorg. Chem. 49, 8191-8193.]). Several types of framework have been obtained, such as metal complexes, clusters, and metal–organic frameworks by linking of the flexible organic linker and metal ion, leading to inter­esting magnetic properties (Cheon & Suh, 2009[Cheon, Y. E. & Suh, M. P. (2009). Chem. Commun. pp. 2296-2298.]; Wang et al., 2009[Wang, X.-T., Wang, X.-H., Wang, Z.-M. & Gao, S. (2009). Inorg. Chem. 48, 1301-1308.]). Organic ligands containing ether linkages have been used to synthesize magnetic materials because these types of organic ligands exhibit a binding ability that can efficiently transmit magnetic coupling (Coronado et al., 2000[Coronado, E., Galán-Mascarós, J. R., Gómez-García, C. J. & Laukhin, V. (2000). Nature, 408, 447-449.]; Masciocchi et al., 2009[Masciocchi, N., Galli, S., Tagliabue, G., Sironi, A., Castillo, O., Luque, A., Beobide, G., Wang, W., Romero, M. A., Barea, E. & Navarro, J. A. R. (2009). Inorg. Chem. 48, 3087-3094.]; Yu et al., 2010[Yu, Q., Zeng, Y.-F., Zhao, J.-P., Yang, Q., Hu, B.-W., Chang, Z. & Bu, X.-H. (2010). Inorg. Chem. 49, 4301-4306.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The compound crystallizes in the monoclinic space group P21/c. The asymmetric unit contains one unit of 5-hy­droxy-isophthalic acid diethyl ester and one unit of benzo­nitrile, connected by an ether bridge linkage. The mol­ecule is non-planar, with a C12—O5—C14 bond angle of 116.74 (11)° at the ether group, and a C14—O5—C12—C13 torsion angle at the bridge of −97.37 (2)°. The C12—O5 bond length, 1.4025 (17) Å, is comparable to the C-O bond lengths obtained for similar ligands. The C3—O1 and C3—O2 bond lengths are 1.3377 (18) and 1.2061 (19) Å, respectively, and are in the expected ranges (Cambridge Structural Database; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% level.

3. Supra­molecular features

In the crystal, the mol­ecules are connected through C2—H2A⋯O4, C16—H16⋯O2 and C13—H13⋯O4 hydrogen bonds (Table 1[link], Fig. 2[link]). They are linked by a series of C10—H10Cπ and C3—O2⋯C16, C7—O4⋯C2 and C20—N1⋯C7 weak interactions, forming an extended supra­molecular framework (Fig. 3[link]). ππ interactions with Cg1⋯Cg2(1 − x, [{1\over 2}] + y, [{3\over 2}] − z) = 3.9572 (9) Å where Cg1 andCg2 are the centroids of the C4–C6/C11–C13 and C14–C19 rings, respectively, and a C—H⋯N inter­action are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C6/C11–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O4i 0.98 (2) 2.50 (2) 3.2071 (2) 128 (1)
C13—H13⋯O4ii 0.936 (16) 2.514 (16) 3.4179 (2) 163.5 (12)
C16—H16⋯O2iii 0.997 (17) 2.516 (17) 3.1941 (2) 125.7 (13)
C18—H18⋯N1iv 0.945 (17) 2.629 (17) 3.430 (2) 143.0 (13)
C10—H10C⋯Cg1v 1.00 (2) 2.96 (2) 3.7893 (19) 140 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+2; (v) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. The C—H⋯π and other weak inter­actions are indicated by dashed lines.

4. Hirshfeld analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon, et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3814.]) were performed with Crystal Explorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface. net]) to investigate the inter­molecular inter­actions and surface morphology of the crystal structure. The Hirshfeld surface mapped over dnorm (Fig. 4[link]) in the colour range −0.174 to 1.315 a.u. from red (shorter distance than the sum of van der Waals radii) and white to blue (longer distance than the sum of van der Waals radii). The bright red spot on the dnorm surface corresponds to a weak inter­action e.g. hydrogen bonding, blue indicates close contacts and a white spot shows van der Waals inter­actions. In the crystal there are three major types of inter­action (H⋯H = 41.2%, H⋯O = 20.5%, C⋯H = 16.3%) on the dnorm surface. The two-dimensional fingerprint plots are shown in Fig. 5[link]. The inter­action order of dnorm on the 2D fingerprint plot (H⋯H)>(H⋯O)>(C⋯H) represents the nature of the packing in the crystal structure. The contribution of these major inter­actions (H⋯H, O⋯H/H⋯O, and C⋯H/H⋯C), governs the overall packing of crystal structure.

[Figure 4]
Figure 4
The Hirshfeld surface of the crystal structure mapped over dnorm, in the colour range −0.174 to 1.315 a.u..
[Figure 5]
Figure 5
(a) A full 2D fingerprint plot of the title compound, and delineated into (b) H⋯H (41.2%) (c) H⋯O/O⋯H (20.5%) and (d) C⋯H/H⋯C (16.3%) contacts, which are the major inter­actions present in the crystal structure.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.39, update of May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 5-hy­droxy-isophthalic acid derivatives gave 38 hits for structures that include atomic coordinates. In most of the derivatives, the phenolic group is replaced by an alk­oxy, a substituted alk­oxy or a substituted phen­oxy moiety. Only in three of the 5-hy­droxy-isophthalic acid derivatives is the carboxyl group modified: IDIYIE (Petek et al., 2006[Petek, H., Akdemir, N., Ağar, E., Gümrükçüoğlu, İ. E. & Şenel, İ. (2006). Acta Cryst. E62, o2111-o2112.]), NUHTAM (Feng et al., 2009[Feng, Y., Liu, Z.-T., Liu, J., He, Y.-M., Zheng, Q.-Y. & Fan, Q.-H. (2009). J. Am. Chem. Soc. 131, 7950-7951.]), EVIBOB (Yang et al., 2011[Yang, F., Meng, F., Zhang, X. & Bai, M. (2011). Acta Cryst. E67, o1836.]). In all these compounds, the hydroxyl groups of the carboxyl moieties have been replaced by meth­oxy groups and the phenolic group is replaced by a substituted alk­oxy or a substituted phen­oxy moiety.

6. Synthesis and crystallization

5-Hy­droxy­isophthalic acid diethyl ester (3.7 g, 14.9 mmol) was mixed with dried K2CO3 (3.3g, 22.3 mmol) in a 100 ml round-bottom flask under an inert atmosphere and then treated with dry DMF (20 ml) . The mixture was stirred for 30 minutes at 353 K followed by addition of 2-fluoro-benzo­nitrile (1.8 ml, 16.6 mmol) and the resulting mixture was stirred for 24 h in an oil-bath at 353 K. After this period, the solution was allowed to cool to room temperature and then poured into ice-cold water (100 ml) with vigorous stirring, to afford a white precipitate, which was collected by filtration, washed with water, and dried under vacuum. Yield: 4.6 g (90%). Melting point 325 K. The ligand was crystallized from a solution in ethanol, the resultant solution was filtered and kept for slow evaporation. After 2–3 weeks, block-shaped colourless crystal were obtained, which were suitable for single-crystal X-ray diffraction analysis.

7. Refinement

Crytal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C19H17NO5
Mr 339.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.3581 (5), 10.5306 (6), 17.0141 (10)
β (°) 91.967 (2)
V3) 1675.69 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.39 × 0.27 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.611, 0.746
No. of measured, independent and observed [I ≥ 2σ(I)] reflections 25974, 4149, 3134
Rint 0.062
(sin θ/λ)max−1) 1.174
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.110, 1.10
No. of reflections 4149
No. of parameters 294
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.30, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve and olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Diethyl 5-(2-cyanophenoxy)benzene-1,3-dicarboxylate top
Crystal data top
C19H17NO5F(000) = 712.4237
Mr = 339.35Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3581 (5) ÅCell parameters from 7552 reflections
b = 10.5306 (6) Åθ = 3.2–28.2°
c = 17.0141 (10) ŵ = 0.10 mm1
β = 91.967 (2)°T = 100 K
V = 1675.69 (16) Å3Block, colourless
Z = 40.39 × 0.27 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
3134 reflections with I 2σ(I)
φ and ω scansRint = 0.062
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 56.6°, θmin = 5.8°
Tmin = 0.611, Tmax = 0.746h = 1212
25974 measured reflectionsk = 1414
4149 independent reflectionsl = 2222
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: iterative
R[F2 > 2σ(F2)] = 0.044All H-atom parameters refined
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.035P)2 + 0.7212P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
4149 reflectionsΔρmax = 0.30 e Å3
294 parametersΔρmin = 0.31 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22713 (11)0.50496 (10)0.53544 (6)0.0229 (2)
O20.42747 (13)0.38970 (12)0.55579 (7)0.0360 (3)
O30.06230 (11)0.78631 (10)0.73574 (6)0.0213 (2)
O40.20643 (11)0.84802 (11)0.83720 (7)0.0266 (3)
O50.64745 (11)0.57614 (10)0.80523 (6)0.0232 (2)
N11.00269 (15)0.58018 (13)0.86616 (8)0.0285 (3)
C10.1112 (2)0.31216 (17)0.48736 (11)0.0312 (4)
H1a0.026 (2)0.3334 (18)0.5175 (11)0.036 (5)*
H1b0.174 (2)0.255 (2)0.5194 (12)0.044 (6)*
H1c0.079 (2)0.265 (2)0.4393 (12)0.045 (6)*
C20.19053 (19)0.42986 (16)0.46556 (9)0.0255 (3)
H2a0.279 (2)0.4097 (17)0.4384 (11)0.030 (5)*
H2b0.130 (2)0.4875 (19)0.4334 (11)0.036 (5)*
C30.34773 (16)0.47318 (14)0.57513 (9)0.0216 (3)
C40.37168 (16)0.55112 (13)0.64759 (9)0.0187 (3)
C50.26900 (15)0.63480 (14)0.67416 (9)0.0180 (3)
H50.1801 (18)0.6472 (16)0.6445 (10)0.020 (4)*
C60.29409 (15)0.70006 (13)0.74438 (9)0.0184 (3)
C70.18526 (15)0.78627 (14)0.77797 (9)0.0193 (3)
C90.05528 (16)0.85475 (16)0.77059 (10)0.0238 (3)
H9a0.0642 (18)0.8230 (17)0.8257 (11)0.026 (4)*
H9b0.0293 (18)0.9469 (17)0.7713 (10)0.024 (4)*
C100.18649 (17)0.82704 (18)0.72010 (11)0.0282 (4)
H10a0.1759 (19)0.8645 (18)0.6671 (12)0.033 (5)*
H10b0.202 (2)0.735 (2)0.7152 (11)0.035 (5)*
H10c0.271 (2)0.865 (2)0.7460 (12)0.044 (6)*
C110.42139 (16)0.68242 (14)0.78809 (9)0.0198 (3)
H110.4401 (17)0.7255 (16)0.8374 (10)0.021 (4)*
C120.52017 (15)0.59670 (14)0.76114 (9)0.0193 (3)
C130.49852 (16)0.53133 (14)0.69155 (9)0.0199 (3)
H130.5670 (17)0.4739 (16)0.6743 (9)0.017 (4)*
C140.64157 (15)0.49105 (14)0.86643 (9)0.0189 (3)
C150.51899 (17)0.42882 (14)0.88849 (9)0.0216 (3)
H150.429 (2)0.4474 (18)0.8609 (11)0.034 (5)*
C160.52654 (18)0.34329 (15)0.95050 (9)0.0243 (3)
H160.4388 (18)0.2977 (16)0.9645 (10)0.025 (4)*
C170.65468 (18)0.31972 (15)0.99145 (9)0.0254 (3)
H170.659 (2)0.2606 (18)1.0337 (11)0.034 (5)*
C180.77621 (17)0.38328 (15)0.97039 (9)0.0229 (3)
H180.8631 (18)0.3700 (16)0.9991 (10)0.023 (4)*
C190.77115 (15)0.46874 (14)0.90750 (9)0.0194 (3)
C200.89888 (16)0.53164 (15)0.88389 (9)0.0218 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0265 (6)0.0223 (5)0.0195 (5)0.0021 (4)0.0050 (4)0.0020 (4)
O20.0327 (7)0.0383 (7)0.0368 (7)0.0128 (6)0.0025 (5)0.0149 (6)
O30.0165 (5)0.0264 (6)0.0208 (5)0.0056 (4)0.0010 (4)0.0018 (4)
O40.0237 (6)0.0285 (6)0.0274 (6)0.0002 (5)0.0019 (5)0.0096 (5)
O50.0154 (5)0.0285 (6)0.0252 (6)0.0019 (4)0.0048 (4)0.0098 (5)
N10.0227 (7)0.0311 (7)0.0313 (8)0.0018 (6)0.0054 (6)0.0021 (6)
C10.0372 (10)0.0299 (9)0.0265 (9)0.0063 (8)0.0035 (8)0.0051 (7)
C20.0340 (9)0.0252 (8)0.0172 (7)0.0020 (7)0.0022 (7)0.0022 (6)
C30.0219 (8)0.0212 (7)0.0218 (8)0.0022 (6)0.0006 (6)0.0015 (6)
C40.0186 (7)0.0183 (7)0.0191 (7)0.0001 (6)0.0005 (6)0.0027 (6)
C50.0156 (7)0.0185 (7)0.0199 (7)0.0004 (6)0.0015 (6)0.0039 (6)
C60.0173 (7)0.0179 (7)0.0200 (7)0.0004 (5)0.0002 (6)0.0036 (6)
C70.0174 (7)0.0194 (7)0.0212 (7)0.0007 (6)0.0006 (6)0.0008 (6)
C90.0203 (8)0.0280 (8)0.0232 (8)0.0073 (6)0.0019 (6)0.0025 (7)
C100.0185 (8)0.0373 (10)0.0288 (9)0.0051 (7)0.0011 (7)0.0033 (8)
C110.0196 (7)0.0212 (7)0.0185 (7)0.0034 (6)0.0012 (6)0.0024 (6)
C120.0139 (7)0.0218 (7)0.0220 (8)0.0019 (6)0.0026 (6)0.0070 (6)
C130.0180 (7)0.0192 (7)0.0226 (8)0.0017 (6)0.0034 (6)0.0048 (6)
C140.0192 (7)0.0170 (7)0.0204 (7)0.0020 (6)0.0029 (6)0.0001 (6)
C150.0192 (7)0.0229 (7)0.0225 (8)0.0002 (6)0.0024 (6)0.0001 (6)
C160.0274 (8)0.0217 (7)0.0241 (8)0.0002 (6)0.0025 (6)0.0009 (6)
C170.0334 (9)0.0241 (8)0.0187 (8)0.0049 (7)0.0005 (6)0.0024 (6)
C180.0245 (8)0.0252 (8)0.0184 (7)0.0060 (6)0.0058 (6)0.0033 (6)
C190.0185 (7)0.0197 (7)0.0199 (7)0.0018 (6)0.0024 (6)0.0041 (6)
C200.0194 (8)0.0232 (7)0.0222 (8)0.0032 (6)0.0072 (6)0.0029 (6)
Geometric parameters (Å, º) top
O1—C21.4588 (18)C9—H9a1.002 (18)
O1—C31.3377 (18)C9—H9b1.001 (17)
O2—C31.2061 (19)C9—C101.503 (2)
O3—C71.3355 (17)C10—H10a0.992 (19)
O3—C91.4583 (17)C10—H10b0.99 (2)
O4—C71.2100 (18)C10—H10c1.00 (2)
O5—C121.4025 (17)C11—H110.964 (17)
O5—C141.3763 (18)C11—C121.382 (2)
N1—C201.147 (2)C12—C131.379 (2)
C1—H1a0.99 (2)C13—H130.936 (17)
C1—H1b0.99 (2)C14—C151.384 (2)
C1—H1c1.00 (2)C14—C191.399 (2)
C1—C21.498 (2)C15—H150.973 (19)
C2—H2a0.988 (19)C15—C161.387 (2)
C2—H2b0.98 (2)C16—H160.988 (17)
C3—C41.492 (2)C16—C171.388 (2)
C4—C51.391 (2)C17—H170.950 (19)
C4—C131.397 (2)C17—C181.378 (2)
C5—H50.967 (17)C18—H180.945 (17)
C5—C61.391 (2)C18—C191.398 (2)
C6—C71.493 (2)C19—C201.436 (2)
C6—C111.395 (2)
C3—O1—C2116.50 (12)C10—C9—H9b112.9 (10)
C9—O3—C7115.44 (11)H10a—C10—C9109.7 (11)
C14—O5—C12116.74 (11)H10b—C10—C9110.6 (11)
H1b—C1—H1a108.8 (16)H10b—C10—H10a109.5 (15)
H1c—C1—H1a108.1 (16)H10c—C10—C9108.3 (12)
H1c—C1—H1b107.9 (17)H10c—C10—H10a110.4 (16)
C2—C1—H1a110.9 (11)H10c—C10—H10b108.3 (16)
C2—C1—H1b110.5 (12)H11—C11—C6121.8 (10)
C2—C1—H1c110.5 (12)C12—C11—C6118.62 (14)
C1—C2—O1110.56 (13)C12—C11—H11119.5 (10)
H2a—C2—O1108.7 (10)C11—C12—O5119.28 (13)
H2a—C2—C1111.7 (11)C13—C12—O5118.64 (13)
H2b—C2—O1103.5 (11)C13—C12—C11122.08 (13)
H2b—C2—C1111.8 (11)C12—C13—C4118.85 (14)
H2b—C2—H2a110.3 (16)H13—C13—C4120.5 (10)
O2—C3—O1124.32 (14)H13—C13—C12120.7 (10)
C4—C3—O1112.32 (12)C15—C14—O5124.64 (13)
C4—C3—O2123.35 (14)C19—C14—O5115.53 (13)
C5—C4—C3122.10 (13)C19—C14—C15119.83 (14)
C13—C4—C3117.47 (13)H15—C15—C14119.3 (11)
C13—C4—C5120.30 (14)C16—C15—C14119.51 (14)
H5—C5—C4120.5 (10)C16—C15—H15121.2 (11)
C6—C5—C4119.60 (13)H16—C16—C15118.6 (10)
C6—C5—H5119.9 (10)C17—C16—C15121.22 (15)
C7—C6—C5122.14 (13)C17—C16—H16120.2 (10)
C11—C6—C5120.52 (14)H17—C17—C16120.5 (11)
C11—C6—C7117.28 (13)C18—C17—C16119.28 (15)
O4—C7—O3124.15 (13)C18—C17—H17120.3 (11)
C6—C7—O3112.38 (12)H18—C18—C17119.8 (10)
C6—C7—O4123.46 (13)C19—C18—C17120.36 (14)
H9a—C9—O3107.7 (10)C19—C18—H18119.8 (10)
H9b—C9—O3107.3 (10)C18—C19—C14119.78 (14)
H9b—C9—H9a109.9 (14)C20—C19—C14119.90 (13)
C10—C9—O3106.54 (13)C20—C19—C18120.31 (13)
C10—C9—H9a112.2 (10)C19—C20—N1178.46 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C6/C11–C13 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···O4i0.98 (2)2.50 (2)3.2071 (2)128 (1)
C13—H13···O4ii0.936 (16)2.514 (16)3.4179 (2)163.5 (12)
C16—H16···O2iii0.997 (17)2.516 (17)3.1941 (2)125.7 (13)
C18—H18···N1iv0.945 (17)2.629 (17)3.430 (2)143.0 (13)
C10—H10C···Cg1v1.00 (2)2.96 (2)3.7893 (19)140 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x+2, y+1, z+2; (v) x, y+1/2, z+3/2.
 

Acknowledgements

The Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, UP, India, and Deanship of Scientific Research, Research Chair, King Saud University, Riyadh, KSA, are gratefully acknowledged for providing laboratory facilities. TEQIP-III, ZHCET, Aligarh Muslim University, is thanked for extensive help to procure chemicals.

Funding information

Musheer Ahmad acknowledges a start-up grant from the UGC, India. Mohd Afzal acknowledges support from the Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia. AA, SK and MM thank the UGC for Non-NET Fellowships.

References

First citationAhmad, M., Das, R., Lama, P., Poddar, P. & Bharadwaj, P. K. (2012). Cryst. Growth Des. 12, 4624–4632.  CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalderón, M., Quadir, M. A., Sharma, S. K. & Haag, R. (2010). Adv. Mater. 22, 190–218.  CrossRef PubMed Google Scholar
First citationCheon, Y. E. & Suh, M. P. (2009). Chem. Commun. pp. 2296–2298.  CrossRef Google Scholar
First citationCoronado, E., Galán-Mascarós, J. R., Gómez-García, C. J. & Laukhin, V. (2000). Nature, 408, 447–449.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, Y., Liu, Z.-T., Liu, J., He, Y.-M., Zheng, Q.-Y. & Fan, Q.-H. (2009). J. Am. Chem. Soc. 131, 7950–7951.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhandare, J., Calderón, M., Dagia, N. M. & Haag, R. (2012). Chem. Soc. Rev. 41, 2824–2848.  CrossRef CAS PubMed Google Scholar
First citationLiu, Q.-Y., Wang, Y.-L., Shan, Z.-M., Cao, R., Jiang, Y.-L., Wang, Z.-J. & Yang, E.-L. (2010). Inorg. Chem. 49, 8191–8193.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMasciocchi, N., Galli, S., Tagliabue, G., Sironi, A., Castillo, O., Luque, A., Beobide, G., Wang, W., Romero, M. A., Barea, E. & Navarro, J. A. R. (2009). Inorg. Chem. 48, 3087–3094.  CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3814.  CrossRef Google Scholar
First citationPetek, H., Akdemir, N., Ağar, E., Gümrükçüoğlu, İ. E. & Şenel, İ. (2006). Acta Cryst. E62, o2111–o2112.  CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface. net  Google Scholar
First citationWang, X.-L., Qin, C., Wang, E.-B., Li, Y.-G., Su, Z.-M., Xu, L. & Carlucci, L. (2005). Angew. Chem. Int. Ed. 44, 5824–5827.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X.-T., Wang, X.-H., Wang, Z.-M. & Gao, S. (2009). Inorg. Chem. 48, 1301–1308.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, F., Meng, F., Zhang, X. & Bai, M. (2011). Acta Cryst. E67, o1836.  CrossRef IUCr Journals Google Scholar
First citationYu, Q., Zeng, Y.-F., Zhao, J.-P., Yang, Q., Hu, B.-W., Chang, Z. & Bu, X.-H. (2010). Inorg. Chem. 49, 4301–4306.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds