organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o599-o600

(2Z)-2-Anilino-2-[oxido(phen­yl)iminio]-N-(2-pyrid­yl)acetamide methanol 0.425-solvate

aFaculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
*Correspondence e-mail: hodorowm@chemia.uj.edu.pl

(Received 24 September 2007; accepted 30 January 2008; online 15 February 2008)

The title compound, C19H16N4O2·0.425CH4O, crystallizes with two formula units per asymmetric unit. Researching its crystal structure constitutes part of a study of the nature of inter­actions between the N+—O group and the vicinal NH group. The nitrone group and methanol solvent mol­ecules are linked via four N—H⋯O and one O—H⋯O hydrogen bonds, with donor–acceptor distances of 2.603 (3)–2.730 (3) and 2.770 (3) Å, respectively. The crystal structure also involves two intermolecular N—H⋯N hydrogen bonds.

Related literature

For literature related to the synthesis of the title compound, see: Branco et al. (1992[Branco, P. S., Prabhakar, S., Lobo, A. M. & Williams, D. J. (1992). Tetrahedron, 48, 6335-6360.]); Aurich (1968[Aurich, H. G. (1968). Chem. Ber. 101, 1761-1769.]); Guimanini et al. (1999[Guimanini, A. G., Toniutti, N., Verardo, G. & Merli, M. (1999). Eur. J. Org. Chem. 1, 141-144.]); Szantay et al. (1965[Szantay, C. & Szabo, L. (1965). Chem. Ber. 98, 1013-1022.]); Southan et al. (1998[Southan, G. J., Srinivasan, A., George, C., Fales, H. M. & Keefer, L. K. (1998). Chem. Commun. 11, 1191-1192.]); Warshaw et al. (1989[Warshaw, J. A., Gallis, D. E., Acken, B. J., Gonzalez, O. J. & Crist, D. R. (1989). J. Org. Chem. 54, 1736-1743.]). For literature on nitro­nes as an active equivalent of the C=O group, see: Boruah et al. (2003[Boruah, M., Konwar, D. & Dutta, D. (2003). Indian J. Chem. Sect. B, 42, 2112-2114.]); Freisleben et al. (2002[Freisleben, A., Schieberle, P. & Rychlik, M. (2002). J. Agric. Food Chem. 50, 4760-4768.]); Saito et al. (2001[Saito, K., Kawamura, A., Kanie, T., Ueda, Y. & Kondo, S. (2001). Heterocycles, 55, 1071-1080.]); Gravestock et al. (2000[Gravestock, M. B., Knight, D. W., Malik, K. M. A. & Thornton, S. R. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 3292-3305.]); Torssell (1988[Torssell, K. B. G. (1988). Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, p. 75. New York: VCH.]). For examples of nitro­nes with a vicinal NH group, see: Janzen et al. (1997[Janzen, E. G. & Nutter, D. E. (1997). Magn. Reson. Chem. 35, 131-140.]); Clement et al. (1987[Clement, B. & Kaempchen, T. (1987). Arch. Pharm. (Weinheim Ger.), 320, 566-569.]); Baranowska et al. (1977[Baranowska (1977). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 25, 93-99.]); Aurich et al. (1976[Aurich, H. G. & Grigo, U. (1976). Chem. Ber. 109, 200-211.]); Rosenberg et al. (1972[Rosenberg, H. M. & Serve, M. P. (1972). J. Org. Chem. 37, 1443-1444.]). For literature on the medical use of these compounds, see: Floyd (2006[Floyd, R. A. (2006). Aging Cell, 5, 51-57.]). For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S9.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N4O2·0.425CH4O

  • Mr = 345.98

  • Monoclinic, P 21 /c

  • a = 18.7604 (3) Å

  • b = 9.4701 (2) Å

  • c = 21.2839 (5) Å

  • β = 104.375 (1)°

  • V = 3662.97 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.11 × 0.09 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.991, Tmax = 0.998

  • 12501 measured reflections

  • 6668 independent reflections

  • 3520 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.156

  • S = 1.03

  • 6668 reflections

  • 474 parameters

  • 548 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7A—H7A⋯O13B 0.86 1.94 2.730 (3) 152
N11A—H11A⋯N1Bi 0.86 2.30 3.095 (3) 153
N11A—H11A⋯O13A 0.86 2.25 2.603 (3) 105
N7B—H7B⋯O13Aii 0.86 1.90 2.724 (3) 160
N11B—H11B⋯N1A 0.86 2.32 3.056 (3) 144
N11B—H11B⋯O13B 0.86 2.28 2.604 (3) 102
O51—H51⋯O13B 0.82 1.95 2.770 (3) 179
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Version 3.1d. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Nitrones have attracted attention of organic chemists as nitrone N+–O- moiety can be treated as an active equivalent of C=O group (Boruah et al. 2003, Freisleben et al. 2002, Saito et al. 2001, Gravestock et al. 2000, Torssell 1988, Floyd 2006). However, only several examples of nitrones bearing a vicinal NH group have been reported so far (Janzen et al. 1997, Clement et al. 1987, Baranowska et al. 1977, Aurich et al. 1976, Rosenberg et al. 1972). As reported, the compounds could be derived from nitriles (Branco et al. 1992), imidoformic acid esters or α-chloroimines (Aurich 1968), hydroxylamines and methylene amines (Aurich 1968, Guimanini et al. 1999), secondary amines (Szantay et al. 1965), and nitroso compounds, from hydroxyguanidines (Southan et al. 1998) or from other nitrones (Warshaw et al.1989). We have succeeded in developing a straightforward way of obtaining nitrones with a vicinal NH group in excellent yields, starting from easily available pyridilides of 3-oxobutanoic acid and nitrosobenzene. The crystal structure analysis of (2Z)-2-anilino-2-[oxido(phenyl)imino]-N-pyridin-2-ylacetamide was performed in order to determine the nature of the interactions between the N+–O- moiety of the title nitrone with the vicinal NH group; this should help us to understand the compound's versatile reactivity towards various diamines. The symmetrically independent part of the unit cell is composed of two 2-anilino-2-[oxido(phenyl)imino]-N-pyridin-2-ylacetamide molecules and a 0.85 methanol molecule disordered between two positions with partial occupancy parameters of 0.586 (7) and 0.264 (7) for O51A—C51A and O51B—C51B, respectively. The conformation of the two symetrically independent nitrone molecules is shown in Figs. 1a and 1 b. No appreciable differences can be observed between the bond lengths and angles of the independent nitrone molecules and they are comparable with the values reported in the literature (Allen et al. 1987). The planarity of the C–C=N+(O-) part with Z configuration, in respect of N12–C10 double bond, observed for both symmetrically independent molecules is the most interesting feature of the investigated molecules, from the geometrical point of view. The O13—N12—C10—N11 and O13—N12—C10—C8 torsion angles are 2.6° and -174.3°, respectively for molecule A and -4.1° and 174.4°, respectively for molecule B. Significant torsion angles observed for nitrone molecules A and B are compared in Table 1. A l l aryl rings are twisted against each other: (C14···C19/N1···C6) = 68.0 (1)° for A and 53.8 (1)° for B; (C20···C25/N1···C6) = 75.5 (1)° for A and 66.4 (1)° for B. The crystal packing (Fig. 2) is controlled by N—H···O, N—H···N and O—H···O hydrogen bonds and weak van der Waals interactions (Table 2). The two N atoms (N7 and N11) in each molecule of the title compound are involved in the hydrogen bonds as donors forming two intra- and one intermolecular hydrogen bonds (Table 2). The intermolecular N11—H11···N1 interactions are relatively weak, with donor–acceptor distances of 3.095 (3) Å and 3.056 (3) Å due to simultaneous donor participation in intramolecular N11—H11···O13 interactions.

Related literature top

For literature related to the synthesis of the title compound, see: Branco et al. (1992); Aurich (1968); Guimanini et al. (1999); Szantay et al. (1965); Southan et al. (1998); Warshaw et al. (1989). For literature on nitrones as an active equivalent of the C?O group, see: Boruah et al. (2003); Freisleben et al. (2002); Saito et al. (2001); Gravestock et al. (2000); Torssell (1988). For examples of nitrones with a vicinal NH group, see: Janzen et al. (1997); Clement et al. (1987); Baranowska et al. (1977); Aurich et al. (1976); Rosenberg et al. (1972). For literature on the medical use of these compounds, see: Floyd (2006). For related literature, see: Allen et al. (1987).

Experimental top

Slow recrystallization from methanol at room temperature afforded crystals suitable for X-ray measurements. The ratio (2Z)-2-anilino-2-[oxido(phenyl)imino]-N-pyridin-2-ylacetamide to metanol molecule equals 2: 0.85 was confirmed by elemental analysis.

Refinement top

The contents of methanol in the asymmetric unit was determined by the refinement of structural parametres assuming its site occupancy factor in the range 1.000 - 0.500. The best solution (using wR2 as criterion) was found for 0.850 methanol molecule per two nitrone molecules. All H atom positions were observed in difference Fourier map. Nevertheless, in the refinement procedure the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic CH, N—H = 0.86 Å. In methanol molecule CH3 group with assumed tetrahedral angles was refined including free rotation about the C—O bond, C—H = 0.96 Å and O—H = 0.82 Å. Uiso(H) = 1.5Ueq(C) for methyl groups in methanol and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) view of the nitrone molecules with the crystallographic numbering scheme of atoms: the conformation of A molecule in projecton on C8AN11AN12A plane. Displacement ellipsoids of non-H atoms are drawn at 30% probability level.
[Figure 2] Fig. 2. An ORTEP-3 (Farrugia, 1997) view of the nitrone molecules with the crystallographic numbering scheme of atoms: the conformation of B molecule in projecton on C8BN11BN12B plane; Displacement ellipsoids of non-H atoms are drawn at 30% probability level.
[Figure 3] Fig. 3. Drawing of the crystal packing viewed along [010] (Brandenburg, 2006). Hydrogen atoms were omitted for clarity.
(2Z)-2-Anilino-2-[oxido(phenyl)iminio]-N-(2-pyridyl)acetamide methanol 0.425-solvate top
Crystal data top
C19H16N4O2·0.425CH4OF(000) = 1453
Mr = 345.98Dx = 1.255 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.7604 (3) ÅCell parameters from 6743 reflections
b = 9.4701 (2) Åθ = 1.0–25.4°
c = 21.2839 (5) ŵ = 0.09 mm1
β = 104.375 (1)°T = 293 K
V = 3662.97 (13) Å3Plate, colourless
Z = 80.11 × 0.09 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
6668 independent reflections
Radiation source: fine-focus sealed tube3520 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.065
Detector resolution: 9 pixels mm-1θmax = 25.4°, θmin = 3.4°
ϕ and ω scans to fill asymmetric unith = 022
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
k = 1011
Tmin = 0.991, Tmax = 0.998l = 2524
12501 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.3423P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6668 reflectionsΔρmax = 0.28 e Å3
474 parametersΔρmin = 0.14 e Å3
548 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0055 (7)
Crystal data top
C19H16N4O2·0.425CH4OV = 3662.97 (13) Å3
Mr = 345.98Z = 8
Monoclinic, P21/cMo Kα radiation
a = 18.7604 (3) ŵ = 0.09 mm1
b = 9.4701 (2) ÅT = 293 K
c = 21.2839 (5) Å0.11 × 0.09 × 0.02 mm
β = 104.375 (1)°
Data collection top
Nonius KappaCCD
diffractometer
6668 independent reflections
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
3520 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.998Rint = 0.065
12501 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.067548 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
6668 reflectionsΔρmin = 0.14 e Å3
474 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.11545 (13)0.6719 (2)0.19762 (11)0.0661 (6)
C2A0.09371 (14)0.8040 (3)0.18252 (11)0.0483 (6)
C3A0.02414 (14)0.8515 (3)0.17983 (13)0.0616 (7)
H3A0.01070.94430.16820.074*
C4A0.02552 (16)0.7579 (4)0.19488 (15)0.0771 (9)
H4A0.07320.78710.19350.092*
C5A0.00442 (19)0.6229 (4)0.21166 (16)0.0817 (9)
H5A0.03680.55850.22260.098*
C6A0.06588 (19)0.5847 (3)0.21201 (16)0.0828 (10)
H6A0.08010.49200.22300.099*
N7A0.14984 (11)0.8889 (2)0.16925 (9)0.0501 (6)
H7A0.18890.84600.16520.060*
C8A0.14887 (14)1.0299 (3)0.16219 (12)0.0502 (7)
O9A0.09855 (10)1.10851 (19)0.16598 (9)0.0668 (5)
C10A0.21768 (14)1.0904 (3)0.14793 (13)0.0471 (6)
N11A0.23810 (11)1.0608 (2)0.09302 (10)0.0524 (6)
H11A0.28161.08740.09190.063*
N12A0.25797 (11)1.1807 (2)0.18870 (10)0.0499 (5)
O13A0.31518 (9)1.24341 (18)0.17334 (8)0.0604 (5)
C14A0.25051 (13)1.2046 (3)0.25341 (12)0.0504 (7)
C15A0.24581 (15)1.3418 (3)0.27317 (14)0.0670 (8)
H15A0.24661.41640.24490.080*
C16A0.23996 (17)1.3673 (4)0.33547 (17)0.0835 (9)
H16A0.23651.45960.34940.100*
C17A0.23921 (18)1.2574 (5)0.37671 (17)0.0926 (11)
H17A0.23431.27490.41840.111*
C18A0.24558 (19)1.1217 (4)0.35712 (16)0.0885 (10)
H18A0.24581.04740.38580.106*
C19A0.25170 (16)1.0944 (3)0.29510 (14)0.0693 (8)
H19A0.25661.00220.28180.083*
C20A0.19658 (15)0.9913 (3)0.03686 (12)0.0496 (7)
C21A0.12171 (17)1.0074 (3)0.01520 (14)0.0697 (8)
H21A0.09621.06170.03880.084*
C22A0.0844 (2)0.9430 (4)0.04161 (17)0.0858 (10)
H22A0.03350.95220.05540.103*
C23A0.1207 (2)0.8662 (4)0.07771 (16)0.0854 (10)
H23A0.09510.82530.11650.102*
C24A0.1954 (2)0.8495 (3)0.05644 (16)0.0801 (9)
H24A0.22080.79740.08100.096*
C25A0.23329 (16)0.9101 (3)0.00149 (14)0.0619 (7)
H25A0.28370.89580.01650.074*
N1B0.36559 (12)0.1853 (2)0.04201 (11)0.0607 (6)
C2B0.37519 (14)0.3237 (3)0.03646 (13)0.0536 (7)
C3B0.41689 (16)0.3812 (3)0.00164 (15)0.0749 (9)
H3B0.42250.47850.00420.090*
C4B0.45036 (19)0.2895 (4)0.03606 (17)0.0926 (11)
H4B0.47910.32450.06240.111*
C5B0.44097 (18)0.1478 (4)0.03111 (17)0.0851 (10)
H5B0.46280.08460.05410.102*
C6B0.39919 (17)0.1009 (3)0.00806 (16)0.0772 (9)
H6B0.39350.00380.01160.093*
N7B0.33914 (11)0.4052 (2)0.07475 (10)0.0536 (6)
H7B0.32100.36040.10230.064*
C8B0.33054 (14)0.5460 (3)0.07221 (13)0.0532 (7)
O9B0.35086 (11)0.62721 (19)0.03605 (9)0.0702 (6)
C10B0.28999 (14)0.6032 (3)0.12011 (12)0.0485 (7)
N11B0.22196 (12)0.5613 (2)0.12126 (11)0.0564 (6)
H11B0.20860.57780.15640.068*
N12B0.32199 (11)0.7001 (2)0.16157 (10)0.0517 (6)
O13B0.28421 (9)0.76002 (18)0.20063 (8)0.0605 (5)
C14B0.39782 (14)0.7415 (3)0.17218 (12)0.0517 (7)
C15B0.41339 (16)0.8830 (3)0.16710 (13)0.0647 (8)
H15B0.37560.94890.15610.078*
C16B0.48549 (18)0.9248 (4)0.17850 (14)0.0761 (9)
H16B0.49651.01950.17430.091*
C17B0.54132 (18)0.8285 (5)0.19598 (16)0.0879 (10)
H17B0.59010.85780.20380.105*
C18B0.52519 (17)0.6890 (4)0.20198 (16)0.0870 (10)
H18B0.56320.62380.21430.104*
C19B0.45248 (16)0.6438 (3)0.18974 (14)0.0700 (8)
H19B0.44140.54890.19350.084*
C25B0.11891 (15)0.4058 (3)0.08793 (15)0.0664 (8)
H25B0.12230.38620.13140.080*
C24B0.06318 (18)0.3478 (3)0.0403 (2)0.0829 (10)
H24B0.02760.29220.05180.099*
C23B0.05954 (19)0.3712 (3)0.0239 (2)0.0888 (10)
H23B0.02240.33000.05590.107*
C22B0.1108 (2)0.4551 (4)0.04032 (18)0.0916 (10)
H22B0.10860.47000.08390.110*
C21B0.16563 (10)0.51847 (18)0.00578 (9)0.0730 (8)
H21B0.19960.57760.00620.088*
C20B0.16951 (10)0.49270 (18)0.07069 (9)0.0549 (7)
O510.30526 (10)0.73186 (18)0.33354 (9)0.119 (2)0.586 (7)
H510.29850.74000.29410.178*0.586 (7)
C510.38176 (10)0.76316 (18)0.36484 (9)0.133 (4)0.586 (7)
H51A0.38630.86060.37770.200*0.586 (7)
H51B0.41170.74530.33510.200*0.586 (7)
H51C0.39780.70430.40240.200*0.586 (7)
O520.35159 (10)0.68397 (18)0.34082 (9)0.143 (7)0.264 (7)
H520.32180.69490.30580.215*0.264 (7)
C520.40649 (10)0.80407 (18)0.35212 (9)0.171 (11)0.264 (7)
H52A0.38230.88940.33390.257*0.264 (7)
H52B0.44550.78250.33180.257*0.264 (7)
H52C0.42650.81650.39790.257*0.264 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0653 (16)0.0595 (15)0.0838 (17)0.0015 (12)0.0379 (13)0.0106 (13)
C2A0.0439 (16)0.0569 (17)0.0461 (15)0.0054 (13)0.0151 (13)0.0046 (13)
C3A0.0460 (17)0.0653 (18)0.074 (2)0.0036 (14)0.0162 (15)0.0060 (15)
C4A0.0511 (19)0.093 (2)0.092 (2)0.0105 (17)0.0272 (17)0.0084 (19)
C5A0.079 (2)0.087 (2)0.092 (2)0.0212 (19)0.046 (2)0.0020 (19)
C6A0.084 (2)0.073 (2)0.106 (3)0.0031 (18)0.051 (2)0.0174 (18)
N7A0.0426 (12)0.0511 (14)0.0604 (14)0.0030 (10)0.0201 (11)0.0014 (10)
C8A0.0447 (17)0.0561 (19)0.0515 (16)0.0012 (14)0.0154 (13)0.0050 (13)
O9A0.0513 (12)0.0618 (12)0.0934 (15)0.0078 (10)0.0297 (11)0.0021 (10)
C10A0.0442 (15)0.0483 (15)0.0520 (17)0.0052 (13)0.0180 (14)0.0013 (13)
N11A0.0459 (13)0.0593 (13)0.0557 (14)0.0028 (11)0.0192 (12)0.0051 (11)
N12A0.0442 (13)0.0550 (13)0.0519 (14)0.0028 (11)0.0150 (11)0.0001 (11)
O13A0.0474 (11)0.0753 (12)0.0620 (12)0.0126 (9)0.0201 (9)0.0008 (9)
C14A0.0388 (15)0.0658 (18)0.0468 (16)0.0034 (13)0.0109 (12)0.0041 (14)
C15A0.067 (2)0.071 (2)0.064 (2)0.0014 (15)0.0177 (16)0.0080 (15)
C16A0.077 (2)0.100 (2)0.074 (2)0.0006 (19)0.0199 (19)0.026 (2)
C17A0.078 (2)0.148 (3)0.053 (2)0.011 (2)0.0190 (18)0.020 (2)
C18A0.095 (3)0.112 (3)0.057 (2)0.012 (2)0.0167 (19)0.0110 (19)
C19A0.079 (2)0.0738 (19)0.0555 (19)0.0043 (16)0.0164 (16)0.0039 (16)
C20A0.0537 (17)0.0462 (15)0.0496 (16)0.0016 (13)0.0142 (14)0.0028 (13)
C21A0.062 (2)0.079 (2)0.0645 (19)0.0074 (16)0.0091 (16)0.0059 (16)
C22A0.073 (2)0.104 (3)0.071 (2)0.006 (2)0.0009 (18)0.0038 (19)
C23A0.104 (3)0.085 (2)0.062 (2)0.023 (2)0.009 (2)0.0073 (17)
C24A0.111 (3)0.070 (2)0.067 (2)0.009 (2)0.036 (2)0.0120 (16)
C25A0.0666 (18)0.0615 (17)0.0625 (18)0.0035 (15)0.0256 (15)0.0065 (15)
N1B0.0583 (14)0.0602 (15)0.0723 (16)0.0033 (11)0.0325 (12)0.0032 (12)
C2B0.0468 (16)0.0611 (18)0.0580 (17)0.0001 (13)0.0226 (14)0.0036 (14)
C3B0.083 (2)0.0724 (19)0.088 (2)0.0073 (17)0.0549 (19)0.0055 (17)
C4B0.101 (3)0.098 (3)0.104 (3)0.008 (2)0.072 (2)0.008 (2)
C5B0.085 (2)0.084 (2)0.102 (3)0.0070 (19)0.054 (2)0.016 (2)
C6B0.077 (2)0.0695 (19)0.101 (2)0.0023 (17)0.053 (2)0.0116 (18)
N7B0.0574 (14)0.0529 (15)0.0600 (14)0.0003 (11)0.0322 (12)0.0002 (11)
C8B0.0508 (17)0.0536 (19)0.0573 (18)0.0028 (13)0.0174 (14)0.0028 (14)
O9B0.0851 (14)0.0621 (12)0.0752 (14)0.0014 (10)0.0421 (12)0.0134 (11)
C10B0.0479 (17)0.0466 (15)0.0554 (17)0.0021 (13)0.0210 (14)0.0038 (13)
N11B0.0542 (15)0.0570 (13)0.0637 (15)0.0060 (11)0.0257 (12)0.0043 (11)
N12B0.0452 (14)0.0566 (13)0.0564 (14)0.0059 (11)0.0184 (12)0.0021 (11)
O13B0.0508 (11)0.0736 (12)0.0607 (12)0.0089 (9)0.0205 (9)0.0089 (9)
C14B0.0406 (16)0.0643 (18)0.0499 (16)0.0023 (13)0.0106 (13)0.0018 (13)
C15B0.0551 (18)0.0648 (19)0.070 (2)0.0006 (15)0.0077 (15)0.0024 (15)
C16B0.061 (2)0.088 (2)0.077 (2)0.0195 (18)0.0125 (17)0.0088 (17)
C17B0.050 (2)0.130 (3)0.081 (2)0.012 (2)0.0120 (17)0.002 (2)
C18B0.049 (2)0.117 (3)0.089 (2)0.0193 (19)0.0043 (17)0.013 (2)
C19B0.0535 (19)0.080 (2)0.074 (2)0.0140 (16)0.0120 (16)0.0121 (16)
C25B0.0588 (19)0.0571 (17)0.086 (2)0.0057 (15)0.0222 (17)0.0033 (16)
C24B0.065 (2)0.063 (2)0.123 (3)0.0111 (16)0.026 (2)0.012 (2)
C23B0.069 (2)0.081 (2)0.105 (3)0.0058 (18)0.002 (2)0.026 (2)
C22B0.080 (2)0.109 (3)0.079 (2)0.009 (2)0.009 (2)0.010 (2)
C21B0.065 (2)0.081 (2)0.074 (2)0.0087 (16)0.0184 (17)0.0061 (17)
C20B0.0456 (16)0.0458 (15)0.076 (2)0.0007 (13)0.0191 (15)0.0031 (14)
O510.155 (5)0.139 (4)0.066 (3)0.005 (4)0.036 (3)0.012 (3)
C510.128 (7)0.143 (8)0.117 (8)0.016 (7)0.010 (6)0.012 (6)
O520.099 (11)0.143 (11)0.180 (14)0.009 (8)0.020 (9)0.078 (10)
C520.24 (2)0.134 (16)0.15 (2)0.043 (14)0.055 (17)0.091 (15)
Geometric parameters (Å, º) top
N1A—C2A1.331 (3)C3B—H3B0.9300
N1A—C6A1.335 (4)C4B—C5B1.361 (4)
C2A—C3A1.368 (3)C4B—H4B0.9300
C2A—N7A1.408 (3)C5B—C6B1.353 (4)
C3A—C4A1.380 (4)C5B—H5B0.9300
C3A—H3A0.9300C6B—H6B0.9300
C4A—C5A1.360 (4)N7B—C8B1.343 (3)
C4A—H4A0.9300N7B—H7B0.8600
C5A—C6A1.366 (4)C8B—O9B1.214 (3)
C5A—H5A0.9300C8B—C10B1.516 (4)
C6A—H6A0.9300C10B—N12B1.311 (3)
N7A—C8A1.343 (3)C10B—N11B1.342 (3)
N7A—H7A0.8600N11B—C20B1.422 (3)
C8A—O9A1.221 (3)N11B—H11B0.8600
C8A—C10A1.511 (3)N12B—O13B1.344 (2)
C10A—N12A1.315 (3)N12B—C14B1.438 (3)
C10A—N11A1.347 (3)C14B—C19B1.363 (4)
N11A—C20A1.417 (3)C14B—C15B1.381 (4)
N11A—H11A0.8600C15B—C16B1.372 (4)
N12A—O13A1.336 (2)C15B—H15B0.9300
N12A—C14A1.436 (3)C16B—C17B1.369 (4)
C14A—C19A1.366 (4)C16B—H16B0.9300
C14A—C15A1.376 (4)C17B—C18B1.369 (5)
C15A—C16A1.379 (4)C17B—H17B0.9300
C15A—H15A0.9300C18B—C19B1.391 (4)
C16A—C17A1.364 (5)C18B—H18B0.9300
C16A—H16A0.9300C19B—H19B0.9300
C17A—C18A1.365 (5)C25B—C20B1.374 (3)
C17A—H17A0.9300C25B—C24B1.377 (4)
C18A—C19A1.378 (4)C25B—H25B0.9300
C18A—H18A0.9300C24B—C23B1.368 (5)
C19A—H19A0.9300C24B—H24B0.9300
C20A—C21A1.374 (4)C23B—C22B1.358 (5)
C20A—C25A1.375 (4)C23B—H23B0.9300
C21A—C22A1.380 (4)C22B—C21B1.371 (4)
C21A—H21A0.9300C22B—H22B0.9300
C22A—C23A1.358 (4)C21B—C20B1.3870
C22A—H22A0.9300C21B—H21B0.9300
C23A—C24A1.372 (5)O51—C511.4549
C23A—H23A0.9300O51—H510.8200
C24A—C25A1.385 (4)C51—H51A0.9600
C24A—H24A0.9300C51—H51B0.9600
C25A—H25A0.9300C51—H51C0.9600
N1B—C2B1.332 (3)O52—C521.5130
N1B—C6B1.336 (3)O52—H520.8200
C2B—C3B1.372 (4)C52—H52A0.9600
C2B—N7B1.410 (3)C52—H52B0.9600
C3B—C4B1.384 (4)C52—H52C0.9600
C2A—N1A—C6A116.6 (2)C5B—C4B—C3B119.6 (3)
N1A—C2A—C3A123.5 (2)C5B—C4B—H4B120.2
N1A—C2A—N7A112.7 (2)C3B—C4B—H4B120.2
C3A—C2A—N7A123.8 (2)C6B—C5B—C4B118.5 (3)
C2A—C3A—C4A118.1 (3)C6B—C5B—H5B120.8
C2A—C3A—H3A121.0C4B—C5B—H5B120.8
C4A—C3A—H3A121.0N1B—C6B—C5B124.0 (3)
C5A—C4A—C3A119.7 (3)N1B—C6B—H6B118.0
C5A—C4A—H4A120.1C5B—C6B—H6B118.0
C3A—C4A—H4A120.1C8B—N7B—C2B126.1 (2)
C4A—C5A—C6A117.9 (3)C8B—N7B—H7B116.9
C4A—C5A—H5A121.0C2B—N7B—H7B116.9
C6A—C5A—H5A121.0O9B—C8B—N7B126.9 (2)
N1A—C6A—C5A124.2 (3)O9B—C8B—C10B119.3 (2)
N1A—C6A—H6A117.9N7B—C8B—C10B113.8 (2)
C5A—C6A—H6A117.9N12B—C10B—N11B118.2 (2)
C8A—N7A—C2A126.9 (2)N12B—C10B—C8B118.7 (2)
C8A—N7A—H7A116.6N11B—C10B—C8B123.0 (2)
C2A—N7A—H7A116.6C10B—N11B—C20B127.1 (2)
O9A—C8A—N7A126.0 (2)C10B—N11B—H11B116.4
O9A—C8A—C10A119.7 (2)C20B—N11B—H11B116.4
N7A—C8A—C10A114.3 (2)C10B—N12B—O13B119.2 (2)
N12A—C10A—N11A117.8 (2)C10B—N12B—C14B124.5 (2)
N12A—C10A—C8A119.6 (2)O13B—N12B—C14B116.1 (2)
N11A—C10A—C8A122.5 (2)C19B—C14B—C15B121.4 (3)
C10A—N11A—C20A127.8 (2)C19B—C14B—N12B120.4 (2)
C10A—N11A—H11A116.1C15B—C14B—N12B118.2 (2)
C20A—N11A—H11A116.1C16B—C15B—C14B119.0 (3)
C10A—N12A—O13A119.5 (2)C16B—C15B—H15B120.5
C10A—N12A—C14A123.9 (2)C14B—C15B—H15B120.5
O13A—N12A—C14A116.11 (19)C17B—C16B—C15B120.7 (3)
C19A—C14A—C15A121.0 (3)C17B—C16B—H16B119.7
C19A—C14A—N12A120.8 (2)C15B—C16B—H16B119.7
C15A—C14A—N12A118.1 (2)C18B—C17B—C16B119.8 (3)
C14A—C15A—C16A119.1 (3)C18B—C17B—H17B120.1
C14A—C15A—H15A120.5C16B—C17B—H17B120.1
C16A—C15A—H15A120.5C17B—C18B—C19B120.6 (3)
C17A—C16A—C15A120.1 (3)C17B—C18B—H18B119.7
C17A—C16A—H16A120.0C19B—C18B—H18B119.7
C15A—C16A—H16A120.0C14B—C19B—C18B118.6 (3)
C16A—C17A—C18A120.4 (3)C14B—C19B—H19B120.7
C16A—C17A—H17A119.8C18B—C19B—H19B120.7
C18A—C17A—H17A119.8C20B—C25B—C24B119.4 (3)
C17A—C18A—C19A120.2 (3)C20B—C25B—H25B120.3
C17A—C18A—H18A119.9C24B—C25B—H25B120.3
C19A—C18A—H18A119.9C23B—C24B—C25B120.8 (3)
C14A—C19A—C18A119.2 (3)C23B—C24B—H24B119.6
C14A—C19A—H19A120.4C25B—C24B—H24B119.6
C18A—C19A—H19A120.4C22B—C23B—C24B119.2 (3)
C21A—C20A—C25A119.2 (3)C22B—C23B—H23B120.4
C21A—C20A—N11A122.3 (2)C24B—C23B—H23B120.4
C25A—C20A—N11A118.5 (2)C23B—C22B—C21B121.7 (3)
C20A—C21A—C22A120.0 (3)C23B—C22B—H22B119.2
C20A—C21A—H21A120.0C21B—C22B—H22B119.2
C22A—C21A—H21A120.0C22B—C21B—C20B118.70 (19)
C23A—C22A—C21A121.0 (3)C22B—C21B—H21B120.7
C23A—C22A—H22A119.5C20B—C21B—H21B120.7
C21A—C22A—H22A119.5C25B—C20B—C21B120.18 (15)
C22A—C23A—C24A119.4 (3)C25B—C20B—N11B117.8 (2)
C22A—C23A—H23A120.3C21B—C20B—N11B121.92 (11)
C24A—C23A—H23A120.3C51—O51—H51109.5
C23A—C24A—C25A120.1 (3)O51—C51—H51A109.5
C23A—C24A—H24A119.9O51—C51—H51B109.5
C25A—C24A—H24A119.9H51A—C51—H51B109.5
C20A—C25A—C24A120.2 (3)O51—C51—H51C109.5
C20A—C25A—H25A119.9H51A—C51—H51C109.5
C24A—C25A—H25A119.9H51B—C51—H51C109.5
C2B—N1B—C6B116.7 (2)C52—O52—H52109.5
N1B—C2B—C3B123.5 (2)O52—C52—H52A109.5
N1B—C2B—N7B113.1 (2)O52—C52—H52B109.5
C3B—C2B—N7B123.4 (3)H52A—C52—H52B109.5
C2B—C3B—C4B117.7 (3)O52—C52—H52C109.5
C2B—C3B—H3B121.2H52A—C52—H52C109.5
C4B—C3B—H3B121.2H52B—C52—H52C109.5
C6A—N1A—C2A—C3A1.5 (4)C6B—N1B—C2B—C3B0.1 (4)
C6A—N1A—C2A—N7A178.9 (2)C6B—N1B—C2B—N7B178.8 (2)
N1A—C2A—C3A—C4A1.4 (4)N1B—C2B—C3B—C4B0.2 (4)
N7A—C2A—C3A—C4A179.1 (2)N7B—C2B—C3B—C4B179.0 (3)
C2A—C3A—C4A—C5A0.1 (4)C2B—C3B—C4B—C5B0.0 (5)
C3A—C4A—C5A—C6A0.9 (5)C3B—C4B—C5B—C6B0.4 (5)
C2A—N1A—C6A—C5A0.4 (5)C2B—N1B—C6B—C5B0.5 (5)
C4A—C5A—C6A—N1A0.8 (5)C4B—C5B—C6B—N1B0.7 (5)
N1A—C2A—N7A—C8A169.3 (2)N1B—C2B—N7B—C8B170.1 (2)
C3A—C2A—N7A—C8A11.1 (4)C3B—C2B—N7B—C8B11.0 (4)
C2A—N7A—C8A—O9A0.2 (4)C2B—N7B—C8B—O9B1.5 (4)
C2A—N7A—C8A—C10A179.8 (2)C2B—N7B—C8B—C10B179.3 (2)
O9A—C8A—C10A—N12A61.7 (3)O9B—C8B—C10B—N12B57.1 (3)
N7A—C8A—C10A—N12A118.6 (2)N7B—C8B—C10B—N12B123.6 (2)
O9A—C8A—C10A—N11A115.0 (3)O9B—C8B—C10B—N11B121.4 (3)
N7A—C8A—C10A—N11A64.7 (3)N7B—C8B—C10B—N11B57.8 (3)
N12A—C10A—N11A—C20A166.1 (2)N12B—C10B—N11B—C20B159.7 (2)
C8A—C10A—N11A—C20A10.6 (4)C8B—C10B—N11B—C20B18.9 (4)
N11A—C10A—N12A—O13A2.6 (3)N11B—C10B—N12B—O13B4.1 (3)
C8A—C10A—N12A—O13A174.2 (2)C8B—C10B—N12B—O13B174.5 (2)
N11A—C10A—N12A—C14A169.2 (2)N11B—C10B—N12B—C14B171.1 (2)
C8A—C10A—N12A—C14A13.9 (3)C8B—C10B—N12B—C14B10.3 (4)
C10A—N12A—C14A—C19A51.8 (3)C10B—N12B—C14B—C19B56.8 (4)
O13A—N12A—C14A—C19A120.2 (3)O13B—N12B—C14B—C19B118.6 (3)
C10A—N12A—C14A—C15A131.3 (3)C10B—N12B—C14B—C15B126.2 (3)
O13A—N12A—C14A—C15A56.6 (3)O13B—N12B—C14B—C15B58.4 (3)
C19A—C14A—C15A—C16A2.0 (4)C19B—C14B—C15B—C16B1.6 (4)
N12A—C14A—C15A—C16A178.8 (2)N12B—C14B—C15B—C16B178.6 (2)
C14A—C15A—C16A—C17A0.3 (4)C14B—C15B—C16B—C17B1.4 (4)
C15A—C16A—C17A—C18A1.2 (5)C15B—C16B—C17B—C18B0.2 (5)
C16A—C17A—C18A—C19A1.0 (5)C16B—C17B—C18B—C19B0.7 (5)
C15A—C14A—C19A—C18A2.2 (4)C15B—C14B—C19B—C18B0.7 (4)
N12A—C14A—C19A—C18A179.0 (3)N12B—C14B—C19B—C18B177.6 (3)
C17A—C18A—C19A—C14A0.7 (5)C17B—C18B—C19B—C14B0.5 (5)
C10A—N11A—C20A—C21A35.0 (4)C20B—C25B—C24B—C23B2.7 (4)
C10A—N11A—C20A—C25A147.9 (2)C25B—C24B—C23B—C22B1.4 (5)
C25A—C20A—C21A—C22A0.3 (4)C24B—C23B—C22B—C21B0.8 (5)
N11A—C20A—C21A—C22A176.7 (2)C23B—C22B—C21B—C20B1.6 (4)
C20A—C21A—C22A—C23A1.7 (5)C24B—C25B—C20B—C21B1.8 (3)
C21A—C22A—C23A—C24A1.7 (5)C24B—C25B—C20B—N11B174.1 (2)
C22A—C23A—C24A—C25A0.2 (5)C22B—C21B—C20B—C25B0.3 (2)
C21A—C20A—C25A—C24A2.3 (4)C22B—C21B—C20B—N11B176.0 (3)
N11A—C20A—C25A—C24A174.9 (2)C10B—N11B—C20B—C25B152.2 (2)
C23A—C24A—C25A—C20A2.3 (4)C10B—N11B—C20B—C21B32.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7A—H7A···O13B0.861.942.730 (3)152
N11A—H11A···N1Bi0.862.303.095 (3)153
N11A—H11A···O13A0.862.252.603 (3)105
N7B—H7B···O13Aii0.861.902.724 (3)160
N11B—H11B···N1A0.862.323.056 (3)144
N11B—H11B···O13B0.862.282.604 (3)102
O51—H51···O13B0.821.952.770 (3)179
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H16N4O2·0.425CH4O
Mr345.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.7604 (3), 9.4701 (2), 21.2839 (5)
β (°) 104.375 (1)
V3)3662.97 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.11 × 0.09 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.991, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
12501, 6668, 3520
Rint0.065
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.156, 1.03
No. of reflections6668
No. of parameters474
No. of restraints548
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.14

Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7A—H7A···O13B0.861.942.730 (3)152
N11A—H11A···N1Bi0.862.303.095 (3)153
N11A—H11A···O13A0.862.252.603 (3)105
N7B—H7B···O13Aii0.861.902.724 (3)160
N11B—H11B···N1A0.862.323.056 (3)144
N11B—H11B···O13B0.862.282.604 (3)102
O51—H51···O13B0.821.952.770 (3)179
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

The authors thank the Joint X-ray Laboratory, Faculty of Chemistry, and SLAFiBS, Jagiellonian University, for making available the Nonius KappaCCD diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S9.  CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAurich, H. G. (1968). Chem. Ber. 101, 1761–1769.  CrossRef CAS Web of Science Google Scholar
First citationAurich, H. G. & Grigo, U. (1976). Chem. Ber. 109, 200–211.  CrossRef CAS Web of Science Google Scholar
First citationBaranowska (1977). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 25, 93–99.  Google Scholar
First citationBoruah, M., Konwar, D. & Dutta, D. (2003). Indian J. Chem. Sect. B, 42, 2112–2114.  Google Scholar
First citationBranco, P. S., Prabhakar, S., Lobo, A. M. & Williams, D. J. (1992). Tetrahedron, 48, 6335–6360.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Version 3.1d. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClement, B. & Kaempchen, T. (1987). Arch. Pharm. (Weinheim Ger.), 320, 566–569.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFloyd, R. A. (2006). Aging Cell, 5, 51–57.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFreisleben, A., Schieberle, P. & Rychlik, M. (2002). J. Agric. Food Chem. 50, 4760–4768.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGravestock, M. B., Knight, D. W., Malik, K. M. A. & Thornton, S. R. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 3292–3305.  Web of Science CrossRef Google Scholar
First citationGuimanini, A. G., Toniutti, N., Verardo, G. & Merli, M. (1999). Eur. J. Org. Chem. 1, 141–144.  Google Scholar
First citationJanzen, E. G. & Nutter, D. E. (1997). Magn. Reson. Chem. 35, 131–140.  CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRosenberg, H. M. & Serve, M. P. (1972). J. Org. Chem. 37, 1443–1444.  CrossRef CAS Web of Science Google Scholar
First citationSaito, K., Kawamura, A., Kanie, T., Ueda, Y. & Kondo, S. (2001). Heterocycles, 55, 1071–1080.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouthan, G. J., Srinivasan, A., George, C., Fales, H. M. & Keefer, L. K. (1998). Chem. Commun. 11, 1191–1192.  Web of Science CSD CrossRef Google Scholar
First citationSzantay, C. & Szabo, L. (1965). Chem. Ber. 98, 1013–1022.  CrossRef CAS Web of Science Google Scholar
First citationTorssell, K. B. G. (1988). Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, p. 75. New York: VCH.  Google Scholar
First citationWarshaw, J. A., Gallis, D. E., Acken, B. J., Gonzalez, O. J. & Crist, D. R. (1989). J. Org. Chem. 54, 1736–1743.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o599-o600
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds