Download citation
Download citation
link to html
Single crystals of Ir2S3 (diiridium tris­ulfide) and Rh2S3 (dirhodium tris­ulfide) were grown in evacuated silica-glass tubes using a chemical transport method and their crystal structures were determined by single-crystal X-ray diffraction analy­sis. These compounds have a unique sesqui­sul­fide structure in which pairs of face-sharing octa­hedra are linked into a three-dimensional structure by further edge- and vertex-sharing. Ir2S3 and Rh2S3 had similar unit-cell par­am­eters and bond distances. The atomic displacement parameter (MSD: mean-square displacement) of each atom in Ir2S3 was considerably smaller than that in Rh2S3. The Debye temperatures (ΘD) estimated from the observed MSDs for the Ir, S1 and S2 sites in Ir2S3 were 259, 576 and 546 K, respectively, and those for Rh, S1 and S2 in Rh2S3 were 337, 533 and 530 K, respectively. The bulk Debye temperature for Ir2S3 kashinite (576 K) was found to rank among the higher values reported for many known sul­fides. The bulk Debye tem­perature for Rh2S3 bowieite (533 K) was lower than that for Ir2S3 kashinite, which crystallizes in the early sequences of mineral crystallization differentiation from the primitive magma in the Earth's mantle.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622009603/ep3024sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622009603/ep3024Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622009603/ep3024IIsup3.hkl
Contains datablock II

CCDC references: 2210363; 2210362

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and VESTA (Momma & Izumi, 2011).; software used to prepare material for publication: WinGX (Farrugia, 2012).

Diiridium trisulfide (I) top
Crystal data top
Ir2S3F(000) = 808
Mr = 480.58Dx = 10.177 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 5651 reflections
a = 8.4728 (3) Åθ = 4.8–44.7°
b = 6.01563 (18) ŵ = 86.43 mm1
c = 6.1537 (2) ÅT = 293 K
V = 313.65 (2) Å3Block, silver
Z = 40.003 mm (radius)
Data collection top
XtaLAB Synergy, single source at offset/far, HyPix6000
diffractometer
1092 independent reflections
Mirror monochromator790 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.060
ω scansθmax = 42.0°, θmin = 4.2°
Absorption correction: for a sphere
(CrysAlis PRO; Rigaku OD, 2019)
h = 1515
Tmin = 0.291, Tmax = 0.329k = 1111
16599 measured reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + 0.820P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017(Δ/σ)max = 0.001
wR(F2) = 0.032Δρmax = 2.90 e Å3
S = 1.05Δρmin = 1.83 e Å3
1092 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
25 parametersExtinction coefficient: 0.00069 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

The intensities of reflections were measured using Mo Kα radiation (0.71073 Å) focused by a mirror. The details of the data correction method are described in the CIF file. Independent reflections were used to refine the crystal structure using the full-matrix least-square method, which was performed using the SHELXL program (Sheldrick, 2015). The R1 indices (R1 = Σ||Fo|-|Fc||/Σ|Fo|) for Ir2S3 and Rh2S3 converged to 0.0174 and 0.0176, respectively, using anisotropic temperature factors.

The structure refinement data, atomic coordinates, displacement parameters, estimated ΘD values and selected interatomic distances are listed in Tables 1–4. The crystal structures were illustrated using VESTA (Momma & Izumi 2011).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.39220 (2)0.24934 (3)0.03060 (2)0.00331 (3)
S20.34979 (9)0.10920 (14)0.39080 (13)0.00401 (11)
S30.0000000.04444 (19)0.2500000.00446 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.00320 (5)0.00322 (4)0.00352 (5)0.00007 (5)0.00005 (3)0.00002 (6)
S20.0039 (3)0.0041 (3)0.0041 (3)0.0003 (2)0.0005 (2)0.0002 (2)
S30.0043 (4)0.0044 (4)0.0047 (4)0.0000.0007 (3)0.000
Geometric parameters (Å, º) top
Ir1—S2i2.3497 (8)Ir1—S2iii2.3923 (8)
Ir1—S2ii2.3808 (8)Ir1—S3iv2.4101 (9)
Ir1—S22.3985 (8)Ir1—S3ii2.3140 (6)
S2i—Ir1—S2ii93.67 (2)S3ii—Ir1—S3iv82.736 (9)
S2ii—Ir1—S2109.30 (2)Ir1iii—S2—Ir185.76 (3)
S2i—Ir1—S2iii83.70 (3)Ir1v—S2—Ir1iii96.30 (3)
S2iii—Ir1—S279.99 (3)Ir1vi—S2—Ir1iii126.01 (3)
S2i—Ir1—S289.588 (18)Ir1v—S2—Ir1vi109.12 (3)
S2ii—Ir1—S2iii170.381 (13)Ir1vi—S2—Ir1109.71 (3)
S2—Ir1—S3iv78.34 (2)Ir1v—S2—Ir1129.65 (4)
S2iii—Ir1—S3iv78.46 (2)Ir1vi—S3—Ir1vii115.16 (5)
S2ii—Ir1—S3iv105.40 (3)Ir1viii—S3—Ir1ix85.12 (4)
S2i—Ir1—S3iv159.91 (3)Ir1vi—S3—Ir1viii131.553 (14)
S3ii—Ir1—S2159.58 (2)Ir1vii—S3—Ir1ix131.553 (14)
S3ii—Ir1—S2iii88.80 (2)Ir1vii—S3—Ir1viii97.264 (9)
S3ii—Ir1—S2i106.22 (3)Ir1vi—S3—Ir1ix97.264 (9)
S3ii—Ir1—S2ii83.03 (2)
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z; (viii) x+1/2, y1/2, z; (ix) x1/2, y1/2, z+1/2.
Dirhodium trisulfide (II) top
Crystal data top
Rh2S3F(000) = 552
Mr = 302.00Dx = 6.447 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6842 reflections
a = 8.4672 (3) Åθ = 4.8–45.0°
b = 5.98537 (18) ŵ = 12.34 mm1
c = 6.13921 (19) ÅT = 293 K
V = 311.13 (2) Å3Block, silver
Z = 40.03 × 0.02 × 0.02 mm
Data collection top
XtaLAB Synergy, single source at offset/far, HyPix6000
diffractometer
1025 independent reflections
Mirror monochromator893 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.046
ω scansθmax = 41.0°, θmin = 4.2°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2019)
h = 1515
Tmin = 0.777, Tmax = 0.822k = 1111
14229 measured reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0278P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max = 0.001
wR(F2) = 0.045Δρmax = 1.11 e Å3
S = 1.14Δρmin = 2.75 e Å3
1025 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
25 parametersExtinction coefficient: 0.0400 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The intensities of reflections were measured using Mo Kα radiation (0.71073 Å) focused by a mirror. The details of the data correction method are described in the CIF file. Independent reflections were used to refine the crystal structure using the full-matrix least-square method, which was performed using the SHELXL program (Sheldrick, 2015). The R1 indices (R1 = Σ||Fo|-|Fc||/Σ|Fo|) for Ir2S3 and Rh2S3 converged to 0.0174 and 0.0176, respectively, using anisotropic temperature factors.

The structure refinement data, atomic coordinates, displacement parameters, estimated ΘD values and selected interatomic distances are listed in Tables 1–4. The crystal structures were illustrated using VESTA (Momma & Izumi 2011).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.10640 (2)0.25130 (2)0.03346 (2)0.00365 (5)
S10.15166 (5)0.39098 (6)0.39307 (6)0.00468 (7)
S20.0000000.95214 (9)0.2500000.00473 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.00369 (7)0.00356 (7)0.00372 (7)0.00002 (3)0.00013 (3)0.00005 (3)
S10.00448 (14)0.00453 (14)0.00502 (14)0.00015 (11)0.00027 (11)0.00032 (11)
S20.00530 (19)0.00429 (19)0.00460 (19)0.0000.00040 (15)0.000
Geometric parameters (Å, º) top
Rh1—S1i2.3396 (4)Rh1—S1iii2.3826 (4)
Rh1—S1ii2.3801 (4)Rh1—S2iv2.4052 (4)
Rh1—S12.3916 (4)Rh1—S2v2.3071 (3)
S1i—Rh1—S1ii93.041 (12)S2v—Rh1—S2iv82.977 (6)
S1ii—Rh1—S1108.750 (11)Rh1iii—S1—Rh184.556 (13)
S1i—Rh1—S1iii84.194 (14)Rh1vi—S1—Rh1iii95.806 (14)
S1iii—Rh1—S181.345 (16)Rh1vii—S1—Rh1iii126.529 (17)
S1i—Rh1—S189.651 (9)Rh1vi—S1—Rh1vii109.574 (16)
S1ii—Rh1—S1iii169.564 (8)Rh1vii—S1—Rh1110.312 (15)
S1—Rh1—S2iv79.051 (12)Rh1vi—S1—Rh1129.325 (18)
S1iii—Rh1—S2iv79.228 (12)Rh1v—S2—Rh1vi116.29 (2)
S1ii—Rh1—S2iv104.843 (13)Rh1viii—S2—Rh1ix83.775 (18)
S1i—Rh1—S2iv161.128 (14)Rh1v—S2—Rh1viii131.573 (9)
S2v—Rh1—S1160.625 (13)Rh1vi—S2—Rh1ix131.573 (9)
S2v—Rh1—S1iii88.276 (12)Rh1vi—S2—Rh1viii97.023 (5)
S2v—Rh1—S1i105.609 (15)Rh1v—S2—Rh1ix97.023 (6)
S2v—Rh1—S1ii82.767 (11)
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x, y, z+1/2; (iv) x, y1, z; (v) x, y+1, z; (vi) x, y+1, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x, y+1, z+1/2; (ix) x, y+1, z.
Atomic coordinates, equivalent atomic displacement parameters and Debye temperature ΘD for Ir2S3 and Rh2S3 top
xyzUeq2)ΘD (K)
Ir2S3
Ir0.39220 (2)0.24934 (3)0.03060 (2)0.00331 (3)259
S10.34979 (9)0.10920 (14)0.39080 (13)0.00401 (11)576
S20.00.04444 (19)0.250.00446 (17)546
Rh2S3
Rh0.10640 (2)0.25130 (2)0.03346 (2)0.00365 (5)337
S10.15166 (5)0.39098 (6)0.39307 (6)0.00468 (7)533
S20.00.95214 (9)0.250.00473 (9)530
Anisotropic atomic displacement parameters for Ir2S3 and Rh2S3 top
U11U22U33U23U13U12
Ir2S3
Ir0.00320 (5)0.00322 (4)0.00352 (5)-0.00002 (6)0.00005 (3)-0.00007 (5)
S10.0039 (3)0.0041 (3)0.0041 (3)-0.0002 (2)0.0005 (2)0.0003 (2)
S20.0044 (4)0.0044 (4)0.0047 (4)0.0-0.0007 (3)0.0
Rh2S3
Rh0.00369 (7)0.00356 (7)0.00372 (7)0.00005 (3)-0.00013 (3)-0.00002 (3)
S10.00448 (14)0.00453 (14)0.00502 (14)-0.00032 (11)-0.00027 (11)0.00015 (11)
S20.00530 (19)0.00429 (19)0.00460 (19)0.0-0.00040 (15)0.0
Selected bond distances (Å) in Ir2S3, Rh2S3 and Rh2O3 top
Ir2S3Rh2S3Rh2O3*
M—S12.3497 (8)2.3396 (4)2.018 (6)
2.3808 (8)2.3801 (4)2.056 (6)
2.3923 (8)2.3826 (4)2.068 (6)
2.3985 (8)2.3916 (4)2.077 (6)
M—S22.3140 (6)2.3071 (3)1.986 (5)
2.4101 (9)2.4052 (4)2.095 (7)
Average2.37422.36772.050
Note: (*) data from Shannon & Prewitt (1970).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds