Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [Mn(C17H14Br2N2O2)Cl(H2O)], the MnIII ion is six-coordinated by the tetra­dentate N,N′-bis­(5-bromo­salicyl­idene)-1,3-diimino­propane dianion (Brsalpn), Cl and water ligands in a distorted octa­hedral geometry. The complexes are assembled through inter­molecular hydrogen bonds and π–π inter­actions (the centroid–centroid distance is 3.844 Å and the dihedral angle between the ring planes is 13.5°) along the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807039815/er2038sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807039815/er2038Isup2.hkl
Contains datablock I

CCDC reference: 660123

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.034
  • wR factor = 0.062
  • Data-to-parameter ratio = 13.4

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.448 0.598 Tmin(prime) and Tmax expected: 0.531 0.598 RR(prime) = 0.844 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.82 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C9 PLAT354_ALERT_3_C Short O-H Bond (0.82A) O3W - H3A ... 0.71 Ang.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Mn (3) 3.13
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In the title complex, Mn3+ ion is six-coordinated by two N and two O atoms from the tetradentate ligand, N,N'-bis(5-bromosalicylidene)-1,3- diiminopropane dianion (Brsalpn), occupying the four equatorial positions, one Cl atom and one O atom from water ligand in the axial positions (Fig.1). The coordination environment around the Mn centre is distorted octahedral. Within the equatorial plane, the chelating angles lie in the range of 90.68 (10)°–92.70 (11)° and the O1—Mn—O2 bond angle is 85.46 (9)°. The apical O3w—Mn—Cl bond angle is 170.43 (10)° (Table 1). The Mn—N bond lengths (2.039 (3) and 2.009 (3) Å) are longer than the Mn—O bond (1.894 (2) and 1.882 (2) Å), but the bond distance between the Mn atom and the O atom of the water ligand is considerably long with 2.342 (4) Å. The compound displays the intermolecular hydrogen bonds between the O atom of the water and the O atom of the chelate ligand or Cl anion (Table 2). Moreover, there are intermolecular π-π interactions between the adjacent benzene rings. For Cg1 (the centroid of six-membered ring C1–C6) and Cg2i (ring C12–C17; symmetry code i: 1 - x, 1 - y, 1 - z), the centroid-centroid distance is 3.844 Å and the dihedral angle between the ring planes is 13.5°. The compounds are assembled through these hydrogen-bonding and π-π interactions along the c axis (Fig. 2).

Related literature top

For related literature, see: Mitra et al. (2006).

Experimental top

Mn(CH3COO)3·2H2O (0.50 g, 1.86 mmol), NaCl (0.11 g, 1.88 mmol) and N,N'-bis(5-bromosalicylidene)-1,3-diiminopropane (H2Brsalpn; 0.83 g, 1.89 mmol) in EtOH (70 ml) and H2O (3 ml) were stirred for 3 h at room temparature and then filtered. The solvent was removed, the residue washed with water and acetone, and dried under vacuum, to give a dark green powder (0.76 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a MeOH solution. MS (FAB): m/z 491, 493, 495 (Mn(Brsalpn)+); IR (KBr): 3358 cm-1 (broad).

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective carrier atoms [C—H = 0.93 (sp2) or 0.97 Å (sp3) and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water ligand were localized from Fourier difference maps and refined with isotropic thermal parameters.

Structure description top

In the title complex, Mn3+ ion is six-coordinated by two N and two O atoms from the tetradentate ligand, N,N'-bis(5-bromosalicylidene)-1,3- diiminopropane dianion (Brsalpn), occupying the four equatorial positions, one Cl atom and one O atom from water ligand in the axial positions (Fig.1). The coordination environment around the Mn centre is distorted octahedral. Within the equatorial plane, the chelating angles lie in the range of 90.68 (10)°–92.70 (11)° and the O1—Mn—O2 bond angle is 85.46 (9)°. The apical O3w—Mn—Cl bond angle is 170.43 (10)° (Table 1). The Mn—N bond lengths (2.039 (3) and 2.009 (3) Å) are longer than the Mn—O bond (1.894 (2) and 1.882 (2) Å), but the bond distance between the Mn atom and the O atom of the water ligand is considerably long with 2.342 (4) Å. The compound displays the intermolecular hydrogen bonds between the O atom of the water and the O atom of the chelate ligand or Cl anion (Table 2). Moreover, there are intermolecular π-π interactions between the adjacent benzene rings. For Cg1 (the centroid of six-membered ring C1–C6) and Cg2i (ring C12–C17; symmetry code i: 1 - x, 1 - y, 1 - z), the centroid-centroid distance is 3.844 Å and the dihedral angle between the ring planes is 13.5°. The compounds are assembled through these hydrogen-bonding and π-π interactions along the c axis (Fig. 2).

For related literature, see: Mitra et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level. H atoms at C atoms have been omitted for clarity.
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex. Hydrogen-bond interactions are drawn with dashed lines.
Aquachlorido{4,4'-dibromo-2,2'-[propane-1,3- diylbis(nitrilomethylidyne)]diphenolato}manganese(III) top
Crystal data top
[Mn(C17H14Br2N2O2)Cl(H2O)]F(000) = 1072
Mr = 546.53Dx = 1.939 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2295 reflections
a = 13.2369 (14) Åθ = 2.5–23.9°
b = 10.2666 (11) ŵ = 5.14 mm1
c = 13.8635 (15) ÅT = 293 K
β = 96.434 (2)°Plate, green
V = 1872.2 (3) Å30.12 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3263 independent reflections
Radiation source: fine-focus sealed tube2153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 157
Tmin = 0.448, Tmax = 0.598k = 1112
10208 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 0.84 w = 1/[σ2(Fo2) + (0.0243P)2]
where P = (Fo2 + 2Fc2)/3
3263 reflections(Δ/σ)max = 0.001
243 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Mn(C17H14Br2N2O2)Cl(H2O)]V = 1872.2 (3) Å3
Mr = 546.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2369 (14) ŵ = 5.14 mm1
b = 10.2666 (11) ÅT = 293 K
c = 13.8635 (15) Å0.12 × 0.10 × 0.10 mm
β = 96.434 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3263 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2153 reflections with I > 2σ(I)
Tmin = 0.448, Tmax = 0.598Rint = 0.035
10208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 0.84Δρmax = 0.73 e Å3
3263 reflectionsΔρmin = 0.63 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.40515 (4)0.33233 (5)0.37376 (4)0.02959 (16)
Br10.06136 (4)0.73006 (5)0.33024 (4)0.07213 (19)
Br20.94384 (3)0.14805 (5)0.41859 (4)0.06350 (17)
Cl0.33221 (7)0.31177 (9)0.19346 (7)0.0414 (3)
O10.36286 (17)0.5071 (2)0.38667 (19)0.0353 (7)
O20.53279 (17)0.4039 (2)0.35665 (18)0.0351 (7)
O3W0.4692 (3)0.3130 (4)0.5376 (3)0.0461 (9)
H3A0.497 (4)0.368 (4)0.556 (4)0.07 (2)*
H3B0.441 (4)0.282 (5)0.577 (4)0.12 (3)*
N10.2690 (2)0.2666 (3)0.4099 (2)0.0294 (8)
N20.4567 (2)0.1510 (2)0.3550 (2)0.0299 (8)
C10.2688 (3)0.5545 (3)0.3745 (3)0.0327 (10)
C20.2529 (3)0.6879 (4)0.3601 (3)0.0410 (11)
H20.30870.74260.35850.049*
C30.1571 (3)0.7398 (4)0.3481 (3)0.0506 (12)
H30.14860.82910.33930.061*
C40.0723 (3)0.6597 (4)0.3491 (3)0.0497 (12)
C50.0858 (3)0.5299 (4)0.3645 (3)0.0475 (11)
H50.02940.47620.36610.057*
C60.1836 (3)0.4754 (4)0.3779 (3)0.0358 (10)
C70.1904 (3)0.3399 (3)0.4022 (3)0.0368 (10)
H70.12990.30010.41390.044*
C80.2479 (3)0.1309 (3)0.4385 (3)0.0455 (12)
H8A0.22930.13230.50420.055*
H8B0.18950.09950.39650.055*
C90.3307 (3)0.0379 (4)0.4349 (4)0.0604 (15)
H9A0.30330.04910.44070.072*
H9B0.37990.05240.49110.072*
C100.3850 (3)0.0414 (3)0.3472 (3)0.0418 (11)
H10A0.42150.03960.34130.050*
H10B0.33660.05160.28970.050*
C110.5502 (3)0.1228 (3)0.3483 (3)0.0333 (10)
H110.56450.03710.33260.040*
C120.6348 (3)0.2111 (3)0.3627 (3)0.0304 (9)
C130.7313 (3)0.1549 (4)0.3738 (3)0.0384 (10)
H130.73850.06530.36720.046*
C140.8149 (3)0.2313 (4)0.3943 (3)0.0391 (10)
C150.8056 (3)0.3657 (4)0.3990 (3)0.0418 (11)
H150.86330.41730.41120.050*
C160.7113 (3)0.4223 (3)0.3856 (3)0.0358 (10)
H160.70590.51260.38800.043*
C170.6227 (3)0.3467 (3)0.3683 (3)0.0311 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0280 (3)0.0247 (3)0.0364 (4)0.0021 (2)0.0049 (3)0.0010 (3)
Br10.0565 (3)0.0848 (4)0.0714 (4)0.0366 (3)0.0093 (3)0.0064 (3)
Br20.0318 (3)0.0806 (4)0.0771 (4)0.0098 (2)0.0022 (2)0.0028 (3)
Cl0.0484 (6)0.0408 (6)0.0344 (7)0.0017 (4)0.0020 (5)0.0012 (5)
O10.0310 (15)0.0251 (14)0.051 (2)0.0002 (11)0.0073 (13)0.0034 (12)
O20.0283 (14)0.0278 (14)0.050 (2)0.0007 (11)0.0073 (13)0.0013 (12)
O3W0.050 (2)0.044 (2)0.042 (2)0.0127 (16)0.0021 (17)0.0044 (17)
N10.0314 (18)0.0261 (18)0.031 (2)0.0011 (14)0.0062 (15)0.0004 (14)
N20.0300 (18)0.0226 (17)0.037 (2)0.0051 (13)0.0015 (15)0.0036 (14)
C10.045 (3)0.028 (2)0.025 (3)0.0051 (18)0.0042 (19)0.0048 (18)
C20.051 (3)0.035 (3)0.037 (3)0.0011 (19)0.007 (2)0.004 (2)
C30.072 (3)0.039 (3)0.041 (3)0.021 (2)0.009 (2)0.001 (2)
C40.039 (3)0.060 (3)0.049 (3)0.014 (2)0.001 (2)0.006 (2)
C50.036 (2)0.051 (3)0.055 (4)0.001 (2)0.001 (2)0.006 (2)
C60.032 (2)0.035 (2)0.040 (3)0.0033 (18)0.0002 (19)0.0054 (19)
C70.029 (2)0.040 (2)0.042 (3)0.0068 (18)0.0073 (19)0.003 (2)
C80.049 (3)0.031 (2)0.058 (4)0.0046 (19)0.013 (2)0.006 (2)
C90.064 (3)0.033 (3)0.088 (5)0.008 (2)0.028 (3)0.007 (2)
C100.042 (2)0.031 (2)0.054 (3)0.0095 (18)0.010 (2)0.011 (2)
C110.039 (2)0.024 (2)0.037 (3)0.0029 (17)0.0061 (19)0.0012 (18)
C120.031 (2)0.029 (2)0.032 (3)0.0002 (16)0.0055 (18)0.0019 (17)
C130.037 (2)0.036 (2)0.042 (3)0.0010 (19)0.007 (2)0.000 (2)
C140.026 (2)0.056 (3)0.035 (3)0.0068 (19)0.0042 (18)0.003 (2)
C150.031 (2)0.060 (3)0.035 (3)0.013 (2)0.0048 (19)0.006 (2)
C160.035 (2)0.037 (2)0.036 (3)0.0066 (18)0.0069 (19)0.0008 (19)
C170.031 (2)0.037 (2)0.027 (3)0.0028 (18)0.0086 (18)0.0012 (18)
Geometric parameters (Å, º) top
Mn—O21.882 (2)C5—C61.403 (5)
Mn—O11.894 (2)C5—H50.9300
Mn—N22.009 (3)C6—C71.431 (5)
Mn—N12.039 (3)C7—H70.9300
Mn—O3W2.342 (4)C8—C91.458 (5)
Mn—Cl2.5852 (13)C8—H8A0.9700
Br1—C41.901 (4)C8—H8B0.9700
Br2—C141.905 (4)C9—C101.481 (5)
O1—C11.330 (4)C9—H9A0.9700
O2—C171.321 (4)C9—H9B0.9700
O3W—H3A0.71 (4)C10—H10A0.9700
O3W—H3B0.76 (5)C10—H10B0.9700
N1—C71.279 (4)C11—C121.438 (5)
N1—C81.483 (4)C11—H110.9300
N2—C111.285 (4)C12—C131.394 (5)
N2—C101.468 (4)C12—C171.405 (4)
C1—C61.394 (5)C13—C141.360 (5)
C1—C21.397 (5)C13—H130.9300
C2—C31.368 (5)C14—C151.387 (5)
C2—H20.9300C15—C161.370 (5)
C3—C41.394 (5)C15—H150.9300
C3—H30.9300C16—C171.405 (5)
C4—C51.358 (5)C16—H160.9300
O2—Mn—O185.46 (9)C5—C6—C7116.8 (3)
O2—Mn—N291.32 (10)N1—C7—C6128.4 (3)
O1—Mn—N2176.42 (10)N1—C7—H7115.8
O2—Mn—N1172.37 (11)C6—C7—H7115.8
O1—Mn—N190.68 (10)C9—C8—N1116.2 (3)
N2—Mn—N192.70 (11)C9—C8—H8A108.2
O2—Mn—O3W85.58 (13)N1—C8—H8A108.2
O1—Mn—O3W93.86 (12)C9—C8—H8B108.2
N2—Mn—O3W87.45 (12)N1—C8—H8B108.2
N1—Mn—O3W88.12 (13)H8A—C8—H8B107.4
O2—Mn—Cl98.82 (8)C8—C9—C10116.6 (4)
O1—Mn—Cl94.96 (9)C8—C9—H9A108.1
N2—Mn—Cl83.97 (9)C10—C9—H9A108.1
N1—Mn—Cl88.05 (9)C8—C9—H9B108.1
O3W—Mn—Cl170.43 (10)C10—C9—H9B108.1
C1—O1—Mn128.1 (2)H9A—C9—H9B107.3
C17—O2—Mn128.3 (2)N2—C10—C9109.1 (3)
Mn—O3W—H3A114 (4)N2—C10—H10A109.9
Mn—O3W—H3B125 (5)C9—C10—H10A109.9
H3A—O3W—H3B111 (6)N2—C10—H10B109.9
C7—N1—C8113.6 (3)C9—C10—H10B109.9
C7—N1—Mn121.2 (2)H10A—C10—H10B108.3
C8—N1—Mn125.1 (2)N2—C11—C12126.1 (3)
C11—N2—C10116.2 (3)N2—C11—H11116.9
C11—N2—Mn124.2 (2)C12—C11—H11116.9
C10—N2—Mn119.6 (2)C13—C12—C17120.9 (3)
O1—C1—C6122.1 (3)C13—C12—C11116.4 (3)
O1—C1—C2120.0 (3)C17—C12—C11122.7 (3)
C6—C1—C2117.9 (3)C14—C13—C12119.9 (4)
C3—C2—C1121.4 (4)C14—C13—H13120.1
C3—C2—H2119.3C12—C13—H13120.1
C1—C2—H2119.3C13—C14—C15120.6 (3)
C2—C3—C4120.4 (4)C13—C14—Br2118.0 (3)
C2—C3—H3119.8C15—C14—Br2121.4 (3)
C4—C3—H3119.8C16—C15—C14120.0 (3)
C5—C4—C3119.2 (4)C16—C15—H15120.0
C5—C4—Br1119.9 (3)C14—C15—H15120.0
C3—C4—Br1120.8 (3)C15—C16—C17121.2 (4)
C4—C5—C6121.0 (4)C15—C16—H16119.4
C4—C5—H5119.5C17—C16—H16119.4
C6—C5—H5119.5O2—C17—C12122.8 (3)
C1—C6—C5120.0 (4)O2—C17—C16119.9 (3)
C1—C6—C7123.0 (3)C12—C17—C16117.3 (3)
O2—Mn—O1—C1158.8 (3)C2—C1—C6—C51.6 (6)
N1—Mn—O1—C127.8 (3)O1—C1—C6—C75.1 (6)
O3W—Mn—O1—C1116.0 (3)C2—C1—C6—C7173.3 (4)
Cl—Mn—O1—C160.3 (3)C4—C5—C6—C10.7 (6)
O1—Mn—O2—C17159.2 (3)C4—C5—C6—C7174.5 (4)
N2—Mn—O2—C1722.4 (3)C8—N1—C7—C6178.8 (4)
O3W—Mn—O2—C1764.9 (3)Mn—N1—C7—C66.2 (6)
Cl—Mn—O2—C17106.5 (3)C1—C6—C7—N111.3 (7)
O1—Mn—N1—C720.3 (3)C5—C6—C7—N1173.6 (4)
N2—Mn—N1—C7158.5 (3)C7—N1—C8—C9171.4 (4)
O3W—Mn—N1—C7114.2 (3)Mn—N1—C8—C93.4 (5)
Cl—Mn—N1—C774.6 (3)N1—C8—C9—C1045.4 (5)
O1—Mn—N1—C8165.2 (3)C11—N2—C10—C9123.7 (4)
N2—Mn—N1—C816.0 (3)Mn—N2—C10—C957.0 (4)
O3W—Mn—N1—C871.4 (3)C8—C9—C10—N278.4 (5)
Cl—Mn—N1—C899.9 (3)C10—N2—C11—C12173.9 (4)
O2—Mn—N2—C117.4 (3)Mn—N2—C11—C126.8 (5)
N1—Mn—N2—C11166.1 (3)N2—C11—C12—C13165.8 (4)
O3W—Mn—N2—C1178.1 (3)N2—C11—C12—C1712.4 (6)
Cl—Mn—N2—C11106.1 (3)C17—C12—C13—C142.7 (6)
O2—Mn—N2—C10171.9 (3)C11—C12—C13—C14175.5 (4)
N1—Mn—N2—C1014.6 (3)C12—C13—C14—C153.6 (6)
O3W—Mn—N2—C10102.6 (3)C12—C13—C14—Br2175.2 (3)
Cl—Mn—N2—C1073.1 (3)C13—C14—C15—C161.8 (6)
Mn—O1—C1—C619.6 (5)Br2—C14—C15—C16176.9 (3)
Mn—O1—C1—C2162.0 (3)C14—C15—C16—C170.8 (6)
O1—C1—C2—C3179.5 (4)Mn—O2—C17—C1223.2 (5)
C6—C1—C2—C30.9 (6)Mn—O2—C17—C16157.8 (3)
C1—C2—C3—C40.7 (6)C13—C12—C17—O2178.9 (3)
C2—C3—C4—C51.6 (7)C11—C12—C17—O23.0 (6)
C2—C3—C4—Br1178.8 (3)C13—C12—C17—C160.1 (5)
C3—C4—C5—C60.9 (7)C11—C12—C17—C16178.0 (3)
Br1—C4—C5—C6179.5 (3)C15—C16—C17—O2179.3 (3)
O1—C1—C6—C5179.9 (4)C15—C16—C17—C121.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3A···O1i0.71 (4)2.31 (5)2.989 (4)159 (5)
O3W—H3B···Clii0.76 (5)2.48 (5)3.236 (4)174 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C17H14Br2N2O2)Cl(H2O)]
Mr546.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.2369 (14), 10.2666 (11), 13.8635 (15)
β (°) 96.434 (2)
V3)1872.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.14
Crystal size (mm)0.12 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.448, 0.598
No. of measured, independent and
observed [I > 2σ(I)] reflections
10208, 3263, 2153
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.062, 0.84
No. of reflections3263
No. of parameters243
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.63

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Mn—O21.882 (2)Mn—N12.039 (3)
Mn—O11.894 (2)Mn—O3W2.342 (4)
Mn—N22.009 (3)Mn—Cl2.5852 (13)
O2—Mn—O185.46 (9)N2—Mn—N192.70 (11)
O2—Mn—N291.32 (10)O3W—Mn—Cl170.43 (10)
O1—Mn—N190.68 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3A···O1i0.71 (4)2.31 (5)2.989 (4)159 (5)
O3W—H3B···Clii0.76 (5)2.48 (5)3.236 (4)174 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds