research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Absolute structure of (3aS,5S,7aS,7bS,9aR,10R,12aR,12bS)-7b-hy­dr­oxy-4,4,7a,9a,12a-penta­methyl-10-[(2′R)-6-methyl­heptan-2-yl]-2,8,9-trioxo­octa­deca­hydro­benzo[d]indeno­[4,5-b]azepin-5-yl acetate from 62-year-old crystals

CROSSMARK_Color_square_no_text.svg

aCryssmat-Lab/DETEMA, Facultad de Química, Universidad de la República, Av., Gral., Flores 2124, Montevideo 11800, Uruguay, and bDepartamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, Montevideo 11800, Uruguay
*Correspondence e-mail: leopoldo@fq.edu.uy

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 25 July 2019; accepted 13 August 2019; online 23 August 2019)

The structure of the title compound, C32H51NO6, was determined from 62-year-old crystals at room temperature and refined with 100 K data in a monoclinic (C2) space group. This compound with a triterpenoid structure, now confirmed by this study, played an important role in the determination of the structure of lanosterol. The mol­ecules pack in linear O—H⋯O hydrogen-bonded chains along the short axis (b), while parallel chains display weak van der Waals inter­actions that explain the needle-shaped crystal morphology. The structure exhibits disorder of the flexible methyl­heptane chain at one end of the main mol­ecule with a small void around it. Crystals of the compounds were resistant to data collection for decades with the available cameras and Mo Kα radiation single-crystal diffractometer in our laboratory until a new instrument with Cu Kα radiation operating at 100 K allowed the structure to be solved and refined.

1. Chemical context

Crystals of the title compound were obtained by Professor M. R. Falco (1922–2015) in 1952 after a spectroscopic structure determination (Falco et al., 1952[Falco, M., Voser, W., Jeger, O. & Ruzicka, L. (1952). Helv. Chim. Acta, 35, 2430-2437.]) that was relevant for the correct determination of the structure of lanosterol (Eschenmoser et al., 1955[Eschenmoser, A., Ruzicka, L., Jeger, O. & Arigoni, D. (1955). Helv. Chim. Acta, 38, 1890-1904.]) and were handed in the glass vial shown in Fig. 1[link] to Professor R. Mariezcurrena (1940–2016) in the late 80′s for structure determination by X-ray diffraction. Structure determination was elusive for many years (see the Supra­molecular features section for reasons) since the very thin needles available produced no measurable diffraction intensities with the available Weissenberg or Bürger cameras or a sealed-tube Mo Kα source diffractometer with a scintillator detector available at the laboratory over that period. The availability of a diffractometer with a Cu Kα source (acquired and installed at our institution in 2014 during the IYCr) allowed for the determination of the structure at room temperature where significant positional disorder of the terminal aliphatic chain was observed. Data collection at 100 K allowed for the structure refinement reported herein, which confirms the structure determined spectroscopically in the 50′s. Professor Mariezcurrena had the chance to see the final structural model of the RT structure determination before passing away. We dedicate this manuscript to his memory, teachings and patience in keeping the glass vial in a safe place allowing for this report of the successful structure determination.

[Scheme 1]
[Figure 1]
Figure 1
Crystals of the title compound in the original tube where they were saved for more than 60 years.

2. Structural commentary

The title compound, shown in Fig. 2[link] with the numbering scheme, is a tetra­cyclic triterpenoid with six-, seven-, six and five-membered fused rings, with no insaturations except for three exocyclic carbonyl moieties at C2, C8 and C9. The first two rings define a hydrogenated benzazepine unit while the last two define a hydrogenated indene group. The presence of fused rings of different sizes, one heteroatom and different C-atom hybridization states, together with a large number of exocyclic substituents, leads to a very strained bonding arrangement within the ring system. A full geometrical analysis performed with Mogul 1.8.2 (Build 248885) running on the May 2019 update of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows that all bridgehead atoms in the mol­ecule show atypical bond distances or angles. Table 1[link] shows all the bond distances and bond angles that were unexpected according to the z-score criterion in Mogul. In this table we find that C3A and C7A (bridgehead atoms in the benzazepine bicycle) C7B and C12B (bridgehead atoms of the fused azepine and indene groups) and C9A (bridgehead atom in the indene bicycle) display unusual bond distances [long C3A—C7A = 1.584 (4), C7B—C8 = 1.580 (4), C7B—C12B = 1.578 (4) Å and short C9—C9A = 1.500 (4) Å] and C7B, C9A and C12A show unusual bond angles [low O7—C7B—C8 = 97.7 (2), C12A—C9A—C9 = 102.5 (2), C12—C12A—C9A = 101.1 (2)°] in addition to other unusual features.

Table 1
Unusual bond distances and bond angles (φ) (Å,°) extracted from Mogul

z-score = |ddmean|/SD, where dmean and SD are the mean and standard deviation of N observed values in the Mogul database. The z-score for bond angles is calculated replacing d by φ. A bond distance or angle is considered unusual if the z-score > 2.

Bond N bond distance (d) dmean SD z-score
C7A—C3A 563 1.584 1.559 0.011 2.211
C7B—C8 16 1.579 1.529 0.008 6.313
C9A—C9 20 1.500 1.520 0.009 2.374
C7B—C12B 18 1.579 1.547 0.016 1.957a
           
Angle N φ φmean SD z-score
C3A—C3—C2 5 107.1 114.1 3.6 2.088
O51—C5—C4 158 110.2 107.8 1.2 2.067
O7—C7B—C8 16 97.7 105.7 3.7 2.131
O8—C8—C9 18 115.9 120.9 1.3 3.773
C9A—C9—C8 28 112.3 118.3 1.8 2.577
O9—C9—C9A 20 128.7 122.9 2.2 2.138
C12A—C9A—C9 15 102.5 110.0 3.2 2.369
C12—C11—C10 894 108.0 104.4 1.7 2.138
C12—C12A—C9A 13 101.14 103.11 0.87 2.264
C121—C12A—C9A 8 110.1 113.2 1.4 2.136
Note: (a) This value is lower than 2 but this bond is still unusually long and relevant for the discussion.
[Figure 2]
Figure 2
ORTEP view of the title compound showing the labelling scheme and displacement ellipsoids drawn at the 50% probability level. The minor occupancy portion of the disordered methyl­heptane mol­ecule is not shown for clarity.

Another significant contribution to the strain in this region of the mol­ecule is the diketone group C7B—C8(=O8)—C9(=O9)—C9A that also shows an elongated Csp2—Csp2 bond [C8—C9 of 1.549 (5) Å] and a large O8—C8—C9—O9 torsion angle of −43.7 (5)°. Repulsion between O8 and O9 leads to the increase of the torsion angle in the cis diketone group and lengthening of the C8—C9 bond distance, contributing to the unusual conformation of the C7B/C8/C9/C9A/C12A/C12B ring. Puckering parameters for this ring are θ = 149°(or 31° considering the inverted order of atoms) and Φ = 13.5°, which fall far from all usual parameters for frequently observed geometries of six-membered rings, between a chair and a half-chair conformation, confirming the effects of the observed bond distances and angles. Considering a distorted chair conformation, atom C7B is only 0.394 (5) Å away from the C8/C9/C12A/C12B plane [maximum deviation of 0.0382 (17) Å], while C9A is on the other side of the plane, displaced by 0.821 (4) Å. The seven-membered ring shows a chair conformation with atoms N1 and C1 lying 1.163 (5) and 1.137 (4) Å, respectively, above and C7A 0.721 (4) Å below the almost planar C3/C3A/C12B/C7B group of atoms [maximum deviation of 0.038 (1) Å for C3A]. The five-membered ring exhibits a half-chair conformation with puckering parameter Φ = 344.2 (5)°, atom C12A lying 0.655 (5) Å away from the C9A/C10–C12 plane [maximum deviation of 0.094 (2) Å for C11]. The remaining six-membered ring (C3A/C4–C7/C7A) has puckering parameters θ = 170° and Φ = 326° with atoms C5 and C7A located 0.703 (4) and −0.617 (5) Å, respectively, away from the C3A/C4/C6/C7 plane [maximum deviation of 0.0271 (16) Å for C6]. The conformation of the four rings, with most of the substituents in an equatorial configuration, makes the ring system almost planar with maximum deviations for N1 and C3 [0.794 (3) and −0.616 (3) Å, respectively] on either side. The six-methyl heptane chain C1′ to C8′ shows positional disorder, modelled over two sites with occupancies of 0.819 (6) and 0.181 (6), around a structural void of 36 Å3 surrounded by equivalent aliphatic chains. At room temperature, this chain could not be modelled properly over two sites.

3. Supra­molecular features

In the crystal, mol­ecules of the title compound pack in an elongated conformation laying parallel to the [102] direction. The packing is directed by O7—H7⋯O2i hydrogen bonds (see Table 2[link], Fig. 3[link]), forming zigzag chains running along the [010] direction (determined using PLATON software; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). These chains are connected in the [001] direction through weak C—H⋯O inter­actions: C71—H71A⋯O8ii and C121—H12E⋯O52iii with H71A⋯O8ii and H12E⋯O52iii distances of 2.55 and 2.53 Å, respectively [symmetry codes: (ii) −x + [{3\over 2}], y − [{1\over 2}], −z + 1; (iii) −x + [{3\over 2}], y − [{1\over 2}], −z]. These inter­actions define double planes of mol­ecules with the polar regions of the mol­ecules in contact, leaving the terminal aliphatic chains pointing outwards. Parallel planes are only weakly bound by dispersion forces: indeed, voids of ca 39 Å3 are found between non-polar residues from parallel planes (Fig. 4[link]). These strong inter­actions along [010], weak along [001] and very weak along [100] nicely explain the flat needle crystal shape observed where face indexing suggests the needle length and longer dimension of the largest planes is [010], the shorter dimension of the planes is [001] and the very narrow width of the crystals is [100]. The large unit cell, the presence of positional disorder (aggravated at room temperature) and voids in the crystal structure, combined with the C, H, N and O composition of the crystals explain the poor scattering power that prevented structure determination with older instruments.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O2i 0.79 (5) 2.02 (5) 2.750 (3) 153 (5)
C3A—H3C⋯O2i 1.00 2.18 3.173 (4) 176
C121—H12E⋯O52ii 0.98 2.53 3.428 (4) 153
C71—H71A⋯O8iii 0.98 2.55 3.224 (4) 126
C91—H91B⋯O9iv 0.98 2.48 3.422 (5) 162
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1]; (iv) x, y-1, z.
[Figure 3]
Figure 3
Zigzag chains of mol­ecules connected by O7—H7⋯O2(−x + [{3\over 2}], y + [{1\over 2}], −z) inter­actions along the b-axis direction.
[Figure 4]
Figure 4
View of the packing of the title compound along [010] showing the formation of C—H⋯O hydrogen-bonded planes and the voids left by symmetry-related methyl­heptane chains.

4. Database survey

The May 2019 update of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains no compounds displaying the same arrangement of six-, seven-, six- and five-membered rings (disregarding bond type) with an N atom in the seven-membered ring. Three penta­cyclic compounds with a tetra­zole ring at N1—C2 have been reported [LEXVOB (Alam et al., 2013[Alam, M., Nami, S. A. A., Husain, A., Lee, D.-U. & Park, S. (2013). C. R. Chim. 16, 201-206.]), TZANDT (Husain et al., 1981[Husain, J., Palmer, R. A., Singh, H., Bhardwaj, T. R. & Paul, D. (1981). Acta Cryst. B37, 205-209.]) and VEVLAK (Rajnikant et al., 2006[Rajnikant, Dinesh, Aziz, N., Mushfiq, M., Alam, M. & Khan, A. U. (2006). J. Chem. Crystallogr. 36, 793-798.])], the former and latter showing very similar mol­ecular conformation and inter­actions that lead to very similar unit-cell dimensions (∼35×6×12 Å). There is only one entry with the same six-, seven-, six- and five-membered ring combination containing O instead of N (HIXSAI; Morales et al., 1999[Morales, A. D., García-Granda, S., Gil, R. P. & Coll-Manchado, F. (1999). Acta Cryst. C55 IUC9900043.]) but the configuration of C5 is inverted and therefore the dihedral angle between mean planes of the six- and seven-membered rings differ significantly and thus also the mol­ecular conformation. There are also three tetra­cyclic compounds with no heteroatom in the ring arrangement [OQIVIU (Kranz et al., 2011[Kranz, D. P., Meier zu Greffen, A., El Sheikh, S., Neudörfl, J.-M. & Schmalz, H.-G. (2011). Eur. J. Org. Chem. pp. 2860-2866.]), UBEDIO (Wang et al., 2000[Wang, Z., Yang, D., Mohanakrishnan, A. K., Fanwick, P. E., Nampoothiri, P., Hamel, E. & Cushman, M. (2000). J. Med. Chem. 43, 2419-2429.]) and WECQAY (Kranz et al., 2012[Kranz, D. P., Chiha, S., Meier zu Greffen, A., Neudörfl, J.-M. & Schmalz, H.-G. (2012). Org. Lett. 14, 3692-3695.])] all showing very different stereochemistry; therefore, the mol­ecular conformations are not comparable. This is, therefore, the first report of this 6-7-6-5 ring system containing the azepine ring.

5. Synthesis and crystallization

Synthesis and crystallization were reported by Falco et al. (1952[Falco, M., Voser, W., Jeger, O. & Ruzicka, L. (1952). Helv. Chim. Acta, 35, 2430-2437.]). Crystals were not recrystallized after the initial preparation.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C- and N-bound H atoms were placed in calculated positions (C—H = 0.93–0.99, N—H = 0.87 Å) and included as riding contributions. The OH H atom was found in a difference-Fourier map and refined as riding with a rotating torsion angle and O—H distance restraint. All H atoms were refined with isotropic displacement parameters set at 1.2–1.5 times the Ueq value of the parent atom.

Table 3
Experimental details

Crystal data
Chemical formula C32H51NO6
Mr 545.73
Crystal system, space group Monoclinic, C2
Temperature (K) 100
a, b, c (Å) 34.882 (4), 6.5332 (11), 13.6021 (16)
β (°) 100.599 (14)
V3) 3046.9 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.64
Crystal size (mm) 0.44 × 0.33 × 0.09
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.804, 0.946
No. of measured, independent and observed [I > 2σ(I)] reflections 14487, 5509, 5056
Rint 0.034
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.135, 1.07
No. of reflections 5509
No. of parameters 410
No. of restraints 179
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.20
Absolute structure Flack x determined using 2070 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.09 (10)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]a), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]b), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(3aS,5S,7aS,7bS,9aR,10R,12aR,12bS)-7b-Hydroxy-4,4,7a,9a,12a-pentamethyl-10-[(2'R)-6-methylheptan-2-yl]-2,8,9-trioxooctadecahydrobenzo[d]indeno[4,5-b]azepin-5-yl acetate top
Crystal data top
C32H51NO6F(000) = 1192
Mr = 545.73Dx = 1.190 Mg m3
Monoclinic, C2Cu Kα radiation, λ = 1.54178 Å
a = 34.882 (4) ÅCell parameters from 95 reflections
b = 6.5332 (11) Åθ = 12.3–47.3°
c = 13.6021 (16) ŵ = 0.64 mm1
β = 100.599 (14)°T = 100 K
V = 3046.9 (7) Å3Flat needles, yellow
Z = 40.44 × 0.33 × 0.09 mm
Data collection top
Bruker D8 Venture
diffractometer
5509 independent reflections
Radiation source: Incoatec I microsource5056 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.034
ω and φ scansθmax = 68.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 3842
Tmin = 0.804, Tmax = 0.946k = 77
14487 measured reflectionsl = 1416
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0771P)2 + 1.6616P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5509 reflectionsΔρmax = 0.41 e Å3
410 parametersΔρmin = 0.19 e Å3
179 restraintsAbsolute structure: Flack x determined using 2070 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.09 (10)
Special details top

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

14.9003(0.0756)x + 4.8675(0.0079)y - 7.9183(0.0216)z = 11.1840(0.0683)

* -0.0587 (0.0014) C9A * 0.0916 (0.0021) C10 * -0.0937 (0.0022) C11 * 0.0609 (0.0015) C12 0.6554 (0.0051) C12A

Rms deviation of fitted atoms = 0.0780

10.0303(0.0705)x + 4.8288(0.0060)y - 8.8634(0.0137)z = 7.4252(0.0575)

Angle to previous plane (with approximate esd) = 9.752 ( 0.251 )

* 0.0382 (0.0017) C12A * -0.0354 (0.0015) C12B * 0.0351 (0.0015) C8 * -0.0379 (0.0017) C9 -0.8207 (0.0043) C9A 0.3944 (0.0051) C7B

Rms deviation of fitted atoms = 0.0367

14.5476(0.0446)x + 3.1069(0.0108)y - 11.3991(0.0111)z = 9.7791(0.0311)

Angle to previous plane (with approximate esd) = 19.404 ( 0.209 )

* -0.0351 (0.0015) C3 * 0.0382 (0.0016) C3A * -0.0374 (0.0016) C7B * 0.0343 (0.0015) C12B -0.7211 (0.0042) C7A 1.1626 (0.0045) C2 1.1371 (0.0040) N1

Rms deviation of fitted atoms = 0.0363

6.8164(0.0691)x + 4.5554(0.0061)y - 9.7096(0.0126)z = 5.1714(0.0475)

Angle to previous plane (with approximate esd) = 18.692 ( 0.202 )

* -0.0271 (0.0016) C6 * 0.0261 (0.0015) C4 * 0.0270 (0.0016) C7 * -0.0261 (0.0015) C3A 0.7034 (0.0044) C5 -0.6172 (0.0045) C7A

Rms deviation of fitted atoms = 0.0266

10.0303(0.0705)x + 4.8288(0.0060)y - 8.8634(0.0137)z = 7.4252(0.0575)

Angle to previous plane (with approximate esd) = 7.415 ( 0.200 )

* 0.0382 (0.0017) C12A * -0.0354 (0.0015) C12B * 0.0351 (0.0015) C8 * -0.0379 (0.0017) C9 -0.8207 (0.0043) C9A 0.3944 (0.0051) C7B 0.1064 (0.0121) C4 0.4530 (0.0094) C7 0.0351 (0.0015) C8 0.0382 (0.0017) C12A

Rms deviation of fitted atoms = 0.0367

14.4178(0.0111)x + 4.8025(0.0030)y - 8.2192(0.0070)z = 10.9550(0.0080)

Angle to previous plane (with approximate esd) = 8.306 ( 0.172 )

* -0.3830 (0.0029) C9A * -0.2601 (0.0031) C10 * -0.4143 (0.0034) C11 * -0.2168 (0.0034) C12 * 0.3709 (0.0030) C12A * 0.0762 (0.0030) C12B * 0.4094 (0.0031) C7B * 0.1967 (0.0033) C8 * 0.3447 (0.0029) C9 * -0.1036 (0.0028) C3A * -0.6156 (0.0029) C3 * 0.5099 (0.0029) C2 * 0.7943 (0.0028) N1 * -0.3837 (0.0029) C7A * 0.1748 (0.0031) C7 * -0.2604 (0.0029) C6 * 0.2105 (0.0029) C5 * -0.4499 (0.0028) C4

Rms deviation of fitted atoms = 0.3855

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.79213 (8)0.2991 (4)0.13482 (19)0.0333 (6)
H10.8127 (12)0.336 (7)0.112 (3)0.040*
C20.76039 (9)0.2296 (5)0.0731 (2)0.0328 (7)
O20.75912 (7)0.2260 (4)0.01801 (15)0.0388 (5)
C30.72638 (10)0.1796 (5)0.1211 (2)0.0352 (7)
H3A0.7348630.0960370.1819780.042*
H3B0.7066320.1012490.0743460.042*
C3A0.70900 (9)0.3854 (5)0.1486 (2)0.0306 (7)
H3C0.7187870.4875010.1043530.037*
C40.66354 (10)0.3882 (5)0.1126 (2)0.0336 (7)
C410.64140 (10)0.2211 (6)0.1579 (3)0.0443 (8)
H41A0.6548420.0898740.1558290.066*
H41B0.6148210.2104570.1193310.066*
H41C0.6403590.2559360.2274040.066*
C420.65520 (10)0.3588 (6)0.0024 (2)0.0394 (8)
H42A0.6598080.2156450.0182990.059*
H42B0.6725230.4475480.0325130.059*
H42C0.6279940.3946610.0290590.059*
C50.65000 (9)0.6039 (5)0.1346 (2)0.0330 (7)
H50.6624800.7043750.0948070.040*
O510.60807 (7)0.6204 (4)0.10484 (17)0.0401 (5)
C510.59429 (11)0.7431 (6)0.0266 (3)0.0442 (8)
O520.61444 (8)0.8312 (5)0.0233 (2)0.0529 (7)
C520.55092 (12)0.7562 (8)0.0117 (4)0.0652 (12)
H52A0.5410750.8336870.0493920.098*
H52B0.5433430.8254850.0691260.098*
H52C0.5398310.6179170.0056270.098*
C60.66096 (9)0.6595 (5)0.2436 (2)0.0353 (7)
H6A0.6504640.5559970.2847630.042*
H6B0.6496090.7940790.2555330.042*
C70.70501 (9)0.6684 (5)0.2732 (2)0.0343 (7)
H7A0.7118850.7085350.3444150.041*
H7B0.7149160.7762870.2332100.041*
C7A0.72588 (10)0.4639 (5)0.2582 (2)0.0306 (7)
C710.71918 (11)0.3108 (6)0.3390 (2)0.0408 (8)
H71A0.7309160.3638410.4051250.061*
H71B0.7312350.1793550.3278800.061*
H71C0.6911100.2914010.3357170.061*
C7B0.77147 (10)0.5111 (5)0.2693 (2)0.0317 (7)
O70.77907 (6)0.6857 (3)0.21275 (17)0.0335 (5)
H70.7707 (12)0.658 (7)0.156 (4)0.050*
C80.78966 (10)0.5958 (6)0.3765 (2)0.0391 (8)
O80.77191 (8)0.6927 (7)0.4278 (2)0.0829 (13)
C90.83368 (10)0.5661 (5)0.4184 (2)0.0335 (7)
C9A0.84696 (9)0.3514 (5)0.4047 (2)0.0317 (7)
C910.82138 (9)0.2065 (6)0.4547 (2)0.0360 (7)
H91A0.8269790.2276320.5272720.054*
H91B0.8271070.0642660.4396660.054*
H91C0.7938000.2355500.4289590.054*
C100.89081 (10)0.2995 (6)0.4364 (2)0.0379 (7)
H100.9061920.4205510.4208160.045*
C110.89624 (11)0.1245 (6)0.3625 (3)0.0434 (8)
H11A0.9204460.1467360.3356810.052*
H11B0.8982370.0090590.3973880.052*
C120.86066 (11)0.1257 (6)0.2767 (2)0.0406 (8)
H12F0.8689630.1181400.2110070.049*
H12G0.8432240.0086370.2827930.049*
C12A0.84002 (9)0.3296 (5)0.2881 (2)0.0322 (7)
C12B0.79618 (9)0.3230 (5)0.2432 (2)0.0302 (6)
H12B0.7851940.1971650.2694390.036*
O90.85249 (7)0.7097 (4)0.4556 (2)0.0465 (6)
C1210.86154 (10)0.5033 (6)0.2422 (2)0.0384 (8)
H12C0.8889540.5066420.2754130.058*
H12D0.8492490.6349790.2516220.058*
H12E0.8599740.4778790.1705550.058*
C1'0.90211 (11)0.4248 (7)0.6163 (3)0.0466 (9)
H1A'0.9120000.3859930.6859090.070*
H1B'0.8747610.4668700.6089980.070*
H1C'0.9175890.5388060.5976790.070*
C2'0.90518 (10)0.2420 (7)0.5480 (3)0.0452 (8)
H2'0.8877130.1316520.5654220.054*
C3'0.94661 (13)0.1581 (9)0.5657 (3)0.0667 (12)0.819 (6)
H3A'0.9649660.2702180.5584020.080*0.819 (6)
H3B'0.9487590.0530550.5145550.080*0.819 (6)
C4'0.95816 (14)0.0619 (10)0.6714 (4)0.0536 (13)0.819 (6)
H4A'0.9633030.1727700.7217210.064*0.819 (6)
H4B'0.9360540.0203500.6860750.064*0.819 (6)
C5'0.99339 (15)0.0711 (10)0.6805 (5)0.0642 (15)0.819 (6)
H5A'1.0134730.0035360.6519060.077*0.819 (6)
H5B'0.9862940.1946160.6389290.077*0.819 (6)
C6'1.01156 (19)0.1401 (11)0.7854 (5)0.0712 (19)0.819 (6)
H6'1.0186940.0143280.8265670.085*0.819 (6)
C7'0.98079 (16)0.2634 (12)0.8343 (5)0.0672 (17)0.819 (6)
H7A'0.9929030.3069860.9018330.101*0.819 (6)
H7B'0.9721000.3840190.7934120.101*0.819 (6)
H7C'0.9583350.1754950.8379790.101*0.819 (6)
C8'1.04726 (19)0.2635 (16)0.7908 (7)0.106 (3)0.819 (6)
H8A'1.0579450.2958800.8608230.159*0.819 (6)
H8B'1.0665680.1859300.7620270.159*0.819 (6)
H8C'1.0410150.3908090.7531270.159*0.819 (6)
C3M'0.94661 (13)0.1581 (9)0.5657 (3)0.0667 (12)0.181 (6)
H3C'0.9590020.2335000.5167170.080*0.181 (6)
H3D'0.9432500.0163660.5397970.080*0.181 (6)
C4M'0.9799 (5)0.138 (3)0.6583 (12)0.059 (3)0.181 (6)
H4C'1.0055560.1239110.6376810.070*0.181 (6)
H4D'0.9806380.2592730.7025120.070*0.181 (6)
C5M'0.9698 (6)0.051 (4)0.7099 (17)0.068 (4)0.181 (6)
H5C'0.9634860.1590400.6583070.081*0.181 (6)
H6D'0.9455000.0224050.7353260.081*0.181 (6)
C6M'0.9986 (6)0.141 (3)0.7951 (14)0.071 (4)0.181 (6)
H6M'0.9924680.0845890.8587870.085*0.181 (6)
C7M'0.9925 (9)0.382 (3)0.797 (3)0.102 (8)0.181 (6)
H7D'1.0069140.4379390.8596370.153*0.181 (6)
H7E'1.0022580.4440410.7404110.153*0.181 (6)
H7F'0.9647120.4127190.7909540.153*0.181 (6)
C8M'1.0400 (6)0.100 (6)0.794 (3)0.104 (8)0.181 (6)
H8D'1.0560400.1549760.8553350.156*0.181 (6)
H8E'1.0441730.0481710.7911970.156*0.181 (6)
H8F'1.0474780.1654040.7357480.156*0.181 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0447 (15)0.0362 (14)0.0207 (13)0.0050 (12)0.0102 (11)0.0015 (11)
C20.0479 (17)0.0257 (14)0.0255 (15)0.0077 (14)0.0082 (13)0.0045 (12)
O20.0531 (13)0.0422 (13)0.0216 (11)0.0068 (11)0.0078 (9)0.0066 (10)
C30.0479 (18)0.0279 (15)0.0296 (16)0.0002 (14)0.0064 (13)0.0020 (12)
C3A0.0426 (17)0.0285 (15)0.0215 (14)0.0009 (13)0.0081 (12)0.0014 (12)
C40.0414 (18)0.0324 (16)0.0284 (16)0.0033 (14)0.0102 (13)0.0009 (13)
C410.0492 (19)0.0392 (18)0.046 (2)0.0052 (17)0.0134 (15)0.0025 (16)
C420.0433 (18)0.0434 (19)0.0303 (17)0.0023 (15)0.0034 (13)0.0047 (14)
C50.0349 (16)0.0364 (16)0.0279 (16)0.0022 (14)0.0061 (12)0.0011 (13)
O510.0365 (12)0.0477 (13)0.0359 (12)0.0013 (10)0.0060 (9)0.0032 (10)
C510.0500 (19)0.0427 (19)0.0364 (18)0.0023 (16)0.0012 (15)0.0024 (15)
O520.0624 (16)0.0534 (16)0.0389 (14)0.0012 (14)0.0009 (12)0.0102 (12)
C520.046 (2)0.078 (3)0.066 (3)0.014 (2)0.0057 (19)0.007 (2)
C60.0419 (17)0.0376 (17)0.0276 (16)0.0061 (14)0.0101 (12)0.0000 (13)
C70.0425 (17)0.0375 (17)0.0230 (14)0.0052 (14)0.0066 (12)0.0034 (13)
C7A0.0422 (17)0.0322 (15)0.0185 (14)0.0041 (13)0.0080 (12)0.0012 (12)
C710.0511 (19)0.0480 (19)0.0263 (16)0.0096 (17)0.0146 (14)0.0078 (15)
C7B0.0453 (18)0.0321 (16)0.0172 (14)0.0064 (14)0.0048 (12)0.0016 (12)
O70.0410 (12)0.0309 (11)0.0268 (11)0.0015 (9)0.0013 (9)0.0003 (9)
C80.0478 (19)0.0443 (18)0.0240 (16)0.0122 (16)0.0033 (13)0.0064 (14)
O80.0574 (16)0.139 (3)0.0445 (16)0.042 (2)0.0106 (13)0.051 (2)
C90.0451 (19)0.0354 (17)0.0208 (14)0.0023 (14)0.0080 (13)0.0001 (12)
C9A0.0411 (17)0.0335 (16)0.0209 (14)0.0053 (13)0.0068 (12)0.0037 (12)
C910.0460 (17)0.0408 (17)0.0214 (14)0.0025 (16)0.0064 (12)0.0056 (13)
C100.0421 (18)0.0443 (18)0.0280 (17)0.0088 (15)0.0083 (13)0.0058 (14)
C110.049 (2)0.0478 (19)0.0349 (18)0.0173 (17)0.0106 (14)0.0058 (16)
C120.055 (2)0.0412 (18)0.0270 (16)0.0173 (16)0.0111 (14)0.0002 (14)
C12A0.0438 (17)0.0326 (16)0.0221 (15)0.0077 (14)0.0109 (12)0.0027 (12)
C12B0.0427 (17)0.0307 (15)0.0181 (14)0.0040 (14)0.0077 (12)0.0010 (12)
O90.0492 (14)0.0379 (13)0.0503 (14)0.0015 (12)0.0036 (11)0.0011 (12)
C1210.0401 (18)0.0472 (19)0.0297 (16)0.0076 (15)0.0111 (13)0.0100 (15)
C1'0.046 (2)0.061 (2)0.0303 (18)0.0031 (18)0.0013 (14)0.0018 (16)
C2'0.0460 (18)0.057 (2)0.0310 (17)0.0100 (17)0.0036 (14)0.0074 (16)
C3'0.058 (2)0.092 (3)0.047 (2)0.025 (2)0.0009 (17)0.008 (2)
C4'0.040 (2)0.081 (3)0.039 (2)0.002 (2)0.0031 (19)0.007 (2)
C5'0.041 (3)0.085 (4)0.069 (3)0.005 (3)0.014 (2)0.026 (3)
C6'0.056 (4)0.076 (4)0.075 (4)0.013 (3)0.005 (3)0.026 (3)
C7'0.053 (3)0.087 (4)0.058 (3)0.015 (3)0.000 (2)0.023 (3)
C8'0.064 (4)0.127 (7)0.127 (6)0.017 (4)0.019 (4)0.072 (6)
C3M'0.058 (2)0.092 (3)0.047 (2)0.025 (2)0.0009 (17)0.008 (2)
C4M'0.039 (6)0.085 (6)0.051 (6)0.014 (6)0.006 (5)0.013 (6)
C5M'0.052 (6)0.080 (6)0.069 (6)0.003 (6)0.007 (6)0.016 (6)
C6M'0.059 (8)0.082 (7)0.073 (7)0.007 (7)0.014 (7)0.026 (7)
C7M'0.088 (14)0.110 (15)0.100 (14)0.004 (14)0.003 (13)0.003 (14)
C8M'0.075 (13)0.103 (15)0.136 (15)0.004 (14)0.027 (13)0.017 (14)
Geometric parameters (Å, º) top
N1—C21.340 (4)C10—H101.0000
N1—C12B1.464 (4)C11—C121.539 (5)
N1—H10.87 (4)C11—H11A0.9900
C2—O21.232 (4)C11—H11B0.9900
C2—C31.492 (5)C12—C12A1.536 (5)
C3—C3A1.549 (4)C12—H12F0.9900
C3—H3A0.9900C12—H12G0.9900
C3—H3B0.9900C12A—C12B1.540 (4)
C3A—C41.571 (5)C12A—C1211.554 (5)
C3A—C7A1.584 (4)C12B—H12B1.0000
C3A—H3C1.0000C121—H12C0.9800
C4—C411.530 (5)C121—H12D0.9800
C4—C51.533 (5)C121—H12E0.9800
C4—C421.550 (4)C1'—C2'1.529 (6)
C41—H41A0.9800C1'—H1A'0.9800
C41—H41B0.9800C1'—H1B'0.9800
C41—H41C0.9800C1'—H1C'0.9800
C42—H42A0.9800C2'—C3M'1.523 (5)
C42—H42B0.9800C2'—C3'1.523 (5)
C42—H42C0.9800C2'—H2'1.0000
C5—O511.448 (4)C3'—C4'1.552 (6)
C5—C61.506 (4)C3'—H3A'0.9900
C5—H51.0000C3'—H3B'0.9900
O51—C511.348 (4)C4'—C5'1.492 (7)
C51—O521.209 (5)C4'—H4A'0.9900
C51—C521.492 (5)C4'—H4B'0.9900
C52—H52A0.9800C5'—C6'1.519 (8)
C52—H52B0.9800C5'—H5A'0.9900
C52—H52C0.9800C5'—H5B'0.9900
C6—C71.516 (4)C6'—C8'1.474 (10)
C6—H6A0.9900C6'—C7'1.583 (9)
C6—H6B0.9900C6'—H6'1.0000
C7—C7A1.553 (4)C7'—H7A'0.9800
C7—H7A0.9900C7'—H7B'0.9800
C7—H7B0.9900C7'—H7C'0.9800
C7A—C711.536 (4)C8'—H8A'0.9800
C7A—C7B1.599 (5)C8'—H8B'0.9800
C71—H71A0.9800C8'—H8C'0.9800
C71—H71B0.9800C3M'—C4M'1.554 (9)
C71—H71C0.9800C3M'—H3C'0.9900
C7B—O71.427 (4)C3M'—H3D'0.9900
C7B—C12B1.578 (4)C4M'—C5M'1.497 (10)
C7B—C81.580 (4)C4M'—H4C'0.9900
O7—H70.79 (5)C4M'—H4D'0.9900
C8—O81.196 (4)C5M'—C6M'1.506 (10)
C8—C91.549 (5)C5M'—H5C'0.9900
C9—O91.202 (4)C5M'—H6D'0.9900
C9—C9A1.500 (4)C6M'—C8M'1.474 (12)
C9A—C911.542 (4)C6M'—C7M'1.588 (11)
C9A—C101.548 (4)C6M'—H6M'1.0000
C9A—C12A1.566 (4)C7M'—H7D'0.9800
C91—H91A0.9800C7M'—H7E'0.9800
C91—H91B0.9800C7M'—H7F'0.9800
C91—H91C0.9800C8M'—H8D'0.9800
C10—C2'1.554 (4)C8M'—H8E'0.9800
C10—C111.557 (5)C8M'—H8F'0.9800
C2—N1—C12B125.6 (3)H11A—C11—H11B108.4
C2—N1—H1121 (3)C12A—C12—C11104.8 (3)
C12B—N1—H1113 (3)C12A—C12—H12F110.8
O2—C2—N1120.6 (3)C11—C12—H12F110.8
O2—C2—C3123.5 (3)C12A—C12—H12G110.8
N1—C2—C3115.6 (3)C11—C12—H12G110.8
C2—C3—C3A107.1 (3)H12F—C12—H12G108.9
C2—C3—H3A110.3C12—C12A—C12B112.7 (3)
C3A—C3—H3A110.3C12—C12A—C121108.8 (3)
C2—C3—H3B110.3C12B—C12A—C121112.3 (3)
C3A—C3—H3B110.3C12—C12A—C9A101.1 (2)
H3A—C3—H3B108.6C12B—C12A—C9A111.2 (2)
C3—C3A—C4110.6 (2)C121—C12A—C9A110.2 (3)
C3—C3A—C7A114.4 (3)N1—C12B—C12A107.9 (2)
C4—C3A—C7A118.0 (3)N1—C12B—C7B110.7 (2)
C3—C3A—H3C104.0C12A—C12B—C7B115.7 (3)
C4—C3A—H3C104.0N1—C12B—H12B107.4
C7A—C3A—H3C104.0C12A—C12B—H12B107.4
C41—C4—C5112.4 (3)C7B—C12B—H12B107.4
C41—C4—C42107.6 (3)C12A—C121—H12C109.5
C5—C4—C42107.7 (3)C12A—C121—H12D109.5
C41—C4—C3A114.9 (3)H12C—C121—H12D109.5
C5—C4—C3A106.2 (2)C12A—C121—H12E109.5
C42—C4—C3A107.7 (2)H12C—C121—H12E109.5
C4—C41—H41A109.5H12D—C121—H12E109.5
C4—C41—H41B109.5C2'—C1'—H1A'109.5
H41A—C41—H41B109.5C2'—C1'—H1B'109.5
C4—C41—H41C109.5H1A'—C1'—H1B'109.5
H41A—C41—H41C109.5C2'—C1'—H1C'109.5
H41B—C41—H41C109.5H1A'—C1'—H1C'109.5
C4—C42—H42A109.5H1B'—C1'—H1C'109.5
C4—C42—H42B109.5C3M'—C2'—C1'110.8 (3)
H42A—C42—H42B109.5C3'—C2'—C1'110.8 (3)
C4—C42—H42C109.5C3M'—C2'—C10111.6 (3)
H42A—C42—H42C109.5C3'—C2'—C10111.6 (3)
H42B—C42—H42C109.5C1'—C2'—C10111.0 (3)
O51—C5—C6108.5 (2)C3'—C2'—H2'107.8
O51—C5—C4110.2 (3)C1'—C2'—H2'107.8
C6—C5—C4112.5 (3)C10—C2'—H2'107.8
O51—C5—H5108.5C2'—C3'—C4'111.7 (4)
C6—C5—H5108.5C2'—C3'—H3A'109.3
C4—C5—H5108.5C4'—C3'—H3A'109.3
C51—O51—C5117.4 (3)C2'—C3'—H3B'109.3
O52—C51—O51124.5 (3)C4'—C3'—H3B'109.3
O52—C51—C52125.2 (4)H3A'—C3'—H3B'107.9
O51—C51—C52110.3 (3)C5'—C4'—C3'112.5 (4)
C51—C52—H52A109.5C5'—C4'—H4A'109.1
C51—C52—H52B109.5C3'—C4'—H4A'109.1
H52A—C52—H52B109.5C5'—C4'—H4B'109.1
C51—C52—H52C109.5C3'—C4'—H4B'109.1
H52A—C52—H52C109.5H4A'—C4'—H4B'107.8
H52B—C52—H52C109.5C4'—C5'—C6'116.5 (5)
C5—C6—C7109.4 (2)C4'—C5'—H5A'108.2
C5—C6—H6A109.8C6'—C5'—H5A'108.2
C7—C6—H6A109.8C4'—C5'—H5B'108.2
C5—C6—H6B109.8C6'—C5'—H5B'108.2
C7—C6—H6B109.8H5A'—C5'—H5B'107.3
H6A—C6—H6B108.2C8'—C6'—C5'114.3 (6)
C6—C7—C7A114.1 (3)C8'—C6'—C7'109.4 (6)
C6—C7—H7A108.7C5'—C6'—C7'110.4 (5)
C7A—C7—H7A108.7C8'—C6'—H6'107.5
C6—C7—H7B108.7C5'—C6'—H6'107.5
C7A—C7—H7B108.7C7'—C6'—H6'107.5
H7A—C7—H7B107.6C6'—C7'—H7A'109.5
C71—C7A—C7109.3 (3)C6'—C7'—H7B'109.5
C71—C7A—C3A112.6 (3)H7A'—C7'—H7B'109.5
C7—C7A—C3A107.4 (2)C6'—C7'—H7C'109.5
C71—C7A—C7B109.7 (3)H7A'—C7'—H7C'109.5
C7—C7A—C7B107.7 (3)H7B'—C7'—H7C'109.5
C3A—C7A—C7B110.0 (2)C6'—C8'—H8A'109.5
C7A—C71—H71A109.5C6'—C8'—H8B'109.5
C7A—C71—H71B109.5H8A'—C8'—H8B'109.5
H71A—C71—H71B109.5C6'—C8'—H8C'109.5
C7A—C71—H71C109.5H8A'—C8'—H8C'109.5
H71A—C71—H71C109.5H8B'—C8'—H8C'109.5
H71B—C71—H71C109.5C2'—C3M'—C4M'134.8 (10)
O7—C7B—C12B109.8 (2)C2'—C3M'—H3C'103.5
O7—C7B—C897.7 (2)C4M'—C3M'—H3C'103.5
C12B—C7B—C8109.7 (2)C2'—C3M'—H3D'103.5
O7—C7B—C7A112.5 (2)C4M'—C3M'—H3D'103.5
C12B—C7B—C7A113.8 (3)H3C'—C3M'—H3D'105.3
C8—C7B—C7A112.2 (2)C5M'—C4M'—C3M'104.0 (9)
C7B—O7—H7106 (3)C5M'—C4M'—H4C'111.0
O8—C8—C9115.9 (3)C3M'—C4M'—H4C'111.0
O8—C8—C7B124.1 (3)C5M'—C4M'—H4D'111.0
C9—C8—C7B119.9 (3)C3M'—C4M'—H4D'111.0
O9—C9—C9A128.7 (3)H4C'—C4M'—H4D'109.0
O9—C9—C8119.0 (3)C4M'—C5M'—C6M'120.1 (10)
C9A—C9—C8112.3 (3)C4M'—C5M'—H5C'107.3
C9—C9A—C91107.6 (3)C6M'—C5M'—H5C'107.3
C9—C9A—C10118.8 (3)C4M'—C5M'—H6D'107.3
C91—C9A—C10111.4 (3)C6M'—C5M'—H6D'107.3
C9—C9A—C12A102.5 (2)H5C'—C5M'—H6D'106.9
C91—C9A—C12A113.4 (3)C8M'—C6M'—C5M'116.1 (12)
C10—C9A—C12A102.9 (2)C8M'—C6M'—C7M'108.3 (11)
C9A—C91—H91A109.5C5M'—C6M'—C7M'109.0 (11)
C9A—C91—H91B109.5C8M'—C6M'—H6M'107.7
H91A—C91—H91B109.5C5M'—C6M'—H6M'107.7
C9A—C91—H91C109.5C7M'—C6M'—H6M'107.7
H91A—C91—H91C109.5C6M'—C7M'—H7D'109.5
H91B—C91—H91C109.5C6M'—C7M'—H7E'109.5
C9A—C10—C2'116.7 (3)H7D'—C7M'—H7E'109.5
C9A—C10—C11102.2 (3)C6M'—C7M'—H7F'109.5
C2'—C10—C11113.4 (3)H7D'—C7M'—H7F'109.5
C9A—C10—H10108.0H7E'—C7M'—H7F'109.5
C2'—C10—H10108.0C6M'—C8M'—H8D'109.5
C11—C10—H10108.0C6M'—C8M'—H8E'109.5
C12—C11—C10108.0 (3)H8D'—C8M'—H8E'109.5
C12—C11—H11A110.1C6M'—C8M'—H8F'109.5
C10—C11—H11A110.1H8D'—C8M'—H8F'109.5
C12—C11—H11B110.1H8E'—C8M'—H8F'109.5
C10—C11—H11B110.1
C12B—N1—C2—O2175.9 (3)C8—C9—C9A—C10176.1 (3)
C12B—N1—C2—C31.9 (4)O9—C9—C9A—C12A115.8 (4)
O2—C2—C3—C3A101.2 (3)C8—C9—C9A—C12A63.6 (3)
N1—C2—C3—C3A72.6 (3)C9—C9A—C10—C2'85.6 (4)
C2—C3—C3A—C4131.8 (3)C91—C9A—C10—C2'40.3 (4)
C2—C3—C3A—C7A92.1 (3)C12A—C9A—C10—C2'162.1 (3)
C3—C3A—C4—C4160.2 (3)C9—C9A—C10—C11150.0 (3)
C7A—C3A—C4—C4174.3 (4)C91—C9A—C10—C1184.1 (3)
C3—C3A—C4—C5174.8 (2)C12A—C9A—C10—C1137.7 (3)
C7A—C3A—C4—C550.7 (3)C9A—C10—C11—C1215.6 (4)
C3—C3A—C4—C4259.7 (3)C2'—C10—C11—C12142.1 (3)
C7A—C3A—C4—C42165.8 (3)C10—C11—C12—C12A13.0 (4)
C41—C4—C5—O5152.8 (3)C11—C12—C12A—C12B154.6 (3)
C42—C4—C5—O5165.6 (3)C11—C12—C12A—C12180.2 (3)
C3A—C4—C5—O51179.3 (2)C11—C12—C12A—C9A35.8 (3)
C41—C4—C5—C668.4 (4)C9—C9A—C12A—C12170.1 (3)
C42—C4—C5—C6173.2 (3)C91—C9A—C12A—C1274.3 (3)
C3A—C4—C5—C658.1 (3)C10—C9A—C12A—C1246.2 (3)
C6—C5—O51—C51124.5 (3)C9—C9A—C12A—C12B70.1 (3)
C4—C5—O51—C51112.0 (3)C91—C9A—C12A—C12B45.6 (3)
C5—O51—C51—O524.1 (5)C10—C9A—C12A—C12B166.1 (3)
C5—O51—C51—C52175.2 (3)C9—C9A—C12A—C12155.0 (3)
O51—C5—C6—C7173.2 (3)C91—C9A—C12A—C121170.7 (3)
C4—C5—C6—C764.7 (3)C10—C9A—C12A—C12168.8 (3)
C5—C6—C7—C7A59.9 (3)C2—N1—C12B—C12A159.7 (3)
C6—C7—C7A—C7173.1 (3)C2—N1—C12B—C7B72.9 (4)
C6—C7—C7A—C3A49.3 (3)C12—C12A—C12B—N166.3 (3)
C6—C7—C7A—C7B167.8 (2)C121—C12A—C12B—N157.0 (3)
C3—C3A—C7A—C7159.0 (4)C9A—C12A—C12B—N1179.1 (3)
C4—C3A—C7A—C7173.8 (3)C12—C12A—C12B—C7B169.1 (3)
C3—C3A—C7A—C7179.3 (3)C121—C12A—C12B—C7B67.5 (3)
C4—C3A—C7A—C746.5 (3)C9A—C12A—C12B—C7B56.4 (3)
C3—C3A—C7A—C7B63.8 (3)O7—C7B—C12B—N148.4 (3)
C4—C3A—C7A—C7B163.4 (2)C8—C7B—C12B—N1154.7 (3)
C71—C7A—C7B—O7166.2 (3)C7A—C7B—C12B—N178.7 (3)
C7—C7A—C7B—O747.4 (3)O7—C7B—C12B—C12A74.6 (3)
C3A—C7A—C7B—O769.4 (3)C8—C7B—C12B—C12A31.6 (4)
C71—C7A—C7B—C12B68.1 (3)C7A—C7B—C12B—C12A158.2 (2)
C7—C7A—C7B—C12B173.1 (2)C9A—C10—C2'—C3M'169.8 (4)
C3A—C7A—C7B—C12B56.3 (3)C11—C10—C2'—C3M'51.4 (5)
C71—C7A—C7B—C857.2 (3)C9A—C10—C2'—C3'169.8 (4)
C7—C7A—C7B—C861.7 (3)C11—C10—C2'—C3'51.4 (5)
C3A—C7A—C7B—C8178.5 (3)C9A—C10—C2'—C1'66.1 (4)
O7—C7B—C8—O888.8 (5)C11—C10—C2'—C1'175.5 (3)
C12B—C7B—C8—O8156.9 (4)C1'—C2'—C3'—C4'66.8 (6)
C7A—C7B—C8—O829.4 (5)C10—C2'—C3'—C4'169.0 (4)
O7—C7B—C8—C987.4 (3)C2'—C3'—C4'—C5'163.9 (5)
C12B—C7B—C8—C926.9 (4)C3'—C4'—C5'—C6'168.9 (5)
C7A—C7B—C8—C9154.3 (3)C4'—C5'—C6'—C8'177.4 (7)
O8—C8—C9—O943.7 (5)C4'—C5'—C6'—C7'58.7 (8)
C7B—C8—C9—O9132.8 (3)C1'—C2'—C3M'—C4M'33.6 (11)
O8—C8—C9—C9A136.8 (4)C10—C2'—C3M'—C4M'157.8 (10)
C7B—C8—C9—C9A46.7 (4)C2'—C3M'—C4M'—C5M'82 (2)
O9—C9—C9A—C91124.4 (4)C3M'—C4M'—C5M'—C6M'170 (2)
C8—C9—C9A—C9156.2 (3)C4M'—C5M'—C6M'—C8M'27 (3)
O9—C9—C9A—C103.4 (5)C4M'—C5M'—C6M'—C7M'150 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O2i0.79 (5)2.02 (5)2.750 (3)153 (5)
C3A—H3C···O2i1.002.183.173 (4)176
C121—H12E···O52ii0.982.533.428 (4)153
C71—H71A···O8iii0.982.553.224 (4)126
C91—H91B···O9iv0.982.483.422 (5)162
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+3/2, y1/2, z; (iii) x+3/2, y1/2, z+1; (iv) x, y1, z.
Unusual bond distances and bond angles (φ) (Å,°) extracted from Mogul top
z-score = |d - dmean|/SD, where dmean and SD are the mean and standard deviation of N observed values in the Mogul database. The z-score for bond angles is calculated replacing d by φ. A bond distance or angle is considered unusual if the z-score > 2.
BondNbond distance (d)dmeanSDz-score
C7A—C3A5631.5841.5590.0112.211
C7B—C8161.5791.5290.0086.313
C9A—C9201.5001.5200.0092.374
C7B—C12B181.5791.5470.0161.957a
AngleNφφmeanSDz-score
C3A—C3—C25107.1114.13.62.088
O51—C5—C4158110.2107.81.22.067
O7—C7B—C81697.7105.73.72.131
O8—C8—C918115.9120.91.33.773
C9A—C9—C828112.3118.31.82.577
O9—C9—C9A20128.7122.92.22.138
C12A—C9A—C915102.5110.03.22.369
C12—C11—C10894108.0104.41.72.138
C12—C12A—C9A13101.14103.110.872.264
C121—C12A—C9A8110.1113.21.42.136
Note: (a) This value is lower than 2 but this bond is still unusually long and relevant for the discussion.
 

Acknowledgements

The authors are indebted to Professor A. W. Mombrú and Professor P. Moyna for being involved in keeping the crystals in a safe place, and to Dr G. Carrau for his assistance in naming the compound and creating a proper scheme and to the anonymous referee who suggested using the z-score for the discussion. Funding for this research was provided by PEDECIBA - Química (bursary to L. Suescun, H. Heinzen).

References

First citationAlam, M., Nami, S. A. A., Husain, A., Lee, D.-U. & Park, S. (2013). C. R. Chim. 16, 201–206.  CSD CrossRef CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEschenmoser, A., Ruzicka, L., Jeger, O. & Arigoni, D. (1955). Helv. Chim. Acta, 38, 1890–1904.  CrossRef CAS Google Scholar
First citationFalco, M., Voser, W., Jeger, O. & Ruzicka, L. (1952). Helv. Chim. Acta, 35, 2430–2437.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHusain, J., Palmer, R. A., Singh, H., Bhardwaj, T. R. & Paul, D. (1981). Acta Cryst. B37, 205–209.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKranz, D. P., Chiha, S., Meier zu Greffen, A., Neudörfl, J.-M. & Schmalz, H.-G. (2012). Org. Lett. 14, 3692–3695.  CSD CrossRef CAS PubMed Google Scholar
First citationKranz, D. P., Meier zu Greffen, A., El Sheikh, S., Neudörfl, J.-M. & Schmalz, H.-G. (2011). Eur. J. Org. Chem. pp. 2860–2866.  CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorales, A. D., García-Granda, S., Gil, R. P. & Coll-Manchado, F. (1999). Acta Cryst. C55 IUC9900043.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRajnikant, Dinesh, Aziz, N., Mushfiq, M., Alam, M. & Khan, A. U. (2006). J. Chem. Crystallogr. 36, 793–798.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Yang, D., Mohanakrishnan, A. K., Fanwick, P. E., Nampoothiri, P., Hamel, E. & Cushman, M. (2000). J. Med. Chem. 43, 2419–2429.  CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds