organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-amino-3-methyl­benzoate

aDepartment of Pharmaceutical Engineering, College of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technolgy, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China, and bBioengineering Department, Xuzhou Higher Vocational College of Bioengineering, Mine West Road, Xuzhou, Xuzhou 221006, People's Republic of China
*Correspondence e-mail: dcwang@njut.edu.cn

(Received 27 February 2008; accepted 4 March 2008; online 2 April 2008)

The asymmetric unit of the title compound, C10H13NO2, contains two mol­ecules which are linked via an N—H⋯N hydrogen bonds to form a dimer. These dimers are further linked via N—H⋯O inter­molecular hydrogen bonds.

Related literature

For related literature, see: Baraldi et al. (1999[Baraldi, P. G., Cozzi, P., Geroni, C., Mongelli, N., Romagnoli, R. & Spallu, G. (1999). Bioorg. Med. Chem. 7, 251-262.], 2000[Baraldi, P. G., Romagnoli, R., Duatti, A., Bolzati, C., Piffanelli, A., Bianchi, N., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. Lett. 10, 1397-1400.], 2003[Baraldi, P. G., Beria, I., Cozzi, P., Bianchi, N., Gambari, R. & Romagnoli, R. (2003). Bioorg. Med. Chem. 11, 965-975.], 2007[Baraldi, P. G., Preti, D., Fruttarolo, F., Tabrizi, M. A. & Romagnoli, R. (2007). Bioorg. Med. Chem. 15, 17-35.]); Wang et al. (2003[Wang, Y. Q., Wright, S. C. & Larrick, J. W. (2003). Bioorg. Med. Chem. Lett. 13, 459-461.]); Zaffaroni et al. (2002[Zaffaroni, N., Luald, S., Villa, R., Bellarosa, D., Cermele, C., Felicetti, P., Rossi, C., Orlandi, L. & Daidone, M. G. (2002). Eur. J. Cancer, 38, 1792-1801.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13NO2

  • Mr = 179.21

  • Triclinic, [P \overline 1]

  • a = 8.0110 (16) Å

  • b = 8.7030 (17) Å

  • c = 15.835 (3) Å

  • α = 90.78 (3)°

  • β = 95.13 (3)°

  • γ = 114.34 (3)°

  • V = 1000.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.975, Tmax = 0.991

  • 3874 measured reflections

  • 3594 independent reflections

  • 2146 reflections with I > 2σ(I)

  • Rint = 0.052

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.176

  • S = 1.02

  • 3594 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.33 3.023 (5) 138
N1—H1B⋯N2 0.86 2.61 3.242 (5) 131
N2—H2C⋯O2i 0.86 2.35 3.160 (4) 157
N2—H2D⋯O4ii 0.86 2.15 2.967 (4) 158
Symmetry codes: (i) x-1, y-1, z; (ii) x, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97

Supporting information


Comment top

Ethyl 3-methyl-4-aminobenzoate is a material for preparing the important intermidates of bis-(2-haloethyl)aminophenyl substituted distamycin derivatives(Baraldi et al., 2007), which are used as antitumor alkylating and antiviral agents related to the known antibiotic distamycin A (Baraldi et al., 1999). Distamycin A belongs to the family of the pyrroleamidine antibiotics (Baraldi et al., 2000) and is reported to interact reversibly and selectively with DNA-AT sequences interfering with both replication and transcription (Baraldi et al., 2003). Bis-(2-haloethyl)aminophenyl substituted distamycin derivatives can therefore be used in a treatment to ameliorate a cancer (Wang et al., 2003). They may be administered to improve the condition of a patient having a leukaemia lymphoma, sarcoma, such as myeloblastic leukaemia, neuroblastoma, Wilm's tumor or malignant neoplasm of the bladder, breast, lung or thyroid. (Zaffaroni et al., 2002).

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987).

The asymmetric unit of the title compound, contains two molecules which are linked via N—H···N hydrogen bonds to form dimers. In the crystals, molecules are linked via N—H···O Intermolecular hydrogen bonds (Table 1), which may be effective in the stabilization of the crystals.

Related literature top

For related literature, see: Baraldi et al. (1999, 2000, 2003, 2007); Wang et al. (2003); Zaffaroni et al. (2002). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared from 3-Methyl-4-aminobenzoic acid (15.2 g, 100 mmole) in ethanol (40.4 ml, 1000 mmole). After the solid has melted, concentrated hydrochloric acid (142 g, 120 ml) was added dropwise from a dropping funnel at 90°C, the the reaction mixture was cooled with ice and water and finaly the product was filtered by suction. Suitable crystals were obtained by evaporation of a methanol solution for about 3 d.

Refinement top

All H atoms were placed geometrically at the distances of 0.93–0.97 Å for C—H and 0.86 Å for N—H and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4(Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing displacement ellipsoids at the 50% probability level. N—H···N hydrogen bonds are shown as dashed lines.
Ethyl 4-amino-3-methylbenzoate top
Crystal data top
C10H13NO2Z = 4
Mr = 179.21F(000) = 384
Triclinic, P1Dx = 1.190 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0110 (16) ÅCell parameters from 25 reflections
b = 8.7030 (17) Åθ = 10–14°
c = 15.835 (3) ŵ = 0.08 mm1
α = 90.78 (3)°T = 298 K
β = 95.13 (3)°Block, colorless
γ = 114.34 (3)°0.30 × 0.20 × 0.10 mm
V = 1000.3 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2146 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 25.2°, θmin = 1.3°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.975, Tmax = 0.991l = 018
3874 measured reflections3 standard reflections every 200 reflections
3594 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.04P)2 + 1.2P]
where P = (Fo2 + 2Fc2)/3
3594 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H13NO2γ = 114.34 (3)°
Mr = 179.21V = 1000.3 (3) Å3
Triclinic, P1Z = 4
a = 8.0110 (16) ÅMo Kα radiation
b = 8.7030 (17) ŵ = 0.08 mm1
c = 15.835 (3) ÅT = 298 K
α = 90.78 (3)°0.30 × 0.20 × 0.10 mm
β = 95.13 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2146 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.052
Tmin = 0.975, Tmax = 0.9913 standard reflections every 200 reflections
3874 measured reflections intensity decay: none
3594 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
3594 reflectionsΔρmin = 0.23 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.2476 (4)0.4839 (3)1.01662 (15)0.0684 (7)
O21.2577 (4)0.5912 (3)0.88836 (15)0.0742 (8)
N10.5942 (5)0.1423 (4)0.8227 (2)0.0872 (11)
H1A0.54840.21920.85800.105*
H1B0.55090.16040.77010.105*
C11.4390 (7)0.6205 (6)1.1432 (2)0.0884 (13)
H1C1.53890.72201.16740.133*
H1D1.47180.52671.15050.133*
H1E1.33110.60121.17120.133*
C21.3999 (6)0.6384 (5)1.0501 (2)0.0695 (10)
H2A1.36810.73381.04200.083*
H2B1.50770.65711.02110.083*
C31.1842 (5)0.4730 (4)0.9338 (2)0.0549 (8)
C41.0343 (5)0.3145 (4)0.9073 (2)0.0514 (8)
C50.9506 (5)0.1886 (4)0.9638 (2)0.0620 (10)
H5A0.99320.20721.02120.074*
C60.8093 (5)0.0413 (4)0.9358 (2)0.0629 (10)
H6A0.75900.04100.97430.075*
C70.7362 (5)0.0087 (4)0.8503 (2)0.0607 (9)
C80.8176 (5)0.1308 (4)0.7910 (2)0.0579 (9)
C90.9597 (5)0.2792 (4)0.8216 (2)0.0537 (8)
H9A1.01030.36200.78340.064*
C100.7439 (6)0.0996 (5)0.6984 (2)0.0790 (12)
H10A0.81840.19260.66720.119*
H10B0.61920.08890.69240.119*
H10C0.74710.00260.67670.119*
O30.2589 (4)0.2954 (3)0.47872 (15)0.0695 (7)
O40.1772 (4)0.3743 (3)0.59841 (17)0.0836 (9)
N20.2153 (5)0.3189 (4)0.69728 (19)0.0828 (11)
H2C0.19790.33800.74960.099*
H2D0.23370.39030.66560.099*
C110.3055 (7)0.4392 (6)0.3509 (3)0.0990 (15)
H11A0.30720.53700.32290.149*
H11B0.21520.33910.32040.149*
H11C0.42480.43750.35230.149*
C120.2570 (6)0.4456 (5)0.4406 (2)0.0764 (11)
H12A0.34650.54660.47220.092*
H12B0.13600.44610.44030.092*
C130.2119 (5)0.2726 (5)0.5596 (2)0.0608 (9)
C140.2194 (5)0.1199 (4)0.59291 (19)0.0543 (8)
C150.1854 (5)0.0871 (4)0.6782 (2)0.0545 (8)
H15A0.16320.16490.71080.065*
C160.1840 (5)0.0559 (4)0.7146 (2)0.0549 (8)
C170.2137 (5)0.1753 (4)0.6644 (2)0.0597 (9)
C180.2476 (6)0.1425 (5)0.5793 (2)0.0682 (11)
H18A0.26860.22000.54580.082*
C190.2499 (5)0.0029 (5)0.5451 (2)0.0660 (10)
H19A0.27240.02210.48870.079*
C200.1455 (6)0.0876 (5)0.8067 (2)0.0768 (12)
H20A0.12790.00550.83120.115*
H20B0.24790.09860.83790.115*
H20C0.03630.18970.80890.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0901 (18)0.0660 (16)0.0515 (14)0.0347 (14)0.0056 (13)0.0157 (12)
O20.100 (2)0.0594 (15)0.0596 (16)0.0282 (14)0.0118 (14)0.0263 (13)
N10.099 (3)0.072 (2)0.078 (2)0.021 (2)0.013 (2)0.0202 (18)
C10.114 (4)0.099 (3)0.063 (3)0.059 (3)0.010 (2)0.008 (2)
C20.090 (3)0.060 (2)0.067 (2)0.040 (2)0.000 (2)0.0075 (19)
C30.068 (2)0.055 (2)0.051 (2)0.0334 (18)0.0094 (17)0.0118 (16)
C40.068 (2)0.0485 (19)0.0467 (18)0.0319 (17)0.0108 (16)0.0142 (15)
C50.087 (3)0.060 (2)0.048 (2)0.037 (2)0.0177 (18)0.0259 (17)
C60.078 (3)0.057 (2)0.057 (2)0.030 (2)0.0191 (19)0.0255 (18)
C70.072 (2)0.049 (2)0.067 (2)0.0285 (18)0.0145 (19)0.0180 (17)
C80.073 (2)0.062 (2)0.049 (2)0.0373 (19)0.0100 (17)0.0149 (17)
C90.073 (2)0.0505 (19)0.0439 (18)0.0305 (18)0.0133 (16)0.0173 (15)
C100.096 (3)0.076 (3)0.056 (2)0.026 (2)0.006 (2)0.012 (2)
O30.0994 (19)0.0705 (16)0.0524 (15)0.0462 (15)0.0200 (13)0.0246 (12)
O40.140 (3)0.0684 (17)0.0626 (17)0.0603 (18)0.0224 (16)0.0110 (14)
N20.148 (3)0.070 (2)0.0511 (18)0.065 (2)0.0102 (19)0.0136 (16)
C110.135 (4)0.104 (4)0.066 (3)0.053 (3)0.022 (3)0.038 (3)
C120.102 (3)0.068 (2)0.066 (3)0.041 (2)0.012 (2)0.027 (2)
C130.077 (2)0.064 (2)0.047 (2)0.034 (2)0.0102 (17)0.0113 (17)
C140.072 (2)0.055 (2)0.0380 (17)0.0288 (17)0.0062 (15)0.0088 (15)
C150.079 (2)0.056 (2)0.0427 (18)0.0406 (18)0.0107 (16)0.0082 (15)
C160.076 (2)0.061 (2)0.0390 (17)0.0380 (18)0.0113 (16)0.0099 (15)
C170.094 (3)0.055 (2)0.0438 (19)0.045 (2)0.0064 (17)0.0099 (15)
C180.117 (3)0.064 (2)0.0439 (19)0.057 (2)0.011 (2)0.0021 (17)
C190.099 (3)0.069 (2)0.0382 (18)0.041 (2)0.0134 (18)0.0084 (17)
C200.120 (3)0.095 (3)0.042 (2)0.068 (3)0.022 (2)0.0199 (19)
Geometric parameters (Å, º) top
O1—C31.351 (4)O3—C131.362 (4)
O1—C21.446 (4)O3—C121.452 (4)
O2—C31.232 (4)O4—C131.207 (4)
N1—C71.369 (5)N2—C171.365 (4)
N1—H1A0.8600N2—H2C0.8600
N1—H1B0.8600N2—H2D0.8600
C1—C21.503 (5)C11—C121.513 (5)
C1—H1C0.9600C11—H11A0.9600
C1—H1D0.9600C11—H11B0.9600
C1—H1E0.9600C11—H11C0.9600
C2—H2A0.9700C12—H12A0.9700
C2—H2B0.9700C12—H12B0.9700
C3—C41.432 (5)C13—C141.458 (5)
C4—C51.407 (4)C14—C191.374 (5)
C4—C91.409 (4)C14—C151.411 (4)
C5—C61.349 (5)C15—C161.375 (4)
C5—H5A0.9300C15—H15A0.9300
C6—C71.404 (5)C16—C171.409 (4)
C6—H6A0.9300C16—C201.522 (4)
C7—C81.414 (5)C17—C181.409 (4)
C8—C91.367 (5)C18—C191.376 (5)
C8—C101.509 (5)C18—H18A0.9300
C9—H9A0.9300C19—H19A0.9300
C10—H10A0.9600C20—H20A0.9600
C10—H10B0.9600C20—H20B0.9600
C10—H10C0.9600C20—H20C0.9600
C3—O1—C2118.2 (3)C13—O3—C12116.0 (3)
C7—N1—H1A120.0C17—N2—H2C120.0
C7—N1—H1B120.0C17—N2—H2D120.0
H1A—N1—H1B120.0H2C—N2—H2D120.0
C2—C1—H1C109.5C12—C11—H11A109.5
C2—C1—H1D109.5C12—C11—H11B109.5
H1C—C1—H1D109.5H11A—C11—H11B109.5
C2—C1—H1E109.5C12—C11—H11C109.5
H1C—C1—H1E109.5H11A—C11—H11C109.5
H1D—C1—H1E109.5H11B—C11—H11C109.5
O1—C2—C1107.6 (3)O3—C12—C11106.2 (3)
O1—C2—H2A110.2O3—C12—H12A110.5
C1—C2—H2A110.2C11—C12—H12A110.5
O1—C2—H2B110.2O3—C12—H12B110.5
C1—C2—H2B110.2C11—C12—H12B110.5
H2A—C2—H2B108.5H12A—C12—H12B108.7
O2—C3—O1120.3 (3)O4—C13—O3121.9 (3)
O2—C3—C4126.2 (3)O4—C13—C14125.8 (3)
O1—C3—C4113.5 (3)O3—C13—C14112.2 (3)
C5—C4—C9116.4 (3)C19—C14—C15118.2 (3)
C5—C4—C3123.1 (3)C19—C14—C13123.8 (3)
C9—C4—C3120.5 (3)C15—C14—C13118.0 (3)
C6—C5—C4121.0 (3)C16—C15—C14122.3 (3)
C6—C5—H5A119.5C16—C15—H15A118.8
C4—C5—H5A119.5C14—C15—H15A118.8
C5—C6—C7121.8 (3)C15—C16—C17118.7 (3)
C5—C6—H6A119.1C15—C16—C20120.9 (3)
C7—C6—H6A119.1C17—C16—C20120.4 (3)
N1—C7—C6121.1 (3)N2—C17—C16121.3 (3)
N1—C7—C8119.7 (3)N2—C17—C18119.7 (3)
C6—C7—C8119.1 (3)C16—C17—C18119.0 (3)
C9—C8—C7117.5 (3)C19—C18—C17120.8 (3)
C9—C8—C10121.9 (3)C19—C18—H18A119.6
C7—C8—C10120.6 (3)C17—C18—H18A119.6
C8—C9—C4124.2 (3)C14—C19—C18121.0 (3)
C8—C9—H9A117.9C14—C19—H19A119.5
C4—C9—H9A117.9C18—C19—H19A119.5
C8—C10—H10A109.5C16—C20—H20A109.5
C8—C10—H10B109.5C16—C20—H20B109.5
H10A—C10—H10B109.5H20A—C20—H20B109.5
C8—C10—H10C109.5C16—C20—H20C109.5
H10A—C10—H10C109.5H20A—C20—H20C109.5
H10B—C10—H10C109.5H20B—C20—H20C109.5
C3—O1—C2—C1178.1 (3)C13—O3—C12—C11177.7 (3)
C2—O1—C3—O21.4 (5)C12—O3—C13—O42.5 (5)
C2—O1—C3—C4179.7 (3)C12—O3—C13—C14179.4 (3)
O2—C3—C4—C5176.4 (3)O4—C13—C14—C19176.4 (4)
O1—C3—C4—C55.4 (5)O3—C13—C14—C196.9 (5)
O2—C3—C4—C92.0 (5)O4—C13—C14—C150.8 (6)
O1—C3—C4—C9176.2 (3)O3—C13—C14—C15176.0 (3)
C9—C4—C5—C61.4 (5)C19—C14—C15—C160.8 (5)
C3—C4—C5—C6179.9 (3)C13—C14—C15—C16178.1 (3)
C4—C5—C6—C71.9 (6)C14—C15—C16—C171.4 (5)
C5—C6—C7—N1179.2 (4)C14—C15—C16—C20179.6 (3)
C5—C6—C7—C82.7 (6)C15—C16—C17—N2179.5 (4)
N1—C7—C8—C9179.6 (3)C20—C16—C17—N22.3 (6)
C6—C7—C8—C93.0 (5)C15—C16—C17—C181.3 (5)
N1—C7—C8—C102.9 (5)C20—C16—C17—C18179.5 (4)
C6—C7—C8—C10179.4 (3)N2—C17—C18—C19178.9 (4)
C7—C8—C9—C42.8 (5)C16—C17—C18—C190.7 (6)
C10—C8—C9—C4179.7 (3)C15—C14—C19—C180.1 (6)
C5—C4—C9—C82.0 (5)C13—C14—C19—C18177.2 (4)
C3—C4—C9—C8179.6 (3)C17—C18—C19—C140.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.333.023 (5)138
N1—H1B···N20.862.613.242 (5)131
N2—H2C···O2i0.862.353.160 (4)157
N2—H2D···O4ii0.862.152.967 (4)158
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H13NO2
Mr179.21
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.0110 (16), 8.7030 (17), 15.835 (3)
α, β, γ (°)90.78 (3), 95.13 (3), 114.34 (3)
V3)1000.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3874, 3594, 2146
Rint0.052
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.177, 1.02
No. of reflections3594
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4(Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.333.023 (5)138
N1—H1B···N20.862.613.242 (5)131
N2—H2C···O2i0.862.353.160 (4)157
N2—H2D···O4ii0.862.152.967 (4)158
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z.
 

Acknowledgements

The authors thank Dr Shan Liu for useful discussions.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaraldi, P. G., Beria, I., Cozzi, P., Bianchi, N., Gambari, R. & Romagnoli, R. (2003). Bioorg. Med. Chem. 11, 965–975.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBaraldi, P. G., Cozzi, P., Geroni, C., Mongelli, N., Romagnoli, R. & Spallu, G. (1999). Bioorg. Med. Chem. 7, 251–262.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBaraldi, P. G., Preti, D., Fruttarolo, F., Tabrizi, M. A. & Romagnoli, R. (2007). Bioorg. Med. Chem. 15, 17–35.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBaraldi, P. G., Romagnoli, R., Duatti, A., Bolzati, C., Piffanelli, A., Bianchi, N., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. Lett. 10, 1397–1400.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. Q., Wright, S. C. & Larrick, J. W. (2003). Bioorg. Med. Chem. Lett. 13, 459–461.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZaffaroni, N., Luald, S., Villa, R., Bellarosa, D., Cermele, C., Felicetti, P., Rossi, C., Orlandi, L. & Daidone, M. G. (2002). Eur. J. Cancer, 38, 1792–1801.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds