metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­azido­(1,8-di­benzyl-1,3,6,8,10,13-hexa­aza­cyclo­tetra­deca­ne)nickel(II)

aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and bDepartment of Chemistry Education, Kyungpook National University, Daegu 702-701, Republic of Korea
*Correspondence e-mail: minks@knu.ac.kr

(Received 7 June 2008; accepted 16 June 2008; online 19 June 2008)

In the centrosymmetric title compound, [Ni(N3)2(C22H34N6)], the NiII ion is coordinated by the four secondary N atoms of the macrocyclic ligand in a square-planar fashion with two N atoms of the azide ions in axial positions, resulting in a tetra­gonally distorted octa­hedron. An N—H⋯N hydrogen-bonding inter­action between the secondary amine N atom of the macrocycle and an adjacent azide ion gives rise to a chain structure.

Related literature

For related literature, see: Hancock (1990[Hancock, R. D. (1990). Acc. Chem. Res. 23, 253-257.]); Jacquinot & Hauser (2003[Jacquinot, P. & Hauser, P. C. (2003). Electroanalysis, 15, 1437-1444.]); Jung et al. (1989[Jung, S.-K., Kang, S.-G. & Suh, M. P. (1989). Bull. Korean Chem. Soc. 10, 362-366.]); Larionova et al. (2003[Larionova, J., Clérac, R., Donnadieu, B., Willemin, S. & Guérin, C. (2003). Cryst. Growth Des. 3, 267-272.]); Min & Suh (2001[Min, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303-313.]); Liu et al. (2006[Liu, X.-T., Wang, X.-Y., Zhang, W.-X., Cui, P. & Gao, S. (2006). Adv. Mater. 18, 2852-2856.]); Tsuge et al. (2004[Tsuge, K., DeRosa, F., Lim, M. D. & Ford, P. C. (2004). J. Am. Chem. Soc. 126, 6564-6565.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(N3)2(C22H34N6)]

  • Mr = 525.32

  • Monoclinic, P 21 /c

  • a = 10.2150 (5) Å

  • b = 15.8337 (9) Å

  • c = 7.5477 (4) Å

  • β = 92.817 (1)°

  • V = 1219.30 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 173 (2) K

  • 0.50 × 0.20 × 0.20 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.733, Tmax = 0.847

  • 7464 measured reflections

  • 2820 independent reflections

  • 2456 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.092

  • S = 1.19

  • 2820 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N6i 0.93 2.24 3.145 (3) 163
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coordination compounds with tetraaza macrocyclic ligands have been widely studied in the context of metalloenzymes and the construction of extended coordination polymers (Tsuge et al., 2004; Larionova et al., 2003). Especially, NiII macrocyclic complexes having vacant sites axially are good candidates for assembling novel multi-dimensional networks and catalysts for the reduction of carbon dioxide in which they can have unique properties (Min & Suh, 2001; Jacquinot et al., 2003). Furthermore, the azide ion is a bifunctional ligand which can link to transition metal complexes, thus allowing for the assembly of polymeric compounds (Liu et al., 2006). Therefore, complexes combined with azide ions can also be building blocks for extended network structured materials. Here, we report the synthesis and structure of NiII macrocyclic complex, trans-diazido(1,8-dibenzyl-1,3,6,8,10,13- hexaazacyclotetradecane)nickel(II), with two azide ions axially.

In the title compound, the coordination geometry around NiII ion is tetragonally elongated octahedron in which NiII ion is bonded to the four secondary amine N atoms of the macrocyclic ligand in the square-planar fashion and two N atoms from the azide ions at the axial sites as shown in Fig. 1. The average Ni—Neq and Ni—Nax bond distances are 2.072 (1) and 2.159 (1) Å, respectively. The axial Ni—N bond distance is longer than the equatorial Ni—N bond lengths, which can be attributed to the Jahn-Teller distortion of the NiII ion and/or the ring contraction of the macrocyclic ligand. Two N—N bond distances of the azide ion are not significant different even though one terminal nitrogen atom is coordinated to NiII ion, indicate that the azide ion is delocalized fully (N4—N5 = 1.189 (3) Å and N5—N6 = 1.171 (3) Å). The complex has an inversion center at the nickel atom and the azamacrocyclic ligand adopts thermodynamically the most stable R,R,S,S configuration (Hancock, 1990). All azide ions coordinating NiII ions axially are involved in hydrogen bonding interactions, which results to a rigid supramolecular one-dimensional chain propagating along the c axis (Fig. 2).

Related literature top

For related literature, see: Hancock (1990); Jacquinot & Hauser (2003); Jung et al. (1989); Larionova et al. (2003); Min & Suh (2001); Liu et al. (2006); Tsuge et al. (2004).

Experimental top

The title compound is prepared as follows. To a DMF/H2O (v/v; 1:1, 20 ml) solution of [Ni(C22H34N6)Cl2] (0.20 g, 0.40 mmol) (Jung et al., 1989) was added dropwise an aqueous solution (10 ml) containing NaN3 (0.052 g, 0.80 mmol) at room temperature. The color of the solution turned from yellow to pale pink. The mixture solution was stirred for 1 h during which time a pink precipitate of formed which was collected by filtration, washed with methanol, and dried in air. Single crystals of the title compound suitable for X-ray crystallography were obtained by layering of the aqueous solution of NaN3 on the DMF/H2O solution of [Ni(C22H34N6)Cl2] for several days.

Refinement top

All H atoms in the title compound were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99 (open chain H atoms) Å and N—H distance of 0.93 Å, and with Uiso(H) values of 1.2 times the equivalent anisotropic displacement parameters of the parent C and N atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Drawing of the molecular title compound at 50% probability. Atoms labeled with the suffix `a' are at the symmetry position (-x+1, -y+2, -z).
[Figure 2] Fig. 2. Perspective view of the title compound showing a one-dimensional chain formed by N—H···N hydrogen-bonding interactions.
trans-Diazido(1,8-dibenzyl-1,3,6,8,10,13-hexaazacyclotetradecane)nickel(II) top
Crystal data top
[Ni(N3)2(C22H34N6)]F(000) = 556
Mr = 525.32Dx = 1.431 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2820 reflections
a = 10.2150 (5) Åθ = 2.0–28.3°
b = 15.8337 (9) ŵ = 0.83 mm1
c = 7.5477 (4) ÅT = 173 K
β = 92.817 (1)°Block, violet
V = 1219.30 (11) Å30.50 × 0.20 × 0.20 mm
Z = 2
Data collection top
Siemens SMART CCD
diffractometer
2820 independent reflections
Radiation source: fine-focus sealed tube2456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1311
Tmin = 0.733, Tmax = 0.847k = 1720
7464 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0239P)2 + 1.3575P]
where P = (Fo2 + 2Fc2)/3
2820 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Ni(N3)2(C22H34N6)]V = 1219.30 (11) Å3
Mr = 525.32Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.2150 (5) ŵ = 0.83 mm1
b = 15.8337 (9) ÅT = 173 K
c = 7.5477 (4) Å0.50 × 0.20 × 0.20 mm
β = 92.817 (1)°
Data collection top
Siemens SMART CCD
diffractometer
2820 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2456 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 0.847Rint = 0.020
7464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.19Δρmax = 0.42 e Å3
2820 reflectionsΔρmin = 0.29 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50001.00000.00000.01702 (11)
N10.37796 (18)0.89900 (12)0.0535 (2)0.0213 (4)
H10.39640.88210.17010.026*
N20.20050 (19)0.99153 (13)0.1463 (2)0.0243 (4)
N30.38842 (18)1.08789 (12)0.1271 (2)0.0204 (4)
H30.40851.08360.24830.024*
N40.6135 (2)0.97898 (13)0.2449 (2)0.0254 (4)
N50.57874 (18)0.93204 (12)0.3563 (2)0.0221 (4)
N60.5460 (2)0.88500 (14)0.4654 (3)0.0315 (5)
C10.4175 (2)0.83010 (15)0.0648 (3)0.0268 (5)
H1A0.37910.83950.18620.032*
H1B0.38520.77530.02130.032*
C20.2360 (2)0.92198 (15)0.0349 (3)0.0240 (5)
H2A0.21390.93690.09040.029*
H2B0.18310.87200.06440.029*
C30.2447 (2)1.07476 (15)0.0969 (3)0.0255 (5)
H3A0.19791.11750.16580.031*
H3B0.22081.08420.03030.031*
C40.4333 (2)1.17143 (15)0.0675 (3)0.0258 (5)
H4A0.40501.21590.14950.031*
H4B0.39481.18390.05260.031*
C50.2105 (2)0.97543 (16)0.3375 (3)0.0256 (5)
H5A0.19641.02910.40120.031*
H5B0.30020.95550.37090.031*
C60.1129 (2)0.91069 (15)0.3963 (3)0.0230 (5)
C70.1481 (3)0.85575 (17)0.5339 (3)0.0302 (5)
H70.23520.85660.58410.036*
C80.0580 (3)0.79974 (17)0.5991 (3)0.0359 (6)
H80.08300.76330.69480.043*
C90.0681 (3)0.79699 (16)0.5245 (3)0.0322 (6)
H90.12980.75820.56790.039*
C100.1042 (2)0.85094 (16)0.3866 (3)0.0288 (5)
H100.19100.84910.33520.035*
C110.0144 (2)0.90777 (15)0.3228 (3)0.0254 (5)
H110.04010.94480.22840.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0202 (2)0.01814 (19)0.01269 (18)0.00082 (17)0.00037 (13)0.00017 (16)
N10.0243 (10)0.0257 (10)0.0140 (8)0.0017 (8)0.0009 (7)0.0004 (7)
N20.0238 (9)0.0284 (11)0.0210 (9)0.0012 (8)0.0040 (7)0.0004 (8)
N30.0245 (10)0.0224 (10)0.0144 (8)0.0005 (8)0.0011 (7)0.0005 (7)
N40.0283 (10)0.0301 (11)0.0174 (9)0.0000 (8)0.0017 (8)0.0042 (8)
N50.0216 (10)0.0257 (10)0.0187 (9)0.0035 (8)0.0029 (7)0.0055 (8)
N60.0390 (12)0.0323 (12)0.0232 (10)0.0042 (10)0.0017 (9)0.0044 (9)
C10.0291 (13)0.0229 (12)0.0287 (12)0.0041 (10)0.0040 (9)0.0039 (9)
C20.0238 (11)0.0306 (13)0.0175 (10)0.0050 (10)0.0010 (8)0.0025 (9)
C30.0245 (12)0.0289 (13)0.0230 (11)0.0022 (10)0.0005 (9)0.0011 (9)
C40.0310 (13)0.0199 (11)0.0267 (12)0.0019 (10)0.0029 (9)0.0011 (9)
C50.0249 (12)0.0330 (13)0.0190 (11)0.0031 (10)0.0019 (9)0.0041 (9)
C60.0263 (12)0.0256 (12)0.0174 (10)0.0019 (10)0.0038 (8)0.0053 (9)
C70.0308 (13)0.0342 (14)0.0249 (12)0.0026 (11)0.0037 (10)0.0015 (10)
C80.0493 (16)0.0319 (14)0.0263 (13)0.0015 (12)0.0006 (11)0.0077 (10)
C90.0386 (15)0.0278 (13)0.0312 (13)0.0065 (11)0.0124 (11)0.0010 (10)
C100.0225 (12)0.0343 (14)0.0300 (12)0.0001 (10)0.0060 (9)0.0056 (10)
C110.0238 (12)0.0283 (12)0.0243 (11)0.0053 (10)0.0033 (9)0.0008 (9)
Geometric parameters (Å, º) top
Ni1—N32.0650 (18)C2—H2B0.9900
Ni1—N3i2.0650 (18)C3—H3A0.9900
Ni1—N12.0795 (19)C3—H3B0.9900
Ni1—N1i2.0795 (19)C4—C1i1.526 (3)
Ni1—N4i2.1592 (19)C4—H4A0.9900
Ni1—N42.1592 (19)C4—H4B0.9900
N1—C11.479 (3)C5—C61.512 (3)
N1—C21.495 (3)C5—H5A0.9900
N1—H10.9300C5—H5B0.9900
N2—C21.443 (3)C6—C71.389 (3)
N2—C31.448 (3)C6—C111.389 (3)
N2—C51.464 (3)C7—C81.385 (4)
N3—C41.477 (3)C7—H70.9500
N3—C31.489 (3)C8—C91.381 (4)
N3—H30.9300C8—H80.9500
N4—N51.189 (3)C9—C101.383 (4)
N5—N61.171 (3)C9—H90.9500
C1—C4i1.526 (3)C10—C111.388 (3)
C1—H1A0.9900C10—H100.9500
C1—H1B0.9900C11—H110.9500
C2—H2A0.9900
N3—Ni1—N3i180.0N1—C2—H2A108.8
N3—Ni1—N194.48 (7)N2—C2—H2B108.8
N3i—Ni1—N185.52 (7)N1—C2—H2B108.8
N3—Ni1—N1i85.52 (7)H2A—C2—H2B107.7
N3i—Ni1—N1i94.48 (7)N2—C3—N3113.92 (19)
N1—Ni1—N1i180.0N2—C3—H3A108.8
N3—Ni1—N4i90.49 (7)N3—C3—H3A108.8
N3i—Ni1—N4i89.51 (7)N2—C3—H3B108.8
N1—Ni1—N4i89.03 (7)N3—C3—H3B108.8
N1i—Ni1—N4i90.97 (7)H3A—C3—H3B107.7
N3—Ni1—N489.51 (7)N3—C4—C1i108.36 (19)
N3i—Ni1—N490.49 (7)N3—C4—H4A110.0
N1—Ni1—N490.97 (7)C1i—C4—H4A110.0
N1i—Ni1—N489.03 (7)N3—C4—H4B110.0
N4i—Ni1—N4180.00 (10)C1i—C4—H4B110.0
C1—N1—C2114.54 (17)H4A—C4—H4B108.4
C1—N1—Ni1105.41 (13)N2—C5—C6113.11 (19)
C2—N1—Ni1112.49 (14)N2—C5—H5A109.0
C1—N1—H1108.1C6—C5—H5A109.0
C2—N1—H1108.1N2—C5—H5B109.0
Ni1—N1—H1108.1C6—C5—H5B109.0
C2—N2—C3117.02 (18)H5A—C5—H5B107.8
C2—N2—C5115.73 (19)C7—C6—C11118.8 (2)
C3—N2—C5113.87 (19)C7—C6—C5119.6 (2)
C4—N3—C3113.36 (18)C11—C6—C5121.5 (2)
C4—N3—Ni1105.99 (13)C8—C7—C6121.0 (2)
C3—N3—Ni1113.40 (14)C8—C7—H7119.5
C4—N3—H3108.0C6—C7—H7119.5
C3—N3—H3108.0C9—C8—C7119.9 (2)
Ni1—N3—H3108.0C9—C8—H8120.1
N5—N4—Ni1122.34 (16)C7—C8—H8120.1
N6—N5—N4179.0 (2)C8—C9—C10119.7 (2)
N1—C1—C4i108.84 (19)C8—C9—H9120.1
N1—C1—H1A109.9C10—C9—H9120.1
C4i—C1—H1A109.9C9—C10—C11120.4 (2)
N1—C1—H1B109.9C9—C10—H10119.8
C4i—C1—H1B109.9C11—C10—H10119.8
H1A—C1—H1B108.3C10—C11—C6120.3 (2)
N2—C2—N1113.67 (18)C10—C11—H11119.9
N2—C2—H2A108.8C6—C11—H11119.9
N3—Ni1—N1—C1165.54 (14)C3—N2—C2—N172.2 (3)
N3i—Ni1—N1—C114.46 (14)C5—N2—C2—N166.4 (2)
N4i—Ni1—N1—C175.12 (14)C1—N1—C2—N2177.66 (18)
N4—Ni1—N1—C1104.88 (14)Ni1—N1—C2—N257.3 (2)
N3—Ni1—N1—C240.06 (14)C2—N2—C3—N371.2 (3)
N3i—Ni1—N1—C2139.94 (14)C5—N2—C3—N368.1 (2)
N4i—Ni1—N1—C250.35 (14)C4—N3—C3—N2176.97 (18)
N4—Ni1—N1—C2129.65 (14)Ni1—N3—C3—N256.1 (2)
N1—Ni1—N3—C4164.63 (14)C3—N3—C4—C1i166.97 (18)
N1i—Ni1—N3—C415.37 (14)Ni1—N3—C4—C1i41.96 (19)
N4i—Ni1—N3—C475.56 (14)C2—N2—C5—C666.6 (3)
N4—Ni1—N3—C4104.44 (14)C3—N2—C5—C6153.5 (2)
N1—Ni1—N3—C339.65 (15)N2—C5—C6—C7145.0 (2)
N1i—Ni1—N3—C3140.35 (15)N2—C5—C6—C1138.7 (3)
N4i—Ni1—N3—C349.42 (15)C11—C6—C7—C80.9 (4)
N4—Ni1—N3—C3130.58 (15)C5—C6—C7—C8175.5 (2)
N3—Ni1—N4—N583.63 (19)C6—C7—C8—C91.2 (4)
N3i—Ni1—N4—N596.37 (19)C7—C8—C9—C100.8 (4)
N1—Ni1—N4—N510.84 (19)C8—C9—C10—C110.0 (4)
N1i—Ni1—N4—N5169.16 (19)C9—C10—C11—C60.3 (4)
C2—N1—C1—C4i165.51 (18)C7—C6—C11—C100.1 (3)
Ni1—N1—C1—C4i41.3 (2)C5—C6—C11—C10176.2 (2)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N6ii0.932.243.145 (3)163
Symmetry code: (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(N3)2(C22H34N6)]
Mr525.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.2150 (5), 15.8337 (9), 7.5477 (4)
β (°) 92.817 (1)
V3)1219.30 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.50 × 0.20 × 0.20
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.733, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
7464, 2820, 2456
Rint0.020
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.092, 1.19
No. of reflections2820
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.29

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996) and SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N6i0.932.243.145 (3)163
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This research was supported by Kyungpook National University Research Fund, 2007.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHancock, R. D. (1990). Acc. Chem. Res. 23, 253–257.  CrossRef CAS Web of Science Google Scholar
First citationJacquinot, P. & Hauser, P. C. (2003). Electroanalysis, 15, 1437–1444.  Web of Science CrossRef CAS Google Scholar
First citationJung, S.-K., Kang, S.-G. & Suh, M. P. (1989). Bull. Korean Chem. Soc. 10, 362–366.  CAS Google Scholar
First citationLarionova, J., Clérac, R., Donnadieu, B., Willemin, S. & Guérin, C. (2003). Cryst. Growth Des. 3, 267–272.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X.-T., Wang, X.-Y., Zhang, W.-X., Cui, P. & Gao, S. (2006). Adv. Mater. 18, 2852–2856.  Web of Science CSD CrossRef CAS Google Scholar
First citationMin, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303–313.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTsuge, K., DeRosa, F., Lim, M. D. & Ford, P. C. (2004). J. Am. Chem. Soc. 126, 6564–6565.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds