metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tri­phenyl­guanidinium) tetra­chlorido­cuprate(II)

aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: psidonio@pollux.fis.uc.pt

(Received 11 April 2008; accepted 24 July 2008; online 31 July 2008)

The structure of the title compound, (C19H18N3)2[CuCl4], consists of square-planar [CuCl4]2− anions and triphenyl­guanidinium cations. The CuII ion occupies a crystallographic inversion centre. In the cation, the dihedral angles between the phenyl rings and the plane defined by the central guanidinium fragment are in the range 51.9 (4)–64.4 (3)°. N—H⋯Cl hydrogen bonds assemble the ions into infinite chains running along the b axis.

Related literature

For related literature, see: Bian et al. (2005[Bian, G.-Q., Kuroda-Sowa, T., Gunjima, N., Maekawa, M. & Munakata, M. (2005). Inorg. Chem. Commun. 8, 208-211.]); Kemme et al. (1988[Kemme, A., Rutkis, M. & Eiduss, J. (1988). Latv. PSR Zinat. Akad. Vestis Kim. Ser. 5, 595-601]); Klement et al. (1995[Klement, U., Range, K.-J., Hayessen, R. & Heckmann, K.-D. (1995). Z. Kristallogr. 220, 611.]); Pereira Silva et al. (2006[Pereira Silva, P. S., Paixão, J. A., Ramos Silva, M. & Matos Beja, A. (2006). Acta Cryst. E62, o3073-o3075.]); Pereira Silva et al. (2007[Pereira Silva, P. S., Cardoso, C., Ramos Silva, M. & Paixão, J. A. (2007). Acta Cryst. E63, o501-o503.]).

[Scheme 1]

Experimental

Crystal data
  • (C19H18N3)2[CuCl4]

  • Mr = 782.08

  • Monoclinic, P 21 /c

  • a = 11.5893 (13) Å

  • b = 8.2404 (9) Å

  • c = 22.364 (2) Å

  • β = 119.423 (7)°

  • V = 1860.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 293 (2) K

  • 0.21 × 0.10 × 0.04 mm

Data collection
  • Bruker APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.744, Tmax = 0.964

  • 27709 measured reflections

  • 3304 independent reflections

  • 1405 reflections with I > 2σ(I)

  • Rint = 0.164

Refinement
  • R[F2 > 2σ(F2)] = 0.097

  • wR(F2) = 0.319

  • S = 1.05

  • 3304 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2i 0.86 2.28 3.126 (8) 167
N2—H2⋯Cl1ii 0.86 2.51 3.218 (8) 140
N3—H3⋯Cl1 0.86 2.44 3.253 (9) 159
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecular based magnets, systems in which molecular orbitals are crucial in mediating the magnetic interaction, are often synthesized by mild-chemistry conditions. Furthermore, the molecules/ions often assemble in low dimensional compounds providing easier systems to study both theoretical and experimentally. Some systems are even classified as Single Molecule Magnets, since the organically bridged metal clusters, exhibit magnetic properties similar to those observed in conventional bulk magnets like remanence and hysteresis (Bian et al., 2005). The title compound, (I), Fig.1, was synthesized within a project aiming at developing new molecular based magnets. Compound (I) is built up from triphenylguanidinium cations and CuCl42- anions. The CN3 fragment of the guanidinium group in (I) is planar, as expected for sp2 hybridization of the central C atom. The bond lengths C1—N1 [1.324 (12) Å], C1—N2 [1.332 (12) Å] and C1—N3 [1.347 (12) Å] are within the range expected for a delocalized C-N bond. The dihedral angles between the ring planes and the plane defined by the central guanidinium fragment are 51.9 (4)°(C2—C7), 59.8 (4)°(C8—C13) and 64.4 (3)°(C14—C19). The corresponding angles for other triphenylguanidinium salts reported in the literature are within the range 32.6 (3)–70.2 (3)° (Kemme et al., 1988; Klement et al., 1995; Pereira Silva et al., 2006, 2007). This variability attests the flexibility of the triphenylguanidinium cation. The CuII ion occupies a crystallographic inversion centre and the environment around the metal ion is square-planar. There are hydrogen bonds between all the NH groups and the Cl- ions, each CuCl42- anion being linked to four cations, forming infinite chains along the [010] direction (Fig. 2, Table 2).

Related literature top

For related literature, see: Bian et al. (2005); Kemme et al. (1988); Klement et al. (1995); Pereira Silva et al. (2006); Pereira Silva et al. (2007).

Experimental top

Copper(II) chloride dihydrate (Riedel-de-Haën, pro analysis >99%, 0.125 mmol) was dissolved in 50 ml of hot water and triphenylguanidine (TCI, 97%, 0.25 mmol) was dissolved in ethanol (50 ml). The two solutions were mixed and several drops of HCl (Merck, 37%) were added. The solution was left to evaporate at room temperature and pressure. Green single crystals of (I) were obtained from the solution after a few days.

Refinement top

Several crystals of (I) were probed but the Rint of all data collections was relatively high, reflecting the poor quality of the crystals. The maximum peak in the final difference Fourier map is 1.29 e Å-3 situated at 1.14 Å from the atom Cl1 and at 1.17 Å from the heavier metal atom. H atoms were placed at calculated positions and refined as riding on their parent atoms, using SHELXL97 (Sheldrick, 2008) defaults [C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Spek,2003) plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram, viewed down the a axis, with the hydrogen bonds depicted as dashed lines. The phenyl rings have been omitted for clarity.
Bis(triphenylguanidinium) tetrachloridocuprate top
Crystal data top
(C19H18N3)2[CuCl4]F(000) = 806
Mr = 782.08Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1887 reflections
a = 11.5893 (13) Åθ = 2.7–15.3°
b = 8.2404 (9) ŵ = 0.91 mm1
c = 22.364 (2) ÅT = 293 K
β = 119.423 (7)°Prism, green
V = 1860.3 (3) Å30.21 × 0.10 × 0.04 mm
Z = 2
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
3304 independent reflections
Radiation source: fine-focus sealed tube1405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.164
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1313
Tmin = 0.744, Tmax = 0.964k = 99
27709 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.097Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.319H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1615P)2 + 0.2636P]
where P = (Fo2 + 2Fc2)/3
3304 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
(C19H18N3)2[CuCl4]V = 1860.3 (3) Å3
Mr = 782.08Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.5893 (13) ŵ = 0.91 mm1
b = 8.2404 (9) ÅT = 293 K
c = 22.364 (2) Å0.21 × 0.10 × 0.04 mm
β = 119.423 (7)°
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
3304 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1405 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.964Rint = 0.164
27709 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0970 restraints
wR(F2) = 0.319H-atom parameters constrained
S = 1.05Δρmax = 1.29 e Å3
3304 reflectionsΔρmin = 0.52 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.50000.00000.00000.0567 (7)
Cl10.6357 (3)0.0354 (3)0.11412 (14)0.0719 (9)
Cl20.4205 (3)0.2267 (4)0.02411 (15)0.0826 (11)
N10.7105 (8)0.4791 (9)0.0748 (4)0.055 (2)
H10.67010.56460.05210.066*
N20.7200 (9)0.5995 (10)0.1697 (4)0.062 (2)
H20.73800.69090.15760.075*
N30.7583 (8)0.3232 (10)0.1706 (4)0.057 (2)
H30.72380.23890.14530.069*
C10.7289 (10)0.4673 (11)0.1380 (6)0.055 (3)
C20.7497 (12)0.3671 (13)0.0409 (6)0.060 (3)
C30.8688 (11)0.2853 (14)0.0731 (6)0.069 (3)
H3A0.92550.29910.11990.083*
C40.9037 (14)0.1834 (15)0.0360 (7)0.085 (4)
H40.98490.13030.05770.102*
C50.8197 (15)0.1595 (17)0.0327 (8)0.084 (4)
H50.84310.08880.05740.101*
C60.7024 (15)0.2395 (16)0.0646 (6)0.086 (4)
H60.64620.22650.11150.103*
C70.6666 (12)0.3400 (14)0.0272 (6)0.074 (3)
H70.58420.39030.04890.089*
C80.6834 (11)0.6040 (13)0.2223 (5)0.059 (3)
C90.7498 (11)0.7120 (13)0.2771 (6)0.066 (3)
H90.81640.77880.27920.079*
C100.7153 (13)0.7180 (15)0.3276 (6)0.079 (4)
H100.75820.78920.36440.094*
C110.6171 (13)0.6182 (15)0.3234 (7)0.073 (3)
H110.59430.62080.35790.087*
C120.5536 (11)0.5173 (14)0.2705 (6)0.067 (3)
H120.48740.45040.26870.081*
C130.5842 (11)0.5110 (13)0.2195 (6)0.065 (3)
H130.53690.44240.18230.078*
C140.8391 (11)0.2945 (12)0.2415 (5)0.054 (3)
C150.9571 (13)0.3811 (16)0.2788 (7)0.077 (3)
H150.98130.45840.25670.092*
C161.0364 (12)0.3537 (17)0.3468 (8)0.079 (4)
H161.11290.41460.37210.095*
C171.0011 (17)0.233 (2)0.3775 (6)0.099 (5)
H171.05680.21100.42370.118*
C180.8876 (15)0.1465 (16)0.3424 (6)0.088 (4)
H180.86480.06660.36410.106*
C190.8083 (12)0.1796 (13)0.2748 (6)0.066 (3)
H190.73000.12130.25030.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0701 (13)0.0335 (10)0.0702 (13)0.0039 (9)0.0374 (10)0.0044 (8)
Cl10.088 (2)0.0415 (16)0.0687 (18)0.0019 (14)0.0247 (17)0.0021 (13)
Cl20.128 (3)0.0549 (18)0.082 (2)0.0388 (18)0.064 (2)0.0194 (15)
N10.074 (6)0.047 (5)0.056 (5)0.011 (4)0.040 (5)0.007 (4)
N20.101 (7)0.032 (5)0.069 (6)0.004 (5)0.053 (6)0.001 (4)
N30.077 (6)0.044 (5)0.053 (5)0.005 (5)0.034 (5)0.001 (4)
C10.055 (7)0.037 (6)0.074 (8)0.001 (5)0.033 (6)0.004 (5)
C20.074 (8)0.053 (7)0.063 (8)0.006 (6)0.040 (7)0.003 (6)
C30.062 (8)0.065 (8)0.090 (9)0.016 (6)0.046 (7)0.006 (6)
C40.103 (11)0.054 (8)0.114 (11)0.028 (7)0.065 (10)0.005 (7)
C50.096 (10)0.082 (9)0.100 (11)0.004 (9)0.067 (9)0.011 (8)
C60.095 (11)0.077 (9)0.078 (9)0.003 (8)0.036 (8)0.023 (7)
C70.079 (8)0.065 (8)0.087 (9)0.005 (7)0.047 (8)0.006 (7)
C80.075 (8)0.046 (6)0.055 (7)0.010 (6)0.031 (6)0.013 (5)
C90.076 (8)0.051 (7)0.069 (8)0.005 (6)0.034 (7)0.006 (6)
C100.097 (10)0.070 (8)0.067 (8)0.007 (8)0.039 (8)0.011 (6)
C110.092 (9)0.063 (8)0.086 (9)0.014 (7)0.061 (8)0.009 (7)
C120.066 (7)0.067 (8)0.083 (8)0.001 (6)0.047 (7)0.002 (7)
C130.076 (8)0.052 (7)0.068 (7)0.016 (6)0.036 (7)0.002 (6)
C140.064 (8)0.037 (6)0.069 (8)0.009 (5)0.039 (7)0.003 (5)
C150.081 (9)0.078 (9)0.080 (9)0.013 (8)0.047 (8)0.003 (7)
C160.055 (8)0.072 (9)0.100 (11)0.001 (7)0.031 (8)0.014 (8)
C170.109 (12)0.110 (13)0.056 (8)0.042 (11)0.025 (9)0.004 (9)
C180.112 (11)0.069 (9)0.059 (9)0.006 (9)0.022 (8)0.004 (7)
C190.079 (8)0.050 (7)0.062 (8)0.000 (6)0.030 (7)0.003 (6)
Geometric parameters (Å, º) top
Cu—Cl22.263 (3)C7—H70.9300
Cu—Cl2i2.263 (3)C8—C131.358 (14)
Cu—Cl12.265 (3)C8—C91.400 (14)
Cu—Cl1i2.265 (3)C9—C101.372 (15)
N1—C11.324 (12)C9—H90.9300
N1—C21.404 (12)C10—C111.370 (16)
N1—H10.8600C10—H100.9300
N2—C11.332 (12)C11—C121.332 (15)
N2—C81.433 (12)C11—H110.9300
N2—H20.8600C12—C131.351 (14)
N3—C11.347 (12)C12—H120.9300
N3—C141.411 (12)C13—H130.9300
N3—H30.8600C14—C191.355 (14)
C2—C71.363 (14)C14—C151.398 (15)
C2—C31.379 (14)C15—C161.353 (15)
C3—C41.373 (15)C15—H150.9300
C3—H3A0.9300C16—C171.377 (19)
C4—C51.371 (15)C16—H160.9300
C4—H40.9300C17—C181.359 (19)
C5—C61.356 (16)C17—H170.9300
C5—H50.9300C18—C191.356 (14)
C6—C71.376 (15)C18—H180.9300
C6—H60.9300C19—H190.9300
Cl2—Cu—Cl2i180.00 (15)C13—C8—C9119.2 (10)
Cl2—Cu—Cl188.65 (10)C13—C8—N2122.2 (10)
Cl2i—Cu—Cl191.35 (10)C9—C8—N2118.5 (10)
Cl2—Cu—Cl1i91.35 (10)C10—C9—C8119.1 (11)
Cl2i—Cu—Cl1i88.65 (10)C10—C9—H9120.4
Cl1—Cu—Cl1i180.00 (16)C8—C9—H9120.4
C1—N1—C2127.0 (9)C11—C10—C9119.3 (12)
C1—N1—H1116.5C11—C10—H10120.3
C2—N1—H1116.5C9—C10—H10120.3
C1—N2—C8126.2 (9)C12—C11—C10120.9 (11)
C1—N2—H2116.9C12—C11—H11119.5
C8—N2—H2116.9C10—C11—H11119.5
C1—N3—C14127.5 (9)C11—C12—C13120.9 (11)
C1—N3—H3116.3C11—C12—H12119.5
C14—N3—H3116.3C13—C12—H12119.5
N1—C1—N2119.6 (9)C12—C13—C8120.5 (11)
N1—C1—N3120.5 (9)C12—C13—H13119.8
N2—C1—N3119.8 (10)C8—C13—H13119.8
C7—C2—C3118.6 (11)C19—C14—C15118.3 (11)
C7—C2—N1118.2 (10)C19—C14—N3121.7 (10)
C3—C2—N1123.2 (10)C15—C14—N3120.0 (10)
C4—C3—C2120.0 (12)C16—C15—C14120.7 (12)
C4—C3—H3A120.0C16—C15—H15119.6
C2—C3—H3A120.0C14—C15—H15119.6
C5—C4—C3120.5 (12)C15—C16—C17118.4 (13)
C5—C4—H4119.8C15—C16—H16120.8
C3—C4—H4119.8C17—C16—H16120.8
C6—C5—C4119.7 (12)C18—C17—C16122.1 (13)
C6—C5—H5120.2C18—C17—H17118.9
C4—C5—H5120.2C16—C17—H17118.9
C5—C6—C7119.8 (12)C17—C18—C19118.1 (13)
C5—C6—H6120.1C17—C18—H18120.9
C7—C6—H6120.1C19—C18—H18120.9
C2—C7—C6121.3 (12)C14—C19—C18122.3 (12)
C2—C7—H7119.4C14—C19—H19118.8
C6—C7—H7119.4C18—C19—H19118.8
C2—N1—C1—N2161.5 (10)C13—C8—C9—C101.8 (16)
C2—N1—C1—N317.6 (16)N2—C8—C9—C10179.7 (9)
C8—N2—C1—N1152.7 (10)C8—C9—C10—C110.1 (17)
C8—N2—C1—N328.2 (16)C9—C10—C11—C120.9 (17)
C14—N3—C1—N1146.9 (9)C10—C11—C12—C130.1 (18)
C14—N3—C1—N232.2 (15)C11—C12—C13—C82.1 (17)
C1—N1—C2—C7141.5 (11)C9—C8—C13—C122.9 (16)
C1—N1—C2—C339.4 (16)N2—C8—C13—C12179.3 (10)
C7—C2—C3—C42.3 (17)C1—N3—C14—C19141.6 (11)
N1—C2—C3—C4176.8 (10)C1—N3—C14—C1541.1 (15)
C2—C3—C4—C51.4 (19)C19—C14—C15—C161.8 (16)
C3—C4—C5—C61 (2)N3—C14—C15—C16179.2 (9)
C4—C5—C6—C72 (2)C14—C15—C16—C172.9 (17)
C3—C2—C7—C63.2 (17)C15—C16—C17—C182.4 (19)
N1—C2—C7—C6175.9 (10)C16—C17—C18—C191 (2)
C5—C6—C7—C23.1 (19)C15—C14—C19—C180.1 (16)
C1—N2—C8—C1341.0 (15)N3—C14—C19—C18177.5 (10)
C1—N2—C8—C9141.1 (11)C17—C18—C19—C140.4 (18)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2ii0.862.283.126 (8)167
N2—H2···Cl1iii0.862.513.218 (8)140
N3—H3···Cl10.862.443.253 (9)159
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C19H18N3)2[CuCl4]
Mr782.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.5893 (13), 8.2404 (9), 22.364 (2)
β (°) 119.423 (7)
V3)1860.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.21 × 0.10 × 0.04
Data collection
DiffractometerBruker APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.744, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
27709, 3304, 1405
Rint0.164
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.097, 0.319, 1.05
No. of reflections3304
No. of parameters223
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 0.52

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.862.283.126 (8)167.3
N2—H2···Cl1ii0.862.513.218 (8)140.1
N3—H3···Cl10.862.443.253 (9)158.5
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/FIS/57876/2004.

References

First citationBian, G.-Q., Kuroda-Sowa, T., Gunjima, N., Maekawa, M. & Munakata, M. (2005). Inorg. Chem. Commun. 8, 208–211.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKemme, A., Rutkis, M. & Eiduss, J. (1988). Latv. PSR Zinat. Akad. Vestis Kim. Ser. 5, 595–601  Google Scholar
First citationKlement, U., Range, K.-J., Hayessen, R. & Heckmann, K.-D. (1995). Z. Kristallogr. 220, 611.  CrossRef Google Scholar
First citationPereira Silva, P. S., Cardoso, C., Ramos Silva, M. & Paixão, J. A. (2007). Acta Cryst. E63, o501–o503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPereira Silva, P. S., Paixão, J. A., Ramos Silva, M. & Matos Beja, A. (2006). Acta Cryst. E62, o3073–o3075.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds