research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a host–guest complex between mephedrone hydro­chloride and a tetra­phospho­nate cavitand

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
*Correspondence e-mail: chiara.massera@unipr.it

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 31 December 2018; accepted 25 January 2019; online 29 January 2019)

A new supra­molecular complex (I) between the tetra­phospho­nate cavitand Tiiii[C3H7,CH3,C6H5] [systematic name: 2,8,14,20-tetra­propyl-5,11,17,23-tetra­methyl-6,10:12,16:18,22:24,4-tetra­kis­(phenyl­phospho­nato-O,O′)resorcin[4]arene] and mephedrone hydro­choride {C11H16NO+·Cl; systematic name: meth­yl[1-(4-methyl­phen­yl)-1-oxopropan-2-yl]aza­nium chloride} has been obtained and characterized both in solution and in the solid state. The complex of general formula (C11H16NO)@Tiiii[C3H7,CH3,C6H5]Cl·CH3OH or C11H16NO+·Cl·C68H68O12P4·CH3OH, crystallizes in the monoclinic space group P21/c with one lattice methanol mol­ecule per cavitand, disordered over two positions with occupancy factors of 0.665 (6) and 0.335 (6). The mephedrone guest inter­acts with the P=O groups at the upper rim of the cavitand through two charge-assisted N—H⋯O hydrogen bonds, while the methyl group directly bound to the amino moiety is stabilized inside the π basic cavity via cation⋯π inter­actions. The chloride counter-anion is located between the alkyl legs of the cavitand, forming C—H⋯Cl inter­actions with the aromatic and methyl­enic H atoms of the lower rim. The chloride anion is also responsible for the formation of a supra­molecular chain along the b-axis direction through C—H⋯Cl inter­actions involving the phenyl substituent of one phospho­nate group. C—H⋯O and C—H⋯π inter­actions between the guest and adjacent cavitands contribute to the formation of the crystal structure.

1. Chemical context

Mephedrone (2-methyl­amino-1-p-tolyl­propan-1-one), often abbreviated as 4-MMC, the acronym of 4-methyl methcathinone, is a synthetic drug belonging to the family of methamphetamines known for its stimulant effects (Winstock et al., 2010[Winstock, A. R., Marsden, J. & Mitcheson, L. (2010). BMJ, 340, c1605.]; Morris, 2010[Morris, K. (2010). Lancet, 375, 1333-1334.]; Wood et al., 2010[Wood, D. M., Davies, S., Puchnarewicz, M., Button, J., Archer, R., Ovaska, H., Ramsey, J., Lee, T., Holt, D. W. & Dargan, P. I. (2010). J. Med. Toxicol. 6, 327-330.]). It can be considered a `designer drug', that is, a compound resulting from the chemical modification of an existing drug, which in this case is cathinone, a natural alkaloid found in the plant Catha edulis. As a result of the major impact these substances have on human health and social security, it is extremely important to have sensitive, selective and fast methods to identify them as a class, independently from all the synthetic modifications that can be devised to market them and to bypass the legal restrictions to which the parent compounds are subjected. Among the existing analytical methods used to detect 4-MMC in human biological samples or in different media (water, mixtures of powders, etc), solid-phase extraction (SPE) and liquid chromatography combined with mass spectrometry (LC/MS) are the most common, as can be seen from the extended literature which has been published on the subject in the past few years (Kolmonen et al., 2009[Kolmonen, M., Leinonen, A., Kuuranne, T., Pelander, A. & Ojanperä, I. (2009). Drug Test. Anal. 1, 250-266.]; Singh et al., 2010[Singh, N., Day, P., Katta, V. R., Mohammed, G. P. & Lough, W. J. (2010). J. Pharm. Pharmacol. 62, 1209-1210.]; Santali et al., 2011[Santali, E. Y., Cadogan, A.-K., Daeid, N. N., Savage, K. A. & Sutcliffe, O. B. (2011). J. Pharm. Biomed. Anal. 56, 246-255.]; Frison et al., 2011[Frison, G., Gregio, M., Zamengo, L., Zancanaro, F., Frasson, S. & Sciarrone, R. (2011). Rapid Commun. Mass Spectrom. 25, 387-390.]; Strano-Rossi et al., 2012[Strano-Rossi, S., Anzillotti, L., Castrignanò, E., Romolo, F. S. & Chiarotti, M. (2012). J. Chromatogr. A, 1258, 37-42.]; Power et al., 2012[Power, J. D., McDermott, S. D., Talbot, B., O'Brien, J. E. & Kavanagh, P. (2012). Rapid Commun. Mass Spectrom. 26, 2601-2611.]; Perera et al., 2012[Perera, R. W. H., Abraham, I., Gupta, S., Kowalska, P., Lightsey, D., Marathaki, C., Singh, N. S. & Lough, W. J. (2012). J. Chromatogr. A, 1269, 189-197.]; Lua et al., 2012[Lua, I. A., Lin, S.-L., Lin, H. R. & Lua, A. C. (2012). J. Anal. Toxicol. 36, 575-581.]; Vircks & Mulligan, 2012[Vircks, K. E. & Mulligan, C. C. (2012). Rapid Commun. Mass Spectrom. 26, 2665-2672.]; Concheiro et al., 2013[Concheiro, M., Anizan, S., Ellefsen, K. & Huestis, M. A. (2013). Anal. Bioanal. Chem. 405, 9437-9448.]; Mayer et al., 2013[Mayer, M., Benko, A., Huszár, A., Sipos, K., Lajtai, A., Lakatos, A. & Porpáczy, Z. (2013). J. Chromatogr. Sci. 51, 851-856.]; Mwenesongole et al., 2013[Mwenesongole, E. M., Gautam, L., Hall, S. W., Waterhouse, J. W. & Cole, M. D. (2013). Anal. Methods 5, 3248-3254.]; Pedersen et al., 2013[Pedersen, A. J., Dalsgaard, P. W., Rode, A. J., Rasmussen, B. S., Müller, I. B., Johansen, S. S. & Linnet, K. (2013). J. Sep. Sci. 36, 2081-2089.]; Kanu et al., 2013[Kanu, A. B., Brandt, S. D., Williams, M. D., Zhang, N. & Hill, H. H. (2013). Anal. Chem. 85, 8535-8542.]; Strano-Rossi et al., 2014[Strano-Rossi, S., Odoardi, S., Fisichella, M., Anzillotti, L., Gottardo, R. & Tagliaro, F. (2014). J. Chromatogr. A, 1372, 145-156.]; de Castro et al., 2014[Castro, A. de, Lendoiro, E., Fernández-Vega, H., Steinmeyer, S., López-Rivadulla, M. & Cruz, A. (2014). J. Chromatogr. A, 1374, 93-101.]; Mercolini et al., 2016[Mercolini, L., Protti, M., Catapano, M. C., Rudge, J. & Sberna, A. E. (2016). J. Pharm. Biomed. Anal. 123, 186-194.]; Salomone et al., 2016[Salomone, A., Gazzilli, G., Di Corcia, D., Gerace, E. & Vincenti, M. (2016). Anal. Bioanal. Chem. 408, 2035-2042.]; Fontanals et al., 2017[Fontanals, N., Marcé, R. M. & Borrull, F. (2017). J. Chromatogr. A, 1524, 66-73.]; Lendoiro et al., 2017[Lendoiro, E., Jiménez-Morigosa, C., Cruz, A., Páramo, M., López-Rivadulla, M. & de Castro, A. (2017). Drug Test. Anal. 9, 96-105.]; Mercieca et al., 2018[Mercieca, G., Odoardi, S., Cassar, M. & Strano Rossi, S. (2018). J. Pharm. Biomed. Anal. 149, 494-501.]; Robin et al., 2018[Robin, T., Barnes, A., Dulaurent, S., Loftus, N., Baumgarten, S., Moreau, S., Marquet, P., El Balkhi, S. & Saint-Marcoux, F. (2018). Anal. Bioanal. Chem. 410, 5071-5083.]). Recently, the group of Professor Dalcanale has reported a new method to detect methamphetamine salts with extremely high selectivity in water, using cavitand-grafted silicon micro­canti­levers (Biavardi et al., 2014[Biavardi, E., Federici, S., Tudisco, C., Menozzi, D., Massera, C., Sottini, A., Condorelli, G. G., Bergese, P. & Dalcanale, E. (2014). Angew. Chem. Int. Ed. 53, 9183-9188.]); more precisely, MDMA (methyl­enedi­oxy­methamphetamine), cocaine, amphetamine, and 3-fluoro­methamphetamine hydro­chlorides have been successfully detected in this way. This method takes advantage of the ability shown by tetra­phospho­nate cavitands to selectively recognize the +NH2—CH3 group (+NHR—CH3 in the case of cocaine) common to all the above-mentioned drug salts through the concomitant formation of CH3π inter­actions and hydrogen bonding. Indeed, resorcinarene-based cavitands (Cram, 1983[Cram, D. J. (1983). Science, 219, 1177-1183.]; Cram & Cram, 1994[Cram, D. J. & Cram, J. M. (1994). Container Molecules and their Guests, Monographs in Supramolecular Chemistry, vol. 4, edited by J. F. Stoddart. Royal Society of Chemistry, Cambridge.]) decorated at the upper rim with phospho­nate groups or quinoxaline moieties have long been exploited for their mol­ecular recognition properties towards charged and neutral mol­ecules (Dutasta, 2004[Dutasta, J.-P. (2004). Top. Curr. Chem. 232, 55-91.]; Vachon et al., 2011[Vachon, J., Harthong, S., Jeanneau, E., Aronica, C., Vanthuyne, N., Roussel, C. & Dutasta, J.-P. (2011). Org. Biomol. Chem. 9, 5086-5091.]; Melegari et al., 2013[Melegari, M., Massera, C., Pinalli, R., Yebeutchou, R. M. & Dalcanale, E. (2013). Sens. Actuators B, 179, 74-80.]; Pinalli et al., 2016[Pinalli, R., Dalcanale, E., Ugozzoli, F. & Massera, C. (2016). CrystEngComm, 18, 5788-5802.]; Tudisco et al., 2016[Tudisco, C., Fragalà, M. E., Giuffrida, A. E., Bertani, F., Pinalli, R., Dalcanale, E., Compagnini, G. & Condorelli, G. G. (2016). J. Phys. Chem. C, 120, 12611-12617.]; Trzciński et al., 2017[Trzciński, J. W., Pinalli, R., Riboni, N., Pedrini, A., Bianchi, F., Zampolli, S., Elmi, I., Massera, C., Ugozzoli, F. & Dalcanale, E. (2017). ACS Sens. 2, 590-598.]; Pinalli et al., 2018[Pinalli, R., Pedrini, A. & Dalcanale, E. (2018). Chem. Eur. J. 24, 1010-1019.]; Wu et al., 2012[Wu, Y. L., Tancini, F., Schweizer, B. W., Paunescu, D., Boudon, C., Gisselbrecht, J.-P., Jarowski, P. D., Dalcanale, E. & Diederich, F. (2012). Chem. Asian J. 7, 1185-1190.]; Clément et al., 2015[Clément, P., Korom, S., Struzzi, C., Parra, E. J., Bittencourt, C., Ballester, P. & Llobet, E. (2015). Adv. Funct. Mater. 25, 4011-4020.]). In order to further assess the recognition properties of tetra­phospho­nate cavitands towards quaternary ammonium salts of social inter­est, the supra­molecular complex between Tiiii[C3H7, CH3, C6H5] and mephedrone hydro­chloride is herein reported and analysed, both in the solid state through the detailed analysis of its crystal and mol­ecular structure, and in solution via NMR studies.

[Scheme 1]

2. Structural commentary

The host–guest complex (I)[link] of general formula (C11H16NO)@Tiiii[C3H7, CH3, C6H5]Cl·CH3OH crystallizes in the monoclinic space group P21/c; its mol­ecular structure is shown in Fig. 1[link]. It consists of a 1:1 inclusion compound between mephedrone hydro­chloride and a resorcinarene-based tetra­phospho­nate cavitand with the four P=O groups bridging the upper rim all pointing inwards the aromatic cavity. At the lower rim, four propyl chains are present, one of which is disordered over two equivalent positions with occupancy factors of 0.5. For each supra­molecular complex, one lattice methanol mol­ecule is present, disordered over two positions with occupancy factors of 0.665 (6) and 0.335 (6) (see Fig. 3[link]). The mephedrone cation (C11H16NO)+, which is protonated at the nitro­gen atom N1, is located inside the cavity through the formation of two strong, charge-assisted N—H⋯O hydrogen bonds involving the P=O groups at the upper rim as acceptors (N1—H1A⋯O3A and N1—H1B⋯O3B, see Fig. 2[link] and Table 1[link] for the detailed geom­etrical parameters). The methyl group C1 directly bonded to the amino moiety is located inside the π basic cavity, stabilized via a cation⋯π inter­action involving the C1—H1D moiety and the aromatic ring C1B–C6B [C1—H1DCg1, 3.672 (7) Å and 145.1°, where Cg1 is the centroid of the benzene ring]. According to the electrostatic model, the term `cation⋯π' is more appropriate than `C—H⋯π' to describe the inter­actions of N-methyl­ammonium ions (Dougherty, 2013[Dougherty, D. A. (2013). Acc. Chem. Res. 46, 885-893.]).] Further stabilization is provided by three C—Hguest⋯O=Phost hydrogen bonds (Fig. 2[link] and Table 1[link]). The distance of C1 from the mean plane passing through the methyl­ene atoms C8A, C8B, C8C and C8D of the lower rim is 3.001 (5) Å, which gives a measure of how deeply the guest is inserted inside the cavity (see also the discussion in Section 5). The chloride anion is located between the alkyl legs of the cavitand, with a Cl1⋯N1 distance of 7.097 (5) Å, forming numerous C–H⋯Cl inter­actions with the aromatic and methyl­enic hydrogen atoms of the lower rim (see Table 1[link]), as well as a hydrogen bond with the O2S—H2S group of the methanol mol­ecule of occupancy factor 0.665 (6) [O2S—H2S⋯Cl1, 3.105 (5) Å and 168.5 °]. Moreover, the O1S atom from the other methanol fraction accepts a hydrogen bond from the methyl group C3 of the mephedrone guest [C3—H3B⋯O1S, 3.51 (2) Å and 164.3 °].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the rings C1B–C6B and C1D–C6D, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3A 0.91 1.91 2.773 (5) 157
N1—H1B⋯O3B 0.91 1.99 2.841 (5) 155
C2—H2⋯O3D 1.00 2.25 3.140 (6) 148
C3—H3A⋯O3C 0.98 2.49 3.351 (7) 147
C3—H3B⋯O1S 0.98 2.55 3.51 (2) 164
O2S—H2S⋯Cl1 0.84 2.28 3.105 (5) 169
C1A—H1A1⋯Cl1 0.95 2.91 3.847 (4) 170
C1B—H1B1⋯Cl1 0.95 2.93 3.870 (5) 170
C1C—H1C1⋯Cl1 0.95 2.95 3.888 (5) 170
C1D—H1D1⋯Cl1 0.95 2.85 3.782 (5) 168
C9A—H9A1⋯Cl1 0.99 2.76 3.738 (5) 172
C9B—H9B2⋯Cl1 0.99 2.88 3.870 (4) 175
C9C—H9C1⋯Cl1 0.99 2.71 3.701 (5) 175
C9D—H9D1⋯Cl1 0.99 2.85 3.838 (5) 178
C1—H1D⋯Cg1 0.98 2.83 3.672 (7) 145
C17Di—H17Di⋯O1 0.95 2.56 3.204 (6) 125
C10—H10⋯O1Di 0.95 2.69 3.555 (4) 152
C9—H9⋯Cg2i 0.95 2.69 3.594 (5) 159
C14B—H14B⋯Cl1ii 0.95 2.89 3.697 (6) 143
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
ORTEP view of (C11H16NO)@Tiiii[C3H7,CH3,C6H5]Cl (I)[link] with partial atom-labelling scheme and anisotropic displacement parameters drawn at the 20% probability level. The solvent mol­ecules and the H atoms of the cavitand are omitted for clarity; only one orientation of the disordered alkyl chain is shown.
[Figure 3]
Figure 3
Supra­molecular inter­actions (blue dotted lines) involving the chloride anion (represented as a green sphere) and the disordered methanol lattice mol­ecules.
[Figure 2]
Figure 2
Left: view of the main host–guest supra­molecular inter­actions shown as blue and green dotted lines. Only relevant H atoms are shown, while the alkyl chains, the chloride anion and the methanol lattice mol­ecules have been omitted for clarity. Right: side view of the host–guest complex.

3. Supra­molecular features

Besides the supra­molecular inter­actions that yield the 1:1 host–guest complex, mephedrone hydro­chloride also influences the overall packing of the crystal structure, as can be seen from Figs. 4[link] and 5[link]. The chloride anion is responsible for the formation of a supra­molecular chain along the b-axis direction through C14B—H14B⋯Cl(−x, [{1\over 2}] + y, [{3\over 2}] − z) contacts involving the phenyl substituents of one of the four phospho­nate groups (Fig. 4[link]). On the other side, the cationic part of the guest is involved in C—H⋯O and C—H⋯π inter­actions with the phenyl ring bound to the P1D=O3D group and the aromatic ring C1D–C6D belonging to the wall of an adjacent cavitand (Fig. 5[link] and Table 2[link]). More precisely, the oxygen atom O1 of the guest acts as a hydrogen-bond acceptor towards the C17Di—H17Di group [3.204 (6) Å and 125.0°; symmetry code (i): −x + 1, y + [{1\over 2}], −z + [{3\over 2}]], while C9—H9 and C10—H10 act as donors towards the centroid Cg2i [3.594 (5) Å and 158.7°] and the oxygen atom O1Di [3.555 (4) Å and 151.8°], respectively. These sets of inter­actions can be summarized visually by calculating the two-dimensional fingerprint plots derived from the Hirshfeld surface analysis (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]), using the program Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). The overall fingerprint plot for (I)[link] is shown in Fig. 6[link]a and those delineated in H⋯H (67.8%), C⋯H/H⋯C (23.3%), O⋯H/H⋯O (6.4%) and Cl⋯H/H⋯Cl (1.2%) inter­actions are shown in Fig. 6[link]be, respectively (the methanol solvent and the disordered alkyl chain have been omitted from the calculation). Apart from the H⋯H contacts, which probably derive from the inter­actions involving the alkyl chains, the second highest contribution arises from C⋯H/H⋯C contacts (di + de ∼2.58 Å), followed by O⋯H/H⋯O (di + de ∼2.48 Å) and Cl⋯H/H⋯Cl (di + de ∼2.76 Å), all shorter than the respective sums of the van der Waals radii.

Table 2
Experimental details

Crystal data
Chemical formula C11H16NO+·Cl·C68H68O12P4·CH4O
Mr 1446.84
Crystal system, space group Monoclinic, P21/c
Temperature (K) 190
a, b, c (Å) 17.5353 (8), 22.4798 (9), 21.2031 (9)
β (°) 109.455 (1)
V3) 7880.8 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.13 × 0.10 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.634, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 89697, 15077, 9535
Rint 0.073
(sin θ/λ)max−1) 0.612
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.275, 1.02
No. of reflections 15077
No. of parameters 929
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.78, −0.52
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 4]
Figure 4
View of the packing of (I)[link] along the b-axis direction, mediated by C14B—H14B⋯Cl inter­actions (blue lines). The C and H atoms highlighted in purple are in general positions, while the chloride anion is at the symmetry position −x, [{1\over 2}] + y, [{3\over 2}] − z.
[Figure 5]
Figure 5
View of the packing of (I)[link] mediated by C—H⋯O and C—H⋯π inter­actions between the guests and adjacent cavitands. Symmetry code: (i) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plot (a) and those delineated into H⋯H (b), C⋯H/H⋯C (c), O⋯H/H⋯O (d) and Cl⋯H/H⋯Cl (e) contacts for (I)[link].

4. Studies in solution

In solution, complexation was observed both via phospho­rous and proton NMR spectroscopy following the shift of the 31P signals of the Tiiii[C3H7, CH3, Ph] host and the shift of the +N—CH3 protons of the mephedrone hydro­chloride guest. The titration was performed in deuterated methanol at 253 K, in order to be under slow chemical exchange in the NMR time scale and better observe the complexation event. The NMR tube was filled with 0.4 mL of a deuterated methanol solution containing the cavitand (7.5 mM concentration). The meph­edrone hydro­chloride titrant solution was prepared by dissolving the guest in 0.1 mL of deuterated methanol (31 mM). Two portions (0.5 eq., 48.5 mL) of the titrant were added by syringe to the NMR tube. During the titration, the phospho­rous singlet of the cavitand shifted downfield, from 8.70 (free host) to 11.14 ppm upon addition of one equivalent of the guest (Fig. 7[link]a and 7c), indicating the presence of cation–dipole inter­actions between the +N–CH3 and the phospho­nate groups at the upper rim. The addition of 0.5 eq. of guest caused the appearance of two phospho­rous signals at 8.74 and 11.14 ppm related to the free host and to the complex, respectively (Fig. 7[link]b).

[Figure 7]
Figure 7
31P NMR (162 MHz, MeOD, 253 K) spectra of (a) free host Tiiii[C3H7, CH3, Ph]; (b) addition of 0.5 equivalent of mephedrone HCl to the host solution; (c) addition of 1 equivalent of mephedrone HCl to the host solution.

In the proton NMR, after the addition of 0.5 equivalent of mephedrone hydro­chloride the diagnostic upfield shift of the guest +N–CH3 signals was observed, as expected for the shielding effect caused by its inclusion in the aromatic cavity of the host (Fig. 8[link]b). After the addition of one equivalent of guest, the +N—CH3 singlet appeared still shifted upfield but broadened (Fig. 8[link]c).

[Figure 8]
Figure 8
1H NMR (400 MHz, MeOD, 253 K) spectra of (a) free host Tiiii[C3H7, CH3, Ph]; (b) addition of 0.5 equivalent of mephedrone HCl to the host solution; (c) addition of 1 equivalent of mephedrone HCl to the host solution. The arrows indicate the up-shift of +N—CH3 protons.

5. Database survey

As already discussed in Section 1, tetra­phospho­nate cavitands of general formula Tiiii[R, R1, R2] (where R, R1 and R2 are the substituents at the lower rim, on the four benzene rings of the cavity, and on the phospho­nate groups, respectively; Pinalli et al., 2004[Pinalli, R., Suman, M. & Dalcanale, E. (2004). Eur. J. Org. Chem. pp. 451-462.]), are excellent receptors for mol­ecular recognition of neutral and charged guests because of the presence of P=O groups that act as hydrogen-bond acceptors, and of the aromatic cavity that allows the formation of C—H⋯π inter­actions. The substituent R at the lower rim can be modified to tune the solubility of the host, to enhance the crystallization process, or to graft the cavity on different surfaces, but does not play any significant role in the recognition process, if not that of inter­acting with the anionic counterpart of a positively charged guest. A search in the Cambridge Structural Database (Version 5.38, update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a tetra­phospho­nate scaffold without limitations on R, R1 and R2 yielded 82 hits, with the most populated class (44 hits) being the one of general formula Tiiii[H, CH3, CH3]. The substitution of the alkyl chains with hydrogen atoms favours the formation of crystals, albeit lowering the solubility of the macrocycle, and the methyl group on the phospho­nate moiety generates less steric hindrance than a phenyl one. Besides these general considerations, the most inter­esting structural comparisons with the title compound are to be made with supra­molecular complexes in which the guests are: (i) the zwitterionic species 1,1-di­cyano-2-(di­cyano­meth­yl)-3-(di­cyano­methyl­ene)-4,4-bis[4-(di­methyl­amino)­phen­yl]but-4-ylium-2-ide (KEGNIV; Wu et al., 2012[Wu, Y. L., Tancini, F., Schweizer, B. W., Paunescu, D., Boudon, C., Gisselbrecht, J.-P., Jarowski, P. D., Dalcanale, E. & Diederich, F. (2012). Chem. Asian J. 7, 1185-1190.]); (ii) the diasteromeric pair ephedrine and pseudoephedrine hydro­chloride (MOXREY and MOXRIC; Biavardi et al., 2015[Biavardi, E., Ugozzoli, F. & Massera, C. (2015). Chem. Commun. 51, 3426-3429.]); (iii) MDMA, cocaine, amphetamine and 3-fluoro­methamphetamine hydro­chloride (SORREY, SORRIC, SORROI and SORRUO; Biavardi et al., 2014[Biavardi, E., Federici, S., Tudisco, C., Menozzi, D., Massera, C., Sottini, A., Condorelli, G. G., Bergese, P. & Dalcanale, E. (2014). Angew. Chem. Int. Ed. 53, 9183-9188.]). A mol­ecular sketch of the guests is reported in Fig. 9[link]. In the case of KEGNIV, the positive charge of the zwitterionic species is localized on the N,N-di­methyl­anilino rings, in particular on the NMe2 moiety, and that has been demonstrated by the supra­molecular complex formed with Tiiii in which the guest enters the cavity with the positive fragment to form ion–dipole inter­actions with the P=O groups. Ephedrine and pseudoephedrine are complexed by the cavitand via a set of supra­molecular contacts very similar to those present in the title compound, that is, hydrogen bonding involving the –NH2+ fragment as donor and the phospho­nate groups as acceptors, and cation⋯π inter­actions. The distance of the carbon atom of the methyl group inter­acting with the cavity from the mean plane passing through the methyl­ene atoms C8A, C8B, C8C and C8D of the lower rim (the labelling is the same as in Fig. 2[link]) is 3.023 (4) Å for ephedrine, 3.202 (3) Å for the sterically hindered pseudoephedrine and 3.001 (5) Å for (I)[link]. This value is of 3.122 (2), 4.104 (4), 2.853 (3) and 2.983 (5) Å for MDMA, cocaine, amphetamine and 3-fluoro­methamphetamine hydro­chloride, respectively, all in good agreement with that of the title compound (cocaine is less included inside the cavity because of its bulky substituents).

[Figure 9]
Figure 9
Mol­ecular sketch of the different guests described in the Database survey.

6. Synthesis and crystallization

1H NMR spectra were obtained using a Bruker AMX-400 (400 MHz) spectrometer. All chemical shifts (δ) were reported in ppm relative to the proton resonances resulting from incomplete deuteration of the NMR solvents. 31P NMR spectra were obtained using a Bruker AMX-400 (162 MHz) spectrometer. All chemical shifts (δ) were recorded in ppm relative to external 85% H3PO4 at 0.00 ppm. The cavitand Tiiii[C3H7, CH3, C6H5] was prepared following published procedures (Biavardi et al., 2008[Biavardi, E., Battistini, G., Montalti, M., Yebeutchou, R. M., Prodi, L. & Dalcanale, E. (2008). Chem. Commun. pp. 1638.]). Mephedrone hydro­chloride in its racemic form was purchased from SALAR SpA (Italy) and used as received without further purification.

(C11H16NO)@Tiiii[C3H7, CH3, C6H5]Cl·CH3OH was obtained by mixing a methanol solution of Tiiii[C3H7, CH3, C6H5] (1 eq.) with a di­chloro­methane solution of C11H16NOCl (1 eq.). The mixture was left to evaporate to yield colourless single crystals of the 1:1 complex which were suitable for X-ray diffraction analysis.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms bound to C, N and O were placed in calculated positions and refined isotropically using a riding model with C—H ranging from 0.95 to 1.00 Å, N—H = 0.91 Å, O—H = 0.98 Å and Uiso(H) set to 1.2–1.5Ueq(C/N/O). For each cavitand:guest complex, a methanol solvent mol­ecule was located in the difference-Fourier map, disordered over two positions with occupancy factors of 0.665 (6) and 0.335 (6). One of the four alkyl chains of the cavitand was also found to be disordered over two equivalent positions with occupancy factors of 0.5, and the relative carbon atoms were refined isotropically. Four reflections showing poor agreement (031, [\overline{2}]31, 020 and 231) were omitted from the final refinement.

Supporting information


Computing details top

Data collection: APEXII (Bruker, 2008); cell refinement: APEXII (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), PARST (Nardelli, 1995) and publCIF (Westrip, 2010).

Methyl[1-(4-methylphenyl)-1-oxopropan-2-yl]azanium chloride 2,8,14,20-tetrapropyl-5,11,17,23-tetramethyl-6,10:12,16:18,22:24,4-tetrakis(phenylphosphonato-O,O')resorcin[4]arene methanol monosolvate top
Crystal data top
C11H16NO+·Cl·C68H68O12P4·CH4OF(000) = 3056
Mr = 1446.84Dx = 1.219 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 17.5353 (8) ÅCell parameters from 2781 reflections
b = 22.4798 (9) Åθ = 1.4–25.8°
c = 21.2031 (9) ŵ = 0.19 mm1
β = 109.455 (1)°T = 190 K
V = 7880.8 (6) Å3Prismatic, colourless
Z = 40.13 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
15077 independent reflections
Radiation source: fine-focus sealed tube9535 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ω–scanθmax = 25.8°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2121
Tmin = 0.634, Tmax = 0.745k = 2727
89697 measured reflectionsl = 2525
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.275 w = 1/[σ2(Fo2) + (0.1708P)2 + 6.7275P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
15077 reflectionsΔρmax = 1.78 e Å3
929 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.08550 (8)0.09484 (7)0.83375 (7)0.0629 (4)
N10.3301 (2)0.10053 (18)0.7202 (2)0.0554 (10)
H1A0.33750.12030.75930.066*
H1B0.29790.12340.68640.066*
O10.4139 (3)0.19702 (17)0.7037 (2)0.0786 (12)
C10.2883 (3)0.0432 (2)0.7216 (3)0.0559 (12)
H1C0.27440.02390.67780.084*
H1D0.23890.05080.73220.084*
H1E0.32420.01720.75590.084*
C20.4103 (3)0.0926 (2)0.7107 (3)0.0559 (12)
H20.44290.06360.74480.067*
C30.4012 (5)0.0691 (3)0.6436 (4)0.094 (2)
H3A0.36620.03400.63470.141*
H3B0.45450.05810.64170.141*
H3C0.37700.09970.60990.141*
C40.4542 (3)0.1522 (2)0.7228 (3)0.0578 (13)
C50.5426 (3)0.1539 (2)0.7557 (3)0.0556 (12)
C60.5884 (4)0.1030 (2)0.7777 (3)0.0725 (16)
H60.56320.06510.77020.087*
C70.6700 (4)0.1074 (3)0.8101 (4)0.086 (2)
H70.70070.07210.82420.103*
C80.7091 (3)0.1621 (3)0.8230 (3)0.0669 (15)
C90.6637 (4)0.2117 (3)0.7986 (3)0.0778 (17)
H90.68920.24950.80480.093*
C100.5824 (4)0.2080 (2)0.7656 (3)0.0743 (17)
H100.55260.24330.74910.089*
C110.7975 (4)0.1679 (3)0.8644 (4)0.097 (2)
H11A0.83060.16250.83560.145*
H11B0.81170.13750.89950.145*
H11C0.80740.20750.88490.145*
P1A0.38511 (7)0.16364 (5)0.90714 (5)0.0380 (3)
O1A0.40936 (17)0.10664 (12)0.95332 (13)0.0384 (6)
O2A0.29380 (17)0.17777 (13)0.90051 (14)0.0433 (7)
O3A0.39674 (18)0.15745 (13)0.84232 (14)0.0449 (7)
P1B0.10885 (7)0.17333 (5)0.61816 (6)0.0407 (3)
O1B0.08989 (17)0.18649 (13)0.68474 (15)0.0427 (7)
O2B0.04768 (17)0.12187 (12)0.58070 (14)0.0407 (7)
O3B0.19354 (18)0.15819 (13)0.62903 (16)0.0475 (7)
P1C0.21929 (7)0.08274 (5)0.52556 (6)0.0417 (3)
O1C0.12856 (17)0.06563 (13)0.51623 (14)0.0404 (7)
O2C0.23930 (17)0.13912 (13)0.57372 (14)0.0417 (7)
O3C0.2765 (2)0.03344 (15)0.54850 (17)0.0556 (8)
P1D0.50908 (6)0.08324 (5)0.81214 (5)0.0354 (3)
O1D0.45599 (16)0.14052 (12)0.78262 (14)0.0375 (6)
O2D0.50278 (16)0.07416 (12)0.88471 (13)0.0355 (6)
O3D0.48583 (18)0.03031 (13)0.76989 (15)0.0461 (7)
C10D0.3303 (3)0.1689 (2)0.9668 (2)0.0537 (12)
H10K0.38830.17960.98060.064*
H10J0.32630.12850.98420.064*
C2A0.3159 (2)0.02458 (18)0.91576 (19)0.0362 (9)
C3A0.3928 (2)0.04831 (18)0.92624 (19)0.0355 (9)
C4A0.4552 (2)0.01803 (17)0.91511 (18)0.0336 (9)
C5A0.4385 (2)0.04078 (17)0.89356 (19)0.0342 (9)
C6A0.3637 (2)0.06805 (17)0.88228 (18)0.0331 (9)
C7A0.5366 (2)0.04572 (19)0.9266 (2)0.0414 (10)
H7A10.53150.07810.89460.062*
H7A20.57400.01560.92060.062*
H7A30.55750.06150.97230.062*
C8A0.2484 (2)0.0611 (2)0.9277 (2)0.0403 (10)
H8A0.27470.09160.96250.048*
C9A0.1926 (3)0.0241 (3)0.9539 (2)0.0570 (13)0.5
H9A10.16500.00480.91840.068*0.5
H9A20.22760.00070.99220.068*0.5
C10A0.1322 (6)0.0507 (4)0.9750 (5)0.049 (2)*0.5
H10A0.09340.07120.93610.059*0.5
H10B0.15810.08151.00870.059*0.5
C11A0.0858 (8)0.0104 (6)1.0041 (7)0.079 (3)*0.5
H11D0.06360.02260.97310.119*0.5
H11E0.04150.03241.01170.119*0.5
H11F0.12170.00551.04670.119*0.5
C9E0.1926 (3)0.0241 (3)0.9539 (2)0.0570 (13)0.5
H9E10.14440.04830.95120.068*0.5
H9E20.17380.01080.92420.068*0.5
C10E0.2270 (7)0.0042 (5)1.0187 (5)0.060 (3)*0.5
H10C0.25300.03781.04810.072*0.5
H10D0.26920.02581.02070.072*0.5
C11E0.1624 (9)0.0237 (7)1.0435 (7)0.093 (4)*0.5
H11G0.12210.00651.04350.139*0.5
H11H0.18790.03891.08900.139*0.5
H11I0.13590.05641.01380.139*0.5
C12A0.4380 (3)0.22140 (18)0.9610 (2)0.0413 (10)
C13A0.4582 (4)0.2721 (3)0.9337 (3)0.0745 (18)
H13A0.44840.27420.88700.089*
C14A0.4927 (5)0.3200 (3)0.9744 (4)0.087 (2)
H14A0.50280.35610.95520.105*
C15A0.5122 (4)0.3151 (3)1.0423 (3)0.0742 (17)
H15A0.53950.34681.07050.089*
C16A0.4927 (5)0.2649 (3)1.0695 (3)0.084 (2)
H16A0.50480.26231.11660.101*
C17A0.4551 (4)0.2178 (2)1.0288 (3)0.0710 (17)
H17A0.44120.18301.04800.085*
C1B0.1377 (2)0.06971 (19)0.8132 (2)0.0378 (9)
H1B10.11920.03140.82030.045*
C2B0.0980 (2)0.09968 (19)0.7532 (2)0.0383 (9)
C3B0.1283 (2)0.15481 (19)0.7442 (2)0.0401 (10)
C4B0.1936 (3)0.18243 (19)0.7916 (2)0.0433 (10)
C5B0.2294 (2)0.1501 (2)0.8505 (2)0.0409 (10)
C6B0.2035 (2)0.09445 (19)0.8628 (2)0.0384 (9)
C7B0.2230 (3)0.2430 (2)0.7796 (3)0.0528 (12)
H7B10.24730.26340.82260.079*
H7B20.17730.26650.75130.079*
H7B30.26350.23870.75740.079*
C8B0.0260 (2)0.07312 (19)0.7000 (2)0.0389 (9)
H8B0.00630.10690.67370.047*
C9B0.0300 (3)0.0374 (2)0.7276 (2)0.0449 (10)
H9B10.07630.02280.68960.054*
H9B20.00030.00230.75180.054*
C10B0.0624 (3)0.0726 (2)0.7747 (3)0.0586 (13)
H10E0.09030.10890.75180.070*
H10F0.01700.08510.81460.070*
C11B0.1216 (5)0.0344 (3)0.7964 (4)0.100 (2)
H11L0.16050.01580.75690.150*
H11M0.15060.05960.81870.150*
H11N0.09170.00350.82740.150*
C12B0.0698 (3)0.23712 (19)0.5690 (2)0.0447 (10)
C13B0.0186 (3)0.2771 (2)0.5852 (3)0.0543 (12)
H13B0.00280.27020.62320.065*
C14B0.0093 (4)0.3272 (2)0.5457 (3)0.0684 (15)
H14B0.04480.35430.55630.082*
C15B0.0146 (4)0.3371 (3)0.4913 (3)0.0713 (16)
H15B0.00500.37120.46420.086*
C16B0.0660 (4)0.2989 (3)0.4751 (3)0.0773 (18)
H16B0.08260.30680.43760.093*
C17B0.0939 (4)0.2482 (2)0.5142 (3)0.0661 (15)
H17B0.12940.22140.50320.079*
C1C0.0744 (2)0.02396 (18)0.6637 (2)0.0362 (9)
H1C10.06970.04170.70280.043*
C2C0.0996 (2)0.05894 (18)0.6198 (2)0.0362 (9)
C3C0.1080 (2)0.03113 (18)0.56427 (19)0.0354 (9)
C4C0.0937 (2)0.02916 (19)0.5505 (2)0.0384 (9)
C5C0.0667 (2)0.06113 (18)0.5952 (2)0.0362 (9)
C6C0.0560 (2)0.03618 (18)0.6517 (2)0.0367 (9)
C7C0.1049 (3)0.0577 (2)0.4899 (2)0.0440 (10)
H7C10.07300.09430.47900.066*
H7C20.08680.03020.45200.066*
H7C30.16220.06710.49940.066*
C8C0.1184 (2)0.12493 (18)0.6345 (2)0.0367 (9)
H8C0.11020.14490.59070.044*
C9C0.0606 (3)0.15446 (19)0.6653 (2)0.0437 (10)
H9C10.06890.13640.70970.052*
H9C20.00430.14570.63680.052*
C10C0.0702 (3)0.2207 (2)0.6736 (3)0.0529 (12)
H10H0.12500.22980.70480.063*
H10G0.06490.23890.62990.063*
C11C0.0071 (3)0.2479 (2)0.7006 (3)0.0671 (15)
H11O0.01530.23270.74570.101*
H11P0.01280.29130.70230.101*
H11Q0.04730.23720.67110.101*
C12C0.2126 (3)0.1168 (2)0.4482 (2)0.0498 (11)
C13C0.2679 (4)0.1017 (3)0.4170 (3)0.0715 (16)
H13C0.30600.07080.43430.086*
C14C0.2664 (4)0.1332 (3)0.3590 (3)0.0816 (19)
H14C0.30400.12350.33700.098*
C15C0.2118 (4)0.1771 (3)0.3345 (3)0.0738 (18)
H15C0.21170.19800.29550.089*
C16C0.1580 (4)0.1916 (3)0.3643 (3)0.0727 (16)
H16C0.11980.22230.34600.087*
C17C0.1574 (3)0.1621 (2)0.4216 (2)0.0570 (13)
H17C0.11930.17290.44270.068*
C1D0.2356 (2)0.13048 (17)0.7459 (2)0.0361 (9)
H1D10.19750.12830.76890.043*
C2D0.3179 (2)0.13337 (17)0.7825 (2)0.0346 (9)
C3D0.3721 (2)0.13563 (17)0.7472 (2)0.0370 (9)
C4D0.3488 (2)0.13616 (19)0.6780 (2)0.0384 (9)
C5D0.2659 (3)0.13406 (18)0.6444 (2)0.0385 (9)
C6D0.2079 (2)0.13078 (17)0.6756 (2)0.0366 (9)
C7D0.4084 (3)0.1409 (2)0.6415 (2)0.0512 (12)
H7D10.38150.15720.59670.077*
H7D20.45290.16720.66620.077*
H7D30.43000.10130.63760.077*
C8D0.3491 (3)0.13214 (18)0.8587 (2)0.0370 (9)
H8D0.40320.15210.87320.044*
C9D0.2954 (3)0.1677 (2)0.8902 (2)0.0447 (10)
H9D10.24080.14970.87620.054*
H9D20.28990.20900.87310.054*
C1A0.3029 (2)0.03379 (19)0.89266 (19)0.0373 (9)
H1A10.25070.05080.88370.045*
C11D0.2872 (5)0.2126 (3)0.9978 (3)0.088 (2)
H11R0.23050.20060.98690.133*
H11S0.31350.21281.04650.133*
H11T0.28990.25250.98000.133*
C12D0.6095 (3)0.11008 (19)0.8291 (2)0.0403 (9)
C13D0.6686 (4)0.0701 (3)0.8263 (4)0.084 (2)
H13D0.65550.02930.81740.101*
C14D0.7447 (4)0.0892 (3)0.8361 (5)0.100 (3)
H14D0.78370.06190.83120.120*
C15D0.7671 (3)0.1469 (3)0.8528 (3)0.0649 (15)
H15D0.82170.15900.86290.078*
C16D0.7105 (3)0.1858 (3)0.8548 (3)0.0718 (16)
H16D0.72480.22620.86550.086*
C17D0.6309 (3)0.1678 (2)0.8413 (3)0.0604 (14)
H17D0.59090.19650.84060.072*
O1S0.5707 (10)0.0241 (7)0.6032 (8)0.103 (5)*0.335 (6)
H1S0.54500.01150.56470.154*0.335 (6)
C1S0.6098 (12)0.0253 (8)0.6455 (11)0.105 (8)0.335 (6)
H1S10.66750.01670.66660.158*0.335 (6)
H1S20.60330.06150.61840.158*0.335 (6)
H1S30.58510.03130.68020.158*0.335 (6)
O2S0.0947 (3)0.1331 (3)0.7768 (3)0.0699 (19)0.665 (6)
H2S0.04850.11780.79300.105*0.665 (6)
C2S0.1305 (5)0.1142 (4)0.7091 (4)0.075 (3)0.665 (6)
H2S10.18360.09670.70290.113*0.665 (6)
H2S20.13670.14850.67930.113*0.665 (6)
H2S30.09560.08450.69850.113*0.665 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0503 (7)0.0783 (9)0.0617 (8)0.0120 (6)0.0208 (6)0.0002 (7)
N10.052 (2)0.053 (2)0.058 (2)0.0033 (19)0.013 (2)0.0020 (19)
O10.083 (3)0.053 (2)0.095 (3)0.008 (2)0.024 (2)0.013 (2)
C10.046 (3)0.051 (3)0.072 (3)0.000 (2)0.021 (2)0.002 (2)
C20.053 (3)0.050 (3)0.066 (3)0.004 (2)0.021 (2)0.008 (2)
C30.107 (6)0.081 (5)0.101 (5)0.029 (4)0.042 (4)0.035 (4)
C40.071 (3)0.045 (3)0.061 (3)0.007 (3)0.026 (3)0.007 (2)
C50.061 (3)0.047 (3)0.062 (3)0.002 (2)0.025 (3)0.000 (2)
C60.067 (4)0.042 (3)0.111 (5)0.002 (3)0.035 (3)0.000 (3)
C70.052 (3)0.054 (3)0.147 (6)0.001 (3)0.027 (4)0.014 (4)
C80.062 (3)0.059 (3)0.085 (4)0.008 (3)0.031 (3)0.002 (3)
C90.079 (4)0.054 (3)0.092 (4)0.016 (3)0.017 (3)0.001 (3)
C100.081 (4)0.041 (3)0.088 (4)0.009 (3)0.010 (3)0.001 (3)
C110.063 (4)0.083 (5)0.145 (7)0.019 (3)0.035 (4)0.011 (4)
P1A0.0383 (6)0.0354 (6)0.0377 (6)0.0013 (5)0.0090 (5)0.0070 (4)
O1A0.0392 (15)0.0342 (15)0.0383 (15)0.0018 (12)0.0082 (12)0.0061 (12)
O2A0.0382 (16)0.0421 (17)0.0453 (17)0.0010 (13)0.0081 (13)0.0092 (13)
O3A0.0487 (18)0.0447 (17)0.0395 (16)0.0002 (14)0.0122 (13)0.0051 (13)
P1B0.0378 (6)0.0340 (6)0.0476 (6)0.0005 (5)0.0107 (5)0.0004 (5)
O1B0.0407 (16)0.0365 (15)0.0467 (17)0.0025 (13)0.0089 (13)0.0001 (13)
O2B0.0400 (16)0.0313 (15)0.0455 (16)0.0029 (12)0.0073 (13)0.0007 (12)
O3B0.0395 (16)0.0416 (17)0.0597 (19)0.0006 (13)0.0143 (14)0.0013 (14)
P1C0.0397 (6)0.0435 (6)0.0386 (6)0.0003 (5)0.0085 (5)0.0026 (5)
O1C0.0395 (16)0.0388 (16)0.0377 (15)0.0004 (13)0.0061 (12)0.0054 (12)
O2C0.0415 (16)0.0445 (17)0.0347 (15)0.0036 (13)0.0070 (12)0.0047 (13)
O3C0.0477 (18)0.054 (2)0.061 (2)0.0095 (16)0.0119 (16)0.0028 (16)
P1D0.0342 (5)0.0300 (5)0.0391 (6)0.0011 (4)0.0086 (4)0.0033 (4)
O1D0.0314 (14)0.0350 (15)0.0401 (15)0.0029 (12)0.0040 (12)0.0005 (12)
O2D0.0322 (14)0.0331 (14)0.0373 (15)0.0029 (11)0.0065 (12)0.0032 (11)
O3D0.0518 (18)0.0388 (16)0.0449 (17)0.0049 (14)0.0123 (14)0.0078 (13)
C10D0.064 (3)0.050 (3)0.046 (3)0.012 (2)0.018 (2)0.007 (2)
C2A0.037 (2)0.040 (2)0.0301 (19)0.0011 (18)0.0091 (17)0.0005 (17)
C3A0.037 (2)0.033 (2)0.034 (2)0.0050 (17)0.0080 (17)0.0011 (16)
C4A0.036 (2)0.033 (2)0.0300 (19)0.0030 (17)0.0079 (16)0.0005 (16)
C5A0.037 (2)0.033 (2)0.0309 (19)0.0009 (17)0.0096 (17)0.0044 (16)
C6A0.035 (2)0.033 (2)0.0283 (19)0.0050 (17)0.0060 (16)0.0031 (16)
C7A0.036 (2)0.038 (2)0.049 (2)0.0051 (18)0.0124 (19)0.0031 (19)
C8A0.034 (2)0.051 (3)0.037 (2)0.0044 (19)0.0141 (18)0.0066 (19)
C9A0.055 (3)0.078 (4)0.043 (3)0.011 (3)0.023 (2)0.007 (2)
C9E0.055 (3)0.078 (4)0.043 (3)0.011 (3)0.023 (2)0.007 (2)
C12A0.040 (2)0.033 (2)0.049 (2)0.0010 (18)0.0126 (19)0.0100 (19)
C13A0.112 (5)0.067 (4)0.061 (3)0.040 (3)0.051 (3)0.025 (3)
C14A0.124 (6)0.064 (4)0.099 (5)0.049 (4)0.071 (5)0.030 (3)
C15A0.078 (4)0.057 (3)0.088 (4)0.018 (3)0.028 (3)0.035 (3)
C16A0.124 (6)0.060 (4)0.052 (3)0.013 (4)0.007 (3)0.018 (3)
C17A0.109 (5)0.043 (3)0.044 (3)0.005 (3)0.004 (3)0.002 (2)
C1B0.033 (2)0.041 (2)0.043 (2)0.0011 (17)0.0161 (18)0.0032 (18)
C2B0.032 (2)0.043 (2)0.042 (2)0.0030 (18)0.0134 (18)0.0039 (18)
C3B0.035 (2)0.041 (2)0.042 (2)0.0079 (18)0.0099 (18)0.0019 (19)
C4B0.038 (2)0.037 (2)0.053 (3)0.0032 (18)0.012 (2)0.006 (2)
C5B0.033 (2)0.047 (2)0.040 (2)0.0035 (19)0.0090 (18)0.0120 (19)
C6B0.034 (2)0.043 (2)0.039 (2)0.0030 (18)0.0132 (18)0.0050 (18)
C7B0.053 (3)0.034 (2)0.064 (3)0.000 (2)0.009 (2)0.003 (2)
C8B0.033 (2)0.036 (2)0.047 (2)0.0015 (17)0.0130 (18)0.0020 (18)
C9B0.035 (2)0.046 (2)0.053 (3)0.0001 (19)0.013 (2)0.004 (2)
C10B0.051 (3)0.057 (3)0.076 (3)0.011 (2)0.031 (3)0.010 (3)
C11B0.108 (5)0.081 (5)0.146 (7)0.001 (4)0.089 (5)0.009 (5)
C12B0.044 (2)0.036 (2)0.050 (3)0.0016 (19)0.009 (2)0.0021 (19)
C13B0.053 (3)0.044 (3)0.065 (3)0.007 (2)0.019 (2)0.002 (2)
C14B0.070 (4)0.053 (3)0.079 (4)0.019 (3)0.021 (3)0.009 (3)
C15B0.093 (4)0.050 (3)0.059 (3)0.019 (3)0.009 (3)0.010 (3)
C16B0.119 (5)0.060 (3)0.051 (3)0.014 (4)0.026 (3)0.013 (3)
C17B0.097 (4)0.044 (3)0.063 (3)0.013 (3)0.034 (3)0.004 (2)
C1C0.0279 (19)0.038 (2)0.037 (2)0.0038 (17)0.0036 (17)0.0007 (17)
C2C0.029 (2)0.035 (2)0.040 (2)0.0039 (17)0.0040 (17)0.0018 (17)
C3C0.033 (2)0.037 (2)0.032 (2)0.0024 (17)0.0049 (16)0.0031 (17)
C4C0.032 (2)0.041 (2)0.036 (2)0.0002 (17)0.0016 (17)0.0002 (18)
C5C0.030 (2)0.033 (2)0.040 (2)0.0019 (16)0.0035 (17)0.0012 (17)
C6C0.028 (2)0.037 (2)0.043 (2)0.0052 (17)0.0081 (17)0.0042 (18)
C7C0.046 (2)0.042 (2)0.041 (2)0.001 (2)0.011 (2)0.0046 (19)
C8C0.035 (2)0.033 (2)0.038 (2)0.0013 (17)0.0059 (17)0.0033 (17)
C9C0.037 (2)0.040 (2)0.049 (3)0.0077 (19)0.0072 (19)0.0011 (19)
C10C0.048 (3)0.039 (2)0.067 (3)0.003 (2)0.014 (2)0.004 (2)
C11C0.070 (4)0.049 (3)0.084 (4)0.006 (3)0.027 (3)0.012 (3)
C12C0.050 (3)0.056 (3)0.037 (2)0.012 (2)0.006 (2)0.005 (2)
C13C0.075 (4)0.090 (4)0.056 (3)0.000 (3)0.030 (3)0.004 (3)
C14C0.086 (5)0.112 (5)0.059 (4)0.025 (4)0.041 (3)0.009 (4)
C15C0.079 (4)0.088 (5)0.043 (3)0.031 (4)0.005 (3)0.005 (3)
C16C0.084 (4)0.075 (4)0.050 (3)0.009 (3)0.010 (3)0.013 (3)
C17C0.059 (3)0.060 (3)0.044 (3)0.006 (2)0.006 (2)0.008 (2)
C1D0.037 (2)0.032 (2)0.037 (2)0.0037 (17)0.0101 (17)0.0004 (17)
C2D0.034 (2)0.030 (2)0.037 (2)0.0036 (16)0.0073 (17)0.0016 (16)
C3D0.032 (2)0.030 (2)0.041 (2)0.0013 (17)0.0025 (17)0.0007 (17)
C4D0.037 (2)0.038 (2)0.038 (2)0.0034 (18)0.0102 (18)0.0012 (18)
C5D0.043 (2)0.035 (2)0.034 (2)0.0042 (18)0.0080 (18)0.0009 (17)
C6D0.037 (2)0.0263 (19)0.040 (2)0.0029 (17)0.0041 (17)0.0001 (16)
C7D0.043 (3)0.062 (3)0.047 (3)0.008 (2)0.013 (2)0.005 (2)
C8D0.040 (2)0.031 (2)0.037 (2)0.0026 (17)0.0076 (18)0.0062 (17)
C9D0.050 (3)0.039 (2)0.042 (2)0.013 (2)0.011 (2)0.0041 (19)
C1A0.036 (2)0.040 (2)0.034 (2)0.0079 (18)0.0086 (17)0.0046 (17)
C11D0.122 (6)0.089 (5)0.057 (3)0.039 (4)0.034 (4)0.009 (3)
C12D0.037 (2)0.038 (2)0.044 (2)0.0008 (18)0.0114 (18)0.0003 (18)
C13D0.058 (3)0.048 (3)0.160 (7)0.006 (3)0.054 (4)0.025 (4)
C14D0.058 (4)0.076 (4)0.183 (8)0.001 (3)0.061 (5)0.032 (5)
C15D0.041 (3)0.067 (4)0.087 (4)0.006 (3)0.021 (3)0.007 (3)
C16D0.046 (3)0.051 (3)0.113 (5)0.009 (3)0.019 (3)0.008 (3)
C17D0.045 (3)0.039 (3)0.095 (4)0.001 (2)0.021 (3)0.008 (3)
C1S0.095 (16)0.099 (17)0.15 (2)0.026 (13)0.078 (16)0.010 (16)
O2S0.037 (3)0.080 (4)0.094 (5)0.021 (3)0.024 (3)0.001 (3)
C2S0.057 (5)0.054 (5)0.120 (8)0.015 (4)0.035 (5)0.010 (5)
Geometric parameters (Å, º) top
N1—C11.488 (6)C3B—C4B1.393 (6)
N1—C21.495 (6)C4B—C5B1.400 (6)
N1—H1A0.9100C4B—C7B1.507 (6)
N1—H1B0.9100C5B—C6B1.385 (6)
O1—C41.221 (6)C7B—H7B10.9800
C1—H1C0.9800C7B—H7B20.9800
C1—H1D0.9800C7B—H7B30.9800
C1—H1E0.9800C8B—C9B1.528 (6)
C2—C31.476 (8)C8B—C6C1.541 (6)
C2—C41.522 (7)C8B—H8B1.0000
C2—H21.0000C9B—C10B1.525 (7)
C3—H3A0.9800C9B—H9B10.9900
C3—H3B0.9800C9B—H9B20.9900
C3—H3C0.9800C10B—C11B1.531 (8)
C4—C51.473 (8)C10B—H10E0.9900
C5—C101.383 (7)C10B—H10F0.9900
C5—C61.385 (8)C11B—H11L0.9800
C6—C71.369 (9)C11B—H11M0.9800
C6—H60.9500C11B—H11N0.9800
C7—C81.388 (8)C12B—C17B1.385 (7)
C7—H70.9500C12B—C13B1.391 (7)
C8—C91.367 (8)C13B—C14B1.391 (7)
C8—C111.512 (9)C13B—H13B0.9500
C9—C101.365 (8)C14B—C15B1.370 (8)
C9—H90.9500C14B—H14B0.9500
C10—H100.9500C15B—C16B1.370 (9)
C11—H11A0.9800C15B—H15B0.9500
C11—H11B0.9800C16B—C17B1.398 (7)
C11—H11C0.9800C16B—H16B0.9500
P1A—O3A1.462 (3)C17B—H17B0.9500
P1A—O1A1.582 (3)C1C—C6C1.393 (6)
P1A—O2A1.592 (3)C1C—C2C1.396 (6)
P1A—C12A1.774 (4)C1C—H1C10.9500
O1A—C3A1.422 (5)C2C—C3C1.384 (6)
O2A—C5B1.410 (5)C2C—C8C1.529 (6)
P1B—O3B1.465 (3)C3C—C4C1.392 (6)
P1B—O1B1.582 (3)C4C—C5C1.392 (6)
P1B—O2B1.598 (3)C4C—C7C1.506 (6)
P1B—C12B1.771 (5)C5C—C6C1.391 (6)
O1B—C3B1.409 (5)C7C—H7C10.9800
O2B—C5C1.415 (5)C7C—H7C20.9800
P1C—O3C1.465 (3)C7C—H7C30.9800
P1C—O1C1.584 (3)C8C—C6D1.525 (5)
P1C—O2C1.592 (3)C8C—C9C1.528 (6)
P1C—C12C1.779 (5)C8C—H8C1.0000
O1C—C3C1.419 (5)C9C—C10C1.501 (6)
O2C—C5D1.418 (5)C9C—H9C10.9900
P1D—O3D1.463 (3)C9C—H9C20.9900
P1D—O1D1.590 (3)C10C—C11C1.533 (7)
P1D—O2D1.592 (3)C10C—H10H0.9900
P1D—C12D1.781 (4)C10C—H10G0.9900
O1D—C3D1.416 (5)C11C—H11O0.9800
O2D—C5A1.418 (5)C11C—H11P0.9800
C10D—C11D1.515 (7)C11C—H11Q0.9800
C10D—C9D1.534 (6)C12C—C13C1.384 (8)
C10D—H10K0.9900C12C—C17C1.389 (7)
C10D—H10J0.9900C13C—C14C1.413 (9)
C2A—C1A1.393 (6)C13C—H13C0.9500
C2A—C3A1.396 (6)C14C—C15C1.352 (9)
C2A—C8A1.529 (6)C14C—H14C0.9500
C3A—C4A1.375 (6)C15C—C16C1.340 (9)
C4A—C5A1.398 (5)C15C—H15C0.9500
C4A—C7A1.500 (6)C16C—C17C1.389 (7)
C5A—C6A1.394 (5)C16C—H16C0.9500
C6A—C1A1.391 (6)C17C—H17C0.9500
C6A—C8D1.518 (6)C1D—C2D1.395 (5)
C7A—H7A10.9800C1D—C6D1.406 (6)
C7A—H7A20.9800C1D—H1D10.9500
C7A—H7A30.9800C2D—C3D1.392 (6)
C8A—C9E1.524 (6)C2D—C8D1.524 (6)
C8A—C9A1.524 (6)C3D—C4D1.387 (6)
C8A—C6B1.535 (6)C4D—C5D1.391 (6)
C8A—H8A1.0000C4D—C7D1.497 (6)
C9A—C10A1.413 (10)C5D—C6D1.388 (6)
C9A—H9A10.9900C7D—H7D10.9800
C9A—H9A20.9900C7D—H7D20.9800
C10A—C11A1.483 (15)C7D—H7D30.9800
C10A—H10A0.9900C8D—C9D1.545 (6)
C10A—H10B0.9900C8D—H8D1.0000
C11A—H11D0.9800C9D—H9D10.9900
C11A—H11E0.9800C9D—H9D20.9900
C11A—H11F0.9800C1A—H1A10.9500
C9E—C10E1.379 (11)C11D—H11R0.9800
C9E—H9E10.9900C11D—H11S0.9800
C9E—H9E20.9900C11D—H11T0.9800
C10E—C11E1.531 (17)C12D—C17D1.351 (6)
C10E—H10C0.9900C12D—C13D1.387 (7)
C10E—H10D0.9900C13D—C14D1.351 (8)
C11E—H11G0.9800C13D—H13D0.9500
C11E—H11H0.9800C14D—C15D1.367 (9)
C11E—H11I0.9800C14D—H14D0.9500
C12A—C17A1.371 (7)C15D—C16D1.333 (8)
C12A—C13A1.376 (7)C15D—H15D0.9500
C13A—C14A1.386 (8)C16D—C17D1.389 (7)
C13A—H13A0.9500C16D—H16D0.9500
C14A—C15A1.369 (9)C17D—H17D0.9500
C14A—H14A0.9500O1S—C1S1.449 (5)
C15A—C16A1.361 (9)O1S—H1S0.8400
C15A—H15A0.9500C1S—H1S10.9800
C16A—C17A1.387 (7)C1S—H1S20.9800
C16A—H16A0.9500C1S—H1S30.9800
C17A—H17A0.9500O2S—C2S1.425 (5)
C1B—C6B1.391 (6)O2S—H2S0.8400
C1B—C2B1.403 (6)C2S—H2S10.9800
C1B—H1B10.9500C2S—H2S20.9800
C2B—C3B1.387 (6)C2S—H2S30.9800
C2B—C8B1.508 (6)
C1—N1—C2113.1 (4)C4B—C7B—H7B2109.5
C1—N1—H1A109.0H7B1—C7B—H7B2109.5
C2—N1—H1A109.0C4B—C7B—H7B3109.5
C1—N1—H1B109.0H7B1—C7B—H7B3109.5
C2—N1—H1B109.0H7B2—C7B—H7B3109.5
H1A—N1—H1B107.8C2B—C8B—C9B113.9 (4)
N1—C1—H1C109.5C2B—C8B—C6C109.0 (3)
N1—C1—H1D109.5C9B—C8B—C6C112.2 (3)
H1C—C1—H1D109.5C2B—C8B—H8B107.1
N1—C1—H1E109.5C9B—C8B—H8B107.1
H1C—C1—H1E109.5C6C—C8B—H8B107.1
H1D—C1—H1E109.5C10B—C9B—C8B113.9 (4)
C3—C2—N1111.6 (5)C10B—C9B—H9B1108.8
C3—C2—C4111.3 (5)C8B—C9B—H9B1108.8
N1—C2—C4108.6 (4)C10B—C9B—H9B2108.8
C3—C2—H2108.4C8B—C9B—H9B2108.8
N1—C2—H2108.4H9B1—C9B—H9B2107.7
C4—C2—H2108.4C9B—C10B—C11B110.1 (5)
C2—C3—H3A109.5C9B—C10B—H10E109.6
C2—C3—H3B109.5C11B—C10B—H10E109.6
H3A—C3—H3B109.5C9B—C10B—H10F109.6
C2—C3—H3C109.5C11B—C10B—H10F109.6
H3A—C3—H3C109.5H10E—C10B—H10F108.2
H3B—C3—H3C109.5C10B—C11B—H11L109.5
O1—C4—C5122.5 (5)C10B—C11B—H11M109.5
O1—C4—C2117.7 (5)H11L—C11B—H11M109.5
C5—C4—C2119.7 (4)C10B—C11B—H11N109.5
C10—C5—C6117.9 (5)H11L—C11B—H11N109.5
C10—C5—C4119.5 (5)H11M—C11B—H11N109.5
C6—C5—C4122.6 (5)C17B—C12B—C13B119.5 (4)
C7—C6—C5120.1 (5)C17B—C12B—P1B118.3 (4)
C7—C6—H6120.0C13B—C12B—P1B122.2 (4)
C5—C6—H6120.0C12B—C13B—C14B120.1 (5)
C6—C7—C8121.8 (6)C12B—C13B—H13B119.9
C6—C7—H7119.1C14B—C13B—H13B119.9
C8—C7—H7119.1C15B—C14B—C13B119.6 (5)
C9—C8—C7117.4 (6)C15B—C14B—H14B120.2
C9—C8—C11120.3 (5)C13B—C14B—H14B120.2
C7—C8—C11122.3 (6)C16B—C15B—C14B121.3 (5)
C10—C9—C8121.4 (5)C16B—C15B—H15B119.4
C10—C9—H9119.3C14B—C15B—H15B119.4
C8—C9—H9119.3C15B—C16B—C17B119.5 (6)
C9—C10—C5121.3 (6)C15B—C16B—H16B120.2
C9—C10—H10119.4C17B—C16B—H16B120.2
C5—C10—H10119.4C12B—C17B—C16B120.0 (5)
C8—C11—H11A109.5C12B—C17B—H17B120.0
C8—C11—H11B109.5C16B—C17B—H17B120.0
H11A—C11—H11B109.5C6C—C1C—C2C122.0 (4)
C8—C11—H11C109.5C6C—C1C—H1C1119.0
H11A—C11—H11C109.5C2C—C1C—H1C1119.0
H11B—C11—H11C109.5C3C—C2C—C1C117.3 (4)
O3A—P1A—O1A114.32 (17)C3C—C2C—C8C122.3 (4)
O3A—P1A—O2A112.78 (17)C1C—C2C—C8C120.4 (4)
O1A—P1A—O2A105.75 (17)C2C—C3C—C4C123.8 (4)
O3A—P1A—C12A117.9 (2)C2C—C3C—O1C119.3 (4)
O1A—P1A—C12A102.66 (18)C4C—C3C—O1C116.9 (4)
O2A—P1A—C12A101.89 (18)C3C—C4C—C5C116.0 (4)
C3A—O1A—P1A121.3 (2)C3C—C4C—C7C121.9 (4)
C5B—O2A—P1A120.6 (3)C5C—C4C—C7C122.1 (4)
O3B—P1B—O1B113.97 (18)C6C—C5C—C4C123.5 (4)
O3B—P1B—O2B112.80 (17)C6C—C5C—O2B119.1 (4)
O1B—P1B—O2B105.85 (16)C4C—C5C—O2B117.4 (4)
O3B—P1B—C12B117.0 (2)C5C—C6C—C1C117.3 (4)
O1B—P1B—C12B102.63 (19)C5C—C6C—C8B121.9 (4)
O2B—P1B—C12B103.30 (18)C1C—C6C—C8B120.8 (4)
C3B—O1B—P1B121.6 (3)C4C—C7C—H7C1109.5
C5C—O2B—P1B121.3 (2)C4C—C7C—H7C2109.5
O3C—P1C—O1C113.94 (18)H7C1—C7C—H7C2109.5
O3C—P1C—O2C114.15 (18)C4C—C7C—H7C3109.5
O1C—P1C—O2C105.73 (16)H7C1—C7C—H7C3109.5
O3C—P1C—C12C117.3 (2)H7C2—C7C—H7C3109.5
O1C—P1C—C12C103.55 (19)C6D—C8C—C9C114.9 (3)
O2C—P1C—C12C100.50 (19)C6D—C8C—C2C108.1 (3)
C3C—O1C—P1C121.9 (2)C9C—C8C—C2C112.3 (3)
C5D—O2C—P1C122.6 (3)C6D—C8C—H8C107.0
O3D—P1D—O1D114.22 (17)C9C—C8C—H8C107.0
O3D—P1D—O2D113.11 (17)C2C—C8C—H8C107.0
O1D—P1D—O2D105.32 (15)C10C—C9C—C8C114.6 (4)
O3D—P1D—C12D117.0 (2)C10C—C9C—H9C1108.6
O1D—P1D—C12D102.41 (18)C8C—C9C—H9C1108.6
O2D—P1D—C12D103.36 (17)C10C—C9C—H9C2108.6
C3D—O1D—P1D121.0 (2)C8C—C9C—H9C2108.6
C5A—O2D—P1D120.7 (2)H9C1—C9C—H9C2107.6
C11D—C10D—C9D113.0 (4)C9C—C10C—C11C111.9 (4)
C11D—C10D—H10K109.0C9C—C10C—H10H109.2
C9D—C10D—H10K109.0C11C—C10C—H10H109.2
C11D—C10D—H10J109.0C9C—C10C—H10G109.2
C9D—C10D—H10J109.0C11C—C10C—H10G109.2
H10K—C10D—H10J107.8H10H—C10C—H10G107.9
C1A—C2A—C3A116.9 (4)C10C—C11C—H11O109.5
C1A—C2A—C8A121.2 (4)C10C—C11C—H11P109.5
C3A—C2A—C8A121.8 (4)H11O—C11C—H11P109.5
C4A—C3A—C2A124.4 (4)C10C—C11C—H11Q109.5
C4A—C3A—O1A117.3 (3)H11O—C11C—H11Q109.5
C2A—C3A—O1A118.2 (4)H11P—C11C—H11Q109.5
C3A—C4A—C5A115.6 (4)C13C—C12C—C17C119.4 (5)
C3A—C4A—C7A122.4 (4)C13C—C12C—P1C119.6 (4)
C5A—C4A—C7A122.0 (4)C17C—C12C—P1C120.8 (4)
C6A—C5A—C4A123.7 (4)C12C—C13C—C14C118.7 (6)
C6A—C5A—O2D119.2 (3)C12C—C13C—H13C120.7
C4A—C5A—O2D117.0 (3)C14C—C13C—H13C120.7
C1A—C6A—C5A117.1 (4)C15C—C14C—C13C120.4 (6)
C1A—C6A—C8D121.6 (4)C15C—C14C—H14C119.8
C5A—C6A—C8D121.3 (4)C13C—C14C—H14C119.8
C4A—C7A—H7A1109.5C16C—C15C—C14C121.0 (6)
C4A—C7A—H7A2109.5C16C—C15C—H15C119.5
H7A1—C7A—H7A2109.5C14C—C15C—H15C119.5
C4A—C7A—H7A3109.5C15C—C16C—C17C120.6 (6)
H7A1—C7A—H7A3109.5C15C—C16C—H16C119.7
H7A2—C7A—H7A3109.5C17C—C16C—H16C119.7
C9E—C8A—C2A113.2 (4)C12C—C17C—C16C119.8 (6)
C9A—C8A—C2A113.2 (4)C12C—C17C—H17C120.1
C9E—C8A—C6B113.1 (4)C16C—C17C—H17C120.1
C9A—C8A—C6B113.1 (4)C2D—C1D—C6D121.2 (4)
C2A—C8A—C6B108.0 (3)C2D—C1D—H1D1119.4
C9E—C8A—H8A107.4C6D—C1D—H1D1119.4
C2A—C8A—H8A107.4C3D—C2D—C1D117.9 (4)
C6B—C8A—H8A107.4C3D—C2D—C8D120.1 (4)
C10A—C9A—C8A121.6 (6)C1D—C2D—C8D122.0 (4)
C10A—C9A—H9A1106.9C4D—C3D—C2D123.8 (4)
C8A—C9A—H9A1106.9C4D—C3D—O1D116.6 (4)
C10A—C9A—H9A2106.9C2D—C3D—O1D119.5 (3)
C8A—C9A—H9A2106.9C3D—C4D—C5D115.5 (4)
H9A1—C9A—H9A2106.7C3D—C4D—C7D122.6 (4)
C9A—C10A—C11A116.4 (9)C5D—C4D—C7D121.9 (4)
C9A—C10A—H10A108.2C6D—C5D—C4D124.5 (4)
C11A—C10A—H10A108.2C6D—C5D—O2C118.2 (4)
C9A—C10A—H10B108.2C4D—C5D—O2C117.3 (4)
C11A—C10A—H10B108.2C5D—C6D—C1D117.1 (4)
H10A—C10A—H10B107.3C5D—C6D—C8C120.8 (4)
C10A—C11A—H11D109.5C1D—C6D—C8C122.1 (4)
C10A—C11A—H11E109.5C4D—C7D—H7D1109.5
H11D—C11A—H11E109.5C4D—C7D—H7D2109.5
C10A—C11A—H11F109.5H7D1—C7D—H7D2109.5
H11D—C11A—H11F109.5C4D—C7D—H7D3109.5
H11E—C11A—H11F109.5H7D1—C7D—H7D3109.5
C10E—C9E—C8A114.8 (6)H7D2—C7D—H7D3109.5
C10E—C9E—H9E1108.6C6A—C8D—C2D109.1 (3)
C8A—C9E—H9E1108.6C6A—C8D—C9D114.1 (4)
C10E—C9E—H9E2108.6C2D—C8D—C9D113.1 (3)
C8A—C9E—H9E2108.6C6A—C8D—H8D106.7
H9E1—C9E—H9E2107.5C2D—C8D—H8D106.7
C9E—C10E—C11E110.3 (9)C9D—C8D—H8D106.7
C9E—C10E—H10C109.6C10D—C9D—C8D112.4 (4)
C11E—C10E—H10C109.6C10D—C9D—H9D1109.1
C9E—C10E—H10D109.6C8D—C9D—H9D1109.1
C11E—C10E—H10D109.6C10D—C9D—H9D2109.1
H10C—C10E—H10D108.1C8D—C9D—H9D2109.1
C10E—C11E—H11G109.5H9D1—C9D—H9D2107.9
C10E—C11E—H11H109.5C6A—C1A—C2A122.2 (4)
H11G—C11E—H11H109.5C6A—C1A—H1A1118.9
C10E—C11E—H11I109.5C2A—C1A—H1A1118.9
H11G—C11E—H11I109.5C10D—C11D—H11R109.5
H11H—C11E—H11I109.5C10D—C11D—H11S109.5
C17A—C12A—C13A119.6 (4)H11R—C11D—H11S109.5
C17A—C12A—P1A121.1 (4)C10D—C11D—H11T109.5
C13A—C12A—P1A119.2 (4)H11R—C11D—H11T109.5
C12A—C13A—C14A120.2 (5)H11S—C11D—H11T109.5
C12A—C13A—H13A119.9C17D—C12D—C13D117.8 (4)
C14A—C13A—H13A119.9C17D—C12D—P1D123.8 (4)
C15A—C14A—C13A119.7 (6)C13D—C12D—P1D118.3 (4)
C15A—C14A—H14A120.1C14D—C13D—C12D120.1 (5)
C13A—C14A—H14A120.1C14D—C13D—H13D119.9
C16A—C15A—C14A120.2 (5)C12D—C13D—H13D119.9
C16A—C15A—H15A119.9C13D—C14D—C15D121.6 (6)
C14A—C15A—H15A119.9C13D—C14D—H14D119.2
C15A—C16A—C17A120.3 (6)C15D—C14D—H14D119.2
C15A—C16A—H16A119.9C16D—C15D—C14D118.6 (5)
C17A—C16A—H16A119.9C16D—C15D—H15D120.7
C12A—C17A—C16A120.0 (5)C14D—C15D—H15D120.7
C12A—C17A—H17A120.0C15D—C16D—C17D120.6 (5)
C16A—C17A—H17A120.0C15D—C16D—H16D119.7
C6B—C1B—C2B121.9 (4)C17D—C16D—H16D119.7
C6B—C1B—H1B1119.0C12D—C17D—C16D121.0 (5)
C2B—C1B—H1B1119.0C12D—C17D—H17D119.5
C3B—C2B—C1B117.2 (4)C16D—C17D—H17D119.5
C3B—C2B—C8B120.9 (4)C1S—O1S—H1S109.5
C1B—C2B—C8B121.9 (4)O1S—C1S—H1S1109.5
C2B—C3B—C4B124.1 (4)O1S—C1S—H1S2109.5
C2B—C3B—O1B119.0 (4)H1S1—C1S—H1S2109.5
C4B—C3B—O1B116.9 (4)O1S—C1S—H1S3109.5
C3B—C4B—C5B115.4 (4)H1S1—C1S—H1S3109.5
C3B—C4B—C7B121.8 (4)H1S2—C1S—H1S3109.5
C5B—C4B—C7B122.8 (4)C2S—O2S—H2S109.5
C6B—C5B—C4B124.0 (4)O2S—C2S—H2S1109.5
C6B—C5B—O2A119.2 (4)O2S—C2S—H2S2109.5
C4B—C5B—O2A116.8 (4)H2S1—C2S—H2S2109.5
C5B—C6B—C1B117.4 (4)O2S—C2S—H2S3109.5
C5B—C6B—C8A120.5 (4)H2S1—C2S—H2S3109.5
C1B—C6B—C8A122.1 (4)H2S2—C2S—H2S3109.5
C4B—C7B—H7B1109.5
C1—N1—C2—C367.3 (6)C2B—C8B—C9B—C10B56.6 (5)
C1—N1—C2—C4169.7 (4)C6C—C8B—C9B—C10B178.9 (4)
C3—C2—C4—O186.1 (7)C8B—C9B—C10B—C11B176.7 (5)
N1—C2—C4—O137.1 (7)O3B—P1B—C12B—C17B38.1 (5)
C3—C2—C4—C593.1 (6)O1B—P1B—C12B—C17B163.7 (4)
N1—C2—C4—C5143.7 (5)O2B—P1B—C12B—C17B86.4 (4)
O1—C4—C5—C100.2 (8)O3B—P1B—C12B—C13B139.4 (4)
C2—C4—C5—C10179.0 (5)O1B—P1B—C12B—C13B13.9 (4)
O1—C4—C5—C6179.6 (6)O2B—P1B—C12B—C13B96.0 (4)
C2—C4—C5—C61.2 (8)C17B—C12B—C13B—C14B1.3 (7)
C10—C5—C6—C72.1 (9)P1B—C12B—C13B—C14B178.8 (4)
C4—C5—C6—C7177.6 (6)C12B—C13B—C14B—C15B0.7 (8)
C5—C6—C7—C81.1 (11)C13B—C14B—C15B—C16B0.4 (9)
C6—C7—C8—C93.6 (11)C14B—C15B—C16B—C17B0.9 (10)
C6—C7—C8—C11174.1 (7)C13B—C12B—C17B—C16B0.8 (8)
C7—C8—C9—C102.9 (10)P1B—C12B—C17B—C16B178.4 (5)
C11—C8—C9—C10174.8 (7)C15B—C16B—C17B—C12B0.3 (9)
C8—C9—C10—C50.2 (11)C6C—C1C—C2C—C3C1.8 (6)
C6—C5—C10—C92.8 (9)C6C—C1C—C2C—C8C179.4 (3)
C4—C5—C10—C9176.9 (6)C1C—C2C—C3C—C4C0.7 (6)
O3A—P1A—O1A—C3A38.7 (3)C8C—C2C—C3C—C4C178.0 (4)
O2A—P1A—O1A—C3A86.0 (3)C1C—C2C—C3C—O1C176.2 (3)
C12A—P1A—O1A—C3A167.6 (3)C8C—C2C—C3C—O1C5.1 (5)
O3A—P1A—O2A—C5B38.9 (4)P1C—O1C—C3C—C2C83.3 (4)
O1A—P1A—O2A—C5B86.8 (3)P1C—O1C—C3C—C4C99.6 (4)
C12A—P1A—O2A—C5B166.3 (3)C2C—C3C—C4C—C5C2.4 (6)
O3B—P1B—O1B—C3B36.1 (4)O1C—C3C—C4C—C5C174.6 (3)
O2B—P1B—O1B—C3B88.4 (3)C2C—C3C—C4C—C7C179.0 (4)
C12B—P1B—O1B—C3B163.6 (3)O1C—C3C—C4C—C7C4.0 (6)
O3B—P1B—O2B—C5C38.8 (4)C3C—C4C—C5C—C6C1.7 (6)
O1B—P1B—O2B—C5C86.5 (3)C7C—C4C—C5C—C6C179.7 (4)
C12B—P1B—O2B—C5C166.0 (3)C3C—C4C—C5C—O2B176.8 (3)
O3C—P1C—O1C—C3C44.2 (4)C7C—C4C—C5C—O2B1.8 (6)
O2C—P1C—O1C—C3C82.0 (3)P1B—O2B—C5C—C6C80.1 (4)
C12C—P1C—O1C—C3C172.8 (3)P1B—O2B—C5C—C4C101.3 (4)
O3C—P1C—O2C—C5D41.0 (4)C4C—C5C—C6C—C1C0.7 (6)
O1C—P1C—O2C—C5D85.0 (3)O2B—C5C—C6C—C1C179.1 (3)
C12C—P1C—O2C—C5D167.5 (3)C4C—C5C—C6C—C8B180.0 (4)
O3D—P1D—O1D—C3D36.7 (3)O2B—C5C—C6C—C8B1.5 (5)
O2D—P1D—O1D—C3D88.0 (3)C2C—C1C—C6C—C5C2.5 (6)
C12D—P1D—O1D—C3D164.2 (3)C2C—C1C—C6C—C8B178.2 (3)
O3D—P1D—O2D—C5A38.3 (3)C2B—C8B—C6C—C5C89.6 (5)
O1D—P1D—O2D—C5A87.1 (3)C9B—C8B—C6C—C5C143.3 (4)
C12D—P1D—O2D—C5A165.8 (3)C2B—C8B—C6C—C1C89.7 (4)
C1A—C2A—C3A—C4A0.2 (6)C9B—C8B—C6C—C1C37.4 (5)
C8A—C2A—C3A—C4A178.6 (4)C3C—C2C—C8C—C6D88.4 (4)
C1A—C2A—C3A—O1A176.6 (3)C1C—C2C—C8C—C6D90.4 (4)
C8A—C2A—C3A—O1A4.6 (6)C3C—C2C—C8C—C9C143.8 (4)
P1A—O1A—C3A—C4A99.2 (4)C1C—C2C—C8C—C9C37.5 (5)
P1A—O1A—C3A—C2A83.8 (4)C6D—C8C—C9C—C10C62.4 (5)
C2A—C3A—C4A—C5A1.7 (6)C2C—C8C—C9C—C10C173.4 (4)
O1A—C3A—C4A—C5A175.1 (3)C8C—C9C—C10C—C11C176.4 (4)
C2A—C3A—C4A—C7A179.5 (4)O3C—P1C—C12C—C13C8.6 (5)
O1A—C3A—C4A—C7A3.7 (6)O1C—P1C—C12C—C13C135.1 (4)
C3A—C4A—C5A—C6A1.2 (6)O2C—P1C—C12C—C13C115.7 (4)
C7A—C4A—C5A—C6A180.0 (4)O3C—P1C—C12C—C17C177.2 (4)
C3A—C4A—C5A—O2D177.1 (3)O1C—P1C—C12C—C17C50.8 (4)
C7A—C4A—C5A—O2D1.7 (5)O2C—P1C—C12C—C17C58.4 (4)
P1D—O2D—C5A—C6A81.8 (4)C17C—C12C—C13C—C14C0.2 (8)
P1D—O2D—C5A—C4A99.8 (4)P1C—C12C—C13C—C14C174.0 (4)
C4A—C5A—C6A—C1A0.7 (6)C12C—C13C—C14C—C15C0.2 (9)
O2D—C5A—C6A—C1A179.0 (3)C13C—C14C—C15C—C16C0.2 (10)
C4A—C5A—C6A—C8D179.9 (3)C14C—C15C—C16C—C17C0.6 (9)
O2D—C5A—C6A—C8D1.9 (5)C13C—C12C—C17C—C16C0.2 (7)
C1A—C2A—C8A—C9E35.4 (5)P1C—C12C—C17C—C16C174.3 (4)
C3A—C2A—C8A—C9E145.8 (4)C15C—C16C—C17C—C12C0.6 (8)
C1A—C2A—C8A—C9A35.4 (5)C6D—C1D—C2D—C3D1.0 (6)
C3A—C2A—C8A—C9A145.8 (4)C6D—C1D—C2D—C8D179.1 (4)
C1A—C2A—C8A—C6B90.7 (4)C1D—C2D—C3D—C4D1.1 (6)
C3A—C2A—C8A—C6B88.1 (4)C8D—C2D—C3D—C4D179.2 (4)
C2A—C8A—C9A—C10A172.8 (6)C1D—C2D—C3D—O1D178.0 (3)
C6B—C8A—C9A—C10A63.9 (7)C8D—C2D—C3D—O1D3.9 (6)
C8A—C9A—C10A—C11A175.6 (8)P1D—O1D—C3D—C4D99.1 (4)
C2A—C8A—C9E—C10E70.3 (7)P1D—O1D—C3D—C2D83.9 (4)
C6B—C8A—C9E—C10E166.4 (6)C2D—C3D—C4D—C5D0.2 (6)
C8A—C9E—C10E—C11E171.0 (8)O1D—C3D—C4D—C5D177.2 (3)
O3A—P1A—C12A—C17A155.6 (4)C2D—C3D—C4D—C7D177.7 (4)
O1A—P1A—C12A—C17A29.0 (5)O1D—C3D—C4D—C7D0.7 (6)
O2A—P1A—C12A—C17A80.4 (5)C3D—C4D—C5D—C6D0.9 (6)
O3A—P1A—C12A—C13A28.1 (5)C7D—C4D—C5D—C6D178.8 (4)
O1A—P1A—C12A—C13A154.7 (4)C3D—C4D—C5D—O2C175.3 (3)
O2A—P1A—C12A—C13A95.9 (5)C7D—C4D—C5D—O2C2.6 (6)
C17A—C12A—C13A—C14A2.4 (9)P1C—O2C—C5D—C6D87.6 (4)
P1A—C12A—C13A—C14A173.9 (5)P1C—O2C—C5D—C4D96.0 (4)
C12A—C13A—C14A—C15A4.8 (11)C4D—C5D—C6D—C1D1.0 (6)
C13A—C14A—C15A—C16A4.6 (11)O2C—C5D—C6D—C1D175.2 (3)
C14A—C15A—C16A—C17A2.0 (11)C4D—C5D—C6D—C8C176.3 (4)
C13A—C12A—C17A—C16A0.2 (9)O2C—C5D—C6D—C8C7.5 (6)
P1A—C12A—C17A—C16A176.5 (5)C2D—C1D—C6D—C5D0.0 (6)
C15A—C16A—C17A—C12A0.4 (11)C2D—C1D—C6D—C8C177.3 (4)
C6B—C1B—C2B—C3B1.7 (6)C9C—C8C—C6D—C5D148.0 (4)
C6B—C1B—C2B—C8B179.2 (4)C2C—C8C—C6D—C5D85.7 (5)
C1B—C2B—C3B—C4B1.9 (6)C9C—C8C—C6D—C1D34.8 (5)
C8B—C2B—C3B—C4B179.0 (4)C2C—C8C—C6D—C1D91.5 (4)
C1B—C2B—C3B—O1B179.7 (3)C1A—C6A—C8D—C2D88.8 (4)
C8B—C2B—C3B—O1B1.2 (6)C5A—C6A—C8D—C2D90.4 (4)
P1B—O1B—C3B—C2B82.8 (4)C1A—C6A—C8D—C9D38.9 (5)
P1B—O1B—C3B—C4B99.3 (4)C5A—C6A—C8D—C9D142.0 (4)
C2B—C3B—C4B—C5B1.1 (6)C3D—C2D—C8D—C6A88.4 (4)
O1B—C3B—C4B—C5B178.9 (4)C1D—C2D—C8D—C6A89.6 (4)
C2B—C3B—C4B—C7B178.7 (4)C3D—C2D—C8D—C9D143.4 (4)
O1B—C3B—C4B—C7B0.9 (6)C1D—C2D—C8D—C9D38.6 (5)
C3B—C4B—C5B—C6B0.1 (6)C11D—C10D—C9D—C8D169.4 (5)
C7B—C4B—C5B—C6B179.9 (4)C6A—C8D—C9D—C10D57.6 (5)
C3B—C4B—C5B—O2A177.8 (3)C2D—C8D—C9D—C10D176.8 (4)
C7B—C4B—C5B—O2A2.0 (6)C5A—C6A—C1A—C2A2.4 (6)
P1A—O2A—C5B—C6B85.2 (4)C8D—C6A—C1A—C2A178.4 (4)
P1A—O2A—C5B—C4B96.8 (4)C3A—C2A—C1A—C6A2.0 (6)
C4B—C5B—C6B—C1B0.3 (6)C8A—C2A—C1A—C6A179.2 (4)
O2A—C5B—C6B—C1B177.5 (3)O3D—P1D—C12D—C17D151.1 (4)
C4B—C5B—C6B—C8A177.5 (4)O1D—P1D—C12D—C17D25.4 (5)
O2A—C5B—C6B—C8A4.7 (6)O2D—P1D—C12D—C17D83.9 (5)
C2B—C1B—C6B—C5B0.6 (6)O3D—P1D—C12D—C13D25.5 (5)
C2B—C1B—C6B—C8A178.4 (4)O1D—P1D—C12D—C13D151.2 (5)
C9E—C8A—C6B—C5B145.5 (4)O2D—P1D—C12D—C13D99.5 (5)
C9A—C8A—C6B—C5B145.5 (4)C17D—C12D—C13D—C14D0.5 (10)
C2A—C8A—C6B—C5B88.4 (5)P1D—C12D—C13D—C14D177.3 (6)
C9E—C8A—C6B—C1B36.9 (6)C12D—C13D—C14D—C15D4.0 (13)
C9A—C8A—C6B—C1B36.9 (6)C13D—C14D—C15D—C16D4.8 (12)
C2A—C8A—C6B—C1B89.2 (5)C14D—C15D—C16D—C17D1.2 (10)
C3B—C2B—C8B—C9B144.5 (4)C13D—C12D—C17D—C16D4.0 (9)
C1B—C2B—C8B—C9B36.4 (5)P1D—C12D—C17D—C16D179.4 (5)
C3B—C2B—C8B—C6C89.4 (5)C15D—C16D—C17D—C12D3.3 (10)
C1B—C2B—C8B—C6C89.7 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the rings C1B–C6B and C1D–C6D, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3A0.911.912.773 (5)157
N1—H1B···O3B0.911.992.841 (5)155
C2—H2···O3D1.002.253.140 (6)148
C3—H3A···O3C0.982.493.351 (7)147
C3—H3B···O1S0.982.553.51 (2)164
O2S—H2S···Cl10.842.283.105 (5)169
C1A—H1A1···Cl10.952.913.847 (4)170
C1B—H1B1···Cl10.952.933.870 (5)170
C1C—H1C1···Cl10.952.953.888 (5)170
C1D—H1D1···Cl10.952.853.782 (5)168
C9A—H9A1···Cl10.992.763.738 (5)172
C9B—H9B2···Cl10.992.883.870 (4)175
C9C—H9C1···Cl10.992.713.701 (5)175
C9D—H9D1···Cl10.992.853.838 (5)178
C1—H1D···Cg10.982.833.672 (7)145
C17Di—H17Di···O10.952.563.204 (6)125
C10—H10···O1Di0.952.693.555 (4)152
C9—H9···Cg2i0.952.693.594 (5)159
C14B—H14B···Cl1ii0.952.893.697 (6)143
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+3/2.
 

Acknowledgements

The Centro Inter­facoltà di Misure `G. Casnati' and the `Laboratorio di Strutturistica Mario Nardelli' of the University of Parma are kindly acknowledged for the use of NMR and Maldi-MS facilities and of the diffractometer. Permission to use small qu­anti­ties of illicit drugs has been granted in the framework of the FP7 Dirac project by the Italian Ministero della Salute.

Funding information

Funding for this research was provided by: European Union through the DIRAC project (award No. FP7-SEC-2009-242309); Regione Lombardia-INSTM, SNAF project .

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBiavardi, E., Battistini, G., Montalti, M., Yebeutchou, R. M., Prodi, L. & Dalcanale, E. (2008). Chem. Commun. pp. 1638.  Google Scholar
First citationBiavardi, E., Federici, S., Tudisco, C., Menozzi, D., Massera, C., Sottini, A., Condorelli, G. G., Bergese, P. & Dalcanale, E. (2014). Angew. Chem. Int. Ed. 53, 9183–9188.  CrossRef CAS Google Scholar
First citationBiavardi, E., Ugozzoli, F. & Massera, C. (2015). Chem. Commun. 51, 3426–3429.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, A. de, Lendoiro, E., Fernández-Vega, H., Steinmeyer, S., López-Rivadulla, M. & Cruz, A. (2014). J. Chromatogr. A, 1374, 93–101.  Google Scholar
First citationClément, P., Korom, S., Struzzi, C., Parra, E. J., Bittencourt, C., Ballester, P. & Llobet, E. (2015). Adv. Funct. Mater. 25, 4011–4020.  Google Scholar
First citationConcheiro, M., Anizan, S., Ellefsen, K. & Huestis, M. A. (2013). Anal. Bioanal. Chem. 405, 9437–9448.  CrossRef CAS Google Scholar
First citationCram, D. J. (1983). Science, 219, 1177–1183.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCram, D. J. & Cram, J. M. (1994). Container Molecules and their Guests, Monographs in Supramolecular Chemistry, vol. 4, edited by J. F. Stoddart. Royal Society of Chemistry, Cambridge.  Google Scholar
First citationDougherty, D. A. (2013). Acc. Chem. Res. 46, 885–893.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDutasta, J.-P. (2004). Top. Curr. Chem. 232, 55–91.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFontanals, N., Marcé, R. M. & Borrull, F. (2017). J. Chromatogr. A, 1524, 66–73.  CrossRef CAS Google Scholar
First citationFrison, G., Gregio, M., Zamengo, L., Zancanaro, F., Frasson, S. & Sciarrone, R. (2011). Rapid Commun. Mass Spectrom. 25, 387–390.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKanu, A. B., Brandt, S. D., Williams, M. D., Zhang, N. & Hill, H. H. (2013). Anal. Chem. 85, 8535–8542.  CrossRef CAS Google Scholar
First citationKolmonen, M., Leinonen, A., Kuuranne, T., Pelander, A. & Ojanperä, I. (2009). Drug Test. Anal. 1, 250–266.  CrossRef CAS Google Scholar
First citationLendoiro, E., Jiménez-Morigosa, C., Cruz, A., Páramo, M., López-Rivadulla, M. & de Castro, A. (2017). Drug Test. Anal. 9, 96–105.  CrossRef CAS Google Scholar
First citationLua, I. A., Lin, S.-L., Lin, H. R. & Lua, A. C. (2012). J. Anal. Toxicol. 36, 575–581.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMayer, M., Benko, A., Huszár, A., Sipos, K., Lajtai, A., Lakatos, A. & Porpáczy, Z. (2013). J. Chromatogr. Sci. 51, 851–856.  CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMelegari, M., Massera, C., Pinalli, R., Yebeutchou, R. M. & Dalcanale, E. (2013). Sens. Actuators B, 179, 74–80.  CrossRef CAS Google Scholar
First citationMercieca, G., Odoardi, S., Cassar, M. & Strano Rossi, S. (2018). J. Pharm. Biomed. Anal. 149, 494–501.  CrossRef CAS Google Scholar
First citationMercolini, L., Protti, M., Catapano, M. C., Rudge, J. & Sberna, A. E. (2016). J. Pharm. Biomed. Anal. 123, 186–194.  CrossRef CAS Google Scholar
First citationMorris, K. (2010). Lancet, 375, 1333–1334.  CrossRef Google Scholar
First citationMwenesongole, E. M., Gautam, L., Hall, S. W., Waterhouse, J. W. & Cole, M. D. (2013). Anal. Methods 5, 3248–3254.  CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPedersen, A. J., Dalsgaard, P. W., Rode, A. J., Rasmussen, B. S., Müller, I. B., Johansen, S. S. & Linnet, K. (2013). J. Sep. Sci. 36, 2081–2089.  CrossRef CAS Google Scholar
First citationPerera, R. W. H., Abraham, I., Gupta, S., Kowalska, P., Lightsey, D., Marathaki, C., Singh, N. S. & Lough, W. J. (2012). J. Chromatogr. A, 1269, 189–197.  CrossRef CAS Google Scholar
First citationPinalli, R., Dalcanale, E., Ugozzoli, F. & Massera, C. (2016). CrystEngComm, 18, 5788–5802.  CrossRef CAS Google Scholar
First citationPinalli, R., Pedrini, A. & Dalcanale, E. (2018). Chem. Eur. J. 24, 1010–1019.  CrossRef CAS Google Scholar
First citationPinalli, R., Suman, M. & Dalcanale, E. (2004). Eur. J. Org. Chem. pp. 451–462.  CrossRef Google Scholar
First citationPower, J. D., McDermott, S. D., Talbot, B., O'Brien, J. E. & Kavanagh, P. (2012). Rapid Commun. Mass Spectrom. 26, 2601–2611.  CrossRef CAS Google Scholar
First citationRobin, T., Barnes, A., Dulaurent, S., Loftus, N., Baumgarten, S., Moreau, S., Marquet, P., El Balkhi, S. & Saint-Marcoux, F. (2018). Anal. Bioanal. Chem. 410, 5071–5083.  CrossRef CAS Google Scholar
First citationSalomone, A., Gazzilli, G., Di Corcia, D., Gerace, E. & Vincenti, M. (2016). Anal. Bioanal. Chem. 408, 2035–2042.  CrossRef CAS Google Scholar
First citationSantali, E. Y., Cadogan, A.-K., Daeid, N. N., Savage, K. A. & Sutcliffe, O. B. (2011). J. Pharm. Biomed. Anal. 56, 246–255.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N., Day, P., Katta, V. R., Mohammed, G. P. & Lough, W. J. (2010). J. Pharm. Pharmacol. 62, 1209–1210.  CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationStrano-Rossi, S., Anzillotti, L., Castrignanò, E., Romolo, F. S. & Chiarotti, M. (2012). J. Chromatogr. A, 1258, 37–42.  CAS Google Scholar
First citationStrano-Rossi, S., Odoardi, S., Fisichella, M., Anzillotti, L., Gottardo, R. & Tagliaro, F. (2014). J. Chromatogr. A, 1372, 145–156.  CAS Google Scholar
First citationTrzciński, J. W., Pinalli, R., Riboni, N., Pedrini, A., Bianchi, F., Zampolli, S., Elmi, I., Massera, C., Ugozzoli, F. & Dalcanale, E. (2017). ACS Sens. 2, 590–598.  Google Scholar
First citationTudisco, C., Fragalà, M. E., Giuffrida, A. E., Bertani, F., Pinalli, R., Dalcanale, E., Compagnini, G. & Condorelli, G. G. (2016). J. Phys. Chem. C, 120, 12611–12617.  CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationVachon, J., Harthong, S., Jeanneau, E., Aronica, C., Vanthuyne, N., Roussel, C. & Dutasta, J.-P. (2011). Org. Biomol. Chem. 9, 5086–5091.  CrossRef CAS Google Scholar
First citationVircks, K. E. & Mulligan, C. C. (2012). Rapid Commun. Mass Spectrom. 26, 2665–2672.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinstock, A. R., Marsden, J. & Mitcheson, L. (2010). BMJ, 340, c1605.  Google Scholar
First citationWood, D. M., Davies, S., Puchnarewicz, M., Button, J., Archer, R., Ovaska, H., Ramsey, J., Lee, T., Holt, D. W. & Dargan, P. I. (2010). J. Med. Toxicol. 6, 327–330.  CrossRef Google Scholar
First citationWu, Y. L., Tancini, F., Schweizer, B. W., Paunescu, D., Boudon, C., Gisselbrecht, J.-P., Jarowski, P. D., Dalcanale, E. & Diederich, F. (2012). Chem. Asian J. 7, 1185–1190.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds