Download citation
Download citation
link to html
The asymmetric unit in the structure of the title compound, [K2(C9H4O9S)(H2O)2]n, consists of two eight-coordinated KI cations, one 2,4-dicarb­oxy-5-sulfonato­benzoate dianion (H2SBTC2−), one bridging water mol­ecule and one terminal coordinated water mol­ecule. One KI cation is coordinated by three carboxyl­ate O atoms and three sulfonate O atoms from four H2SBTC2− ligands and by two bridging water mol­ecules. The second KI cation is coordinated by four sulfonate O atoms and three carboxyl­ate O atoms from five H2SBTC2− ligands and by one terminal coordinated water mol­ecule. The KI cations are linked by sulfonate groups to give a one-dimensional inorganic chain with cage-like K4(SO3)2 repeat units. These one-dimensional chains are bridged by one of the carb­oxy­lic acid groups of the H2SBTC2− ligand to form a two-dimensional layer, and these layers are further linked by the remaining carboxyl­ate groups and the benzene rings of the H2SBTC2− ligands to generate a three-dimensional framework. The compound displays a photoluminescent emission at 460 nm upon excitation at 358 nm. In addition, the thermal stability of the title compound has been studied.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113024499/em3061sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113024499/em3061Isup2.hkl
Contains datablock I

CCDC reference: 969457

Introduction top

In recent decades, coordination polymer solids have emerged as a new class of functional materials and have attracted considerable attention not only for their structural diversity but also for their potential applications in gas storage, molecular magnetism, photoluminescence and catalysis (Eddaoudi et al., 2001; Yoon et al., 2012; Allendorf et al., 2009; Wang et al., 2008). Because the structure of a coordination polymer is the decisive factor in these functionalities, the organic ligands used as structure-directing building units play a vital role. Sulfonate–carboxyl­ate ligands, displaying simultaneously the strong coordination ability of the carboxyl­ate group and the weak coordination ability of the sulfonate group (Kennedy et al., 2006; Evans et al., 1999), have received increasing attention recently (Xiao et al., 2009; Mahmoudkhani & Shimizu, 2007). Some sulfonate–carboxyl­ate ligands, such as 5-sulfoisophthalic acid (Sun et al., 2003; Liu et al., 2010), 2-sulfoterephthalic acid (Horike et al. 2006), 4-sulfo­benzoic acid (Zhang & Zhu, 2006) and 4,8-di­sulfonyl-2,6-naphthalenedi­carb­oxy­lic acid (Liu et al., 2012), have been used to construct coordination compounds recently. 5-Sulfono­benzene-1,2,4-tri­carb­oxy­lic acid (H4SBTC), with three carb­oxy­lic acid groups and one sulfonic acid group attached to a central benzene ring, is expected to be an effective component in the design of a diverse range of coordination polymers. However, there are no known coordination polymers incorporating H4SBTC, except for two coordination compounds with inter­esting photoluminescent properties which have been reported in our recent work (Liu et al., 2013), where H4SBTC displays various coordination modes. Further studies of the H4SBTC ligand with other metal ions are needed in order to understand comprehensively the coordination chemistry of this ligand. We report herein the synthesis and crystal structure of the title compound, [K2(H2SBTC)(H2O)2]n, (I), incorporating H4SBTC as the dianionic H2SBTC2- ligand.

Experimental top

Synthesis and crystallization top

KOH (11.2 mg, 0.20 mmol) and 5-sulfono­benzene-1,2,4-tri­carb­oxy­lic acid (86.7 mg, 0.30 mmol) were mixed in distilled water (10 ml) in a 25 ml Parr Teflon-lined stainless steel vessel. The vessel was sealed and heated to 393 K. The temperature was maintained for 3 d and then the mixture was cooled naturally to obtain a colourless solution. Upon standing and evaporation of the resulting solution under ambient conditions for 10 d, colourless crystals of (I) were obtained. The crystalline product was filtered, washed with distilled water and dried at ambient temperature (yield 51%, based on KOH). IR (KBr pellet, ν, cm-1): 3445, 3128, 2454, 1713, 1606, 1474, 1386, 1327, 1280, 1245, 1206, 1120, 1068, 995, 952, 864, 822, 768, 723, 635, 562, 538, 517, 462.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms bonded to C atoms were placed in calculated positions and treated using a riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to O atoms were located in a difference Fourier map and refined with a restraint of O—H = 0.82 (2) Å and with Uiso(H) = 1.5Ueq(O).

Results and discussion top

The asymmetric unit of (I) consists of two KI cations, one H2SBTC2- ligand, one bridging aqua ligand (O10) and one terminal aqua ligand (O11). As depicted in Fig. 1, atom K1 is eight-coordinated by sulfonate atoms O7 and O9 and carboxyl­ate atom O6 from an H2SBTC2- ligand, by carboxyl­ate atoms O4i and O3iii from two other H2SBTC2- ligands [symmetry codes: (i) -x + 1/2, y + 1/2, -z + 1/2; (iii) x + 1, y, z], sulfonate atom O8ii from a fourth H2SBTC2- ligand [symmetry code: (ii) -x + 1, -y + 1, -z], and water atoms O10 and O10iv [symmetry code: (iv) -x + 3/2, y - 1/2, -z + 1/2]. The K1—O bond lengths vary from 2.6745 (14) to 3.1981 (15) Å (Table 2). The eight-coordination environment for atom K2 (Fig. 1) is completed by carboxyl­ate atom O6 and sulfonate atom O9 from an H2SBTC2- ligand, sulfonate atoms O7v and O8v from an H2SBTC2- ligand [symmetry code: (v) x, y - 1, z], carboxyl­ate atoms O2vi and O5viii from two H2SBTC2- ligands [symmetry codes: (vi) -x, -y, -z; (viii) -x + 1/2, y - 1/2, -z + 1/2], sulfonate atom O9vii of an H2SBTC2- ligand [symmetry code: (vii) -x + 1, -y, -z], and one water O atom (O11). The K2—O bond lengths are comparable with the K1—O bond lengths (Table 2).

Two centrosymmetric sulfonate groups link two K1 and two K2 ions to give a cage-like inorganic unit (Fig. 2). Adjacent inorganic cage units are extended into a one-dimensional chain propagating along the b axis through the K2—O9 bond (Fig. 2), which is further linked by bridging water molecule O10 and the O3—C8—O4 carboxyl­ate bridge to form a two-dimensional layer structure (Fig. 3). The two-dimensional layers are linked by O5—C9—O6 carboxyl­ate groups and benzene rings of H2SBTC2- ligands to generate a three-dimensional framework (Fig. 4). The three-dimensional framework is further reinforced by hydrogen bonds, with O···O distances of 2.3771 (19)–2.958 (3) Å (Table 3).

The solid-state photoluminescent properties of (I) were examined at room temperature. The free H4SBTC molecule exhibits a photoluminescent emission at 460 nm under 348 nm radiation (Liu et al., 2013), which can be assigned to the typical ligand-centred (ππ*) transitions. Compound (I) displays a photoluminescent emission at 460 nm upon excitation at 358 nm (Fig. 5). The emission energy of (I) is very similar to that of the free molecule. Therefore, the luminescence behaviour of (I) can be assigned as the ligand centred ππ* transitions.

The results of thermogravimetric analysis are represented by the curve shown in Fig. 6. Compound (I) exhibits three main weight-loss steps. The first step (305–319 K) corresponds to the release of all coordinated water molecules (measured weight loss = 8.88%; theoretical = 8.90%). The second weight loss occurs between 517 and 571 K (measured weight loss = 4.08%) and can be attributed to partial decomposition of the organic ligand. A sharp continuous weight loss occurs at 638 K, which is attributed to further decomposition of the organic ligand.

Related literature top

For related literature, see: Allendorf et al. (2009); Eddaoudi et al. (2001); Evans et al. (1999); Horike et al. (2006); Kennedy et al. (2006); Liu et al. (2010, 2012, 2013); Mahmoudkhani & Shimizu (2007); Sun et al. (2003); Wang et al. (2008); Xiao et al. (2009); Yoon et al. (2012); Zhang & Zhu (2006).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 25% probability level. All H atoms have been omitted for clarity, except for those attached to O atoms, which are shown as small spheres of arbitrary radius. The dashed line indicates the intramolecular hydrogen bond [Added text OK?] [Symmetry codes: (i) -x + 1/2, y + 1/2, -z + 1/2; (ii) -x + 1, -y + 1, -z; (iii) x + 1, y, z; (iv) -x + 3/2, y - 1/2, -z + 1/2; (v) x, y - 1, z; (vi) -x, -y, -z; (vii) -x + 1, -y, -z; (viii) -x + 1/2, y - 1/2, -z + 1/2.]
[Figure 2] Fig. 2. A view of the one-dimensional inorganic chain of (I), featuring the [K4(SO3)2] cages. [Symmetry codes: (ii) -x + 1, -y + 1, -z; (vii) -x + 1, -y, -z; (ix) x, y + 1, z.]
[Figure 3] Fig. 3. A perspective view of the two-dimensional layer structure of (I). [Symmetry codes: (i) -x + 1/2, y + 1/2, -z + 1/2; (x) -x + 3/2, y + 1/2, -z + 1/2.]
[Figure 4] Fig. 4. A view of the three-dimensional framework of (I), along the b axis.
[Figure 5] Fig. 5. The solid-state excitation and emission spectra of (I) at room temperature.
[Figure 6] Fig. 6. The thermogravimetric analysis curve for (I).
Poly[µ-aqua-aqua-µ9-(2,4-dicarboxy-5-sulfonatobenzoato)-dipotassium(I)] top
Crystal data top
[K2(C9H4O9S)(H2O)2]F(000) = 816
Mr = 402.41Dx = 1.936 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.4108 (6) ÅCell parameters from 6780 reflections
b = 7.1795 (4) Åθ = 2.4–28.2°
c = 16.9372 (9) ŵ = 0.90 mm1
β = 95.774 (1)°T = 296 K
V = 1380.52 (13) Å3Block, colourless
Z = 40.24 × 0.18 × 0.15 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3411 independent reflections
Radiation source: fine-focus sealed tube3056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1514
Tmin = 0.813, Tmax = 0.877k = 99
12572 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.9006P]
where P = (Fo2 + 2Fc2)/3
3411 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.55 e Å3
6 restraintsΔρmin = 0.51 e Å3
Crystal data top
[K2(C9H4O9S)(H2O)2]V = 1380.52 (13) Å3
Mr = 402.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.4108 (6) ŵ = 0.90 mm1
b = 7.1795 (4) ÅT = 296 K
c = 16.9372 (9) Å0.24 × 0.18 × 0.15 mm
β = 95.774 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3411 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3056 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.877Rint = 0.021
12572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0326 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.55 e Å3
3411 reflectionsΔρmin = 0.51 e Å3
208 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.63078 (4)0.34215 (8)0.16439 (3)0.04418 (14)
K20.41486 (4)0.15869 (5)0.08872 (3)0.03350 (12)
S10.36844 (3)0.36730 (5)0.04779 (2)0.02366 (11)
O10.03680 (11)0.2982 (2)0.10471 (7)0.0360 (3)
O20.17489 (11)0.1925 (2)0.03608 (8)0.0367 (3)
O30.20614 (11)0.1063 (2)0.09568 (8)0.0416 (4)
H30.191 (3)0.139 (4)0.0471 (12)0.062*
O40.10690 (13)0.0685 (3)0.21101 (8)0.0519 (4)
O50.28766 (12)0.2558 (2)0.28376 (7)0.0374 (3)
H50.3474 (18)0.239 (4)0.3156 (14)0.056*
O60.40340 (11)0.1135 (2)0.20402 (8)0.0346 (3)
O70.41622 (11)0.47421 (18)0.11643 (8)0.0332 (3)
O80.34166 (12)0.4809 (2)0.02206 (8)0.0400 (3)
O90.43865 (11)0.20320 (18)0.03397 (8)0.0324 (3)
O100.84463 (15)0.5745 (3)0.19595 (11)0.0579 (5)
H10A0.871 (3)0.513 (4)0.2340 (16)0.087*
H10B0.904 (2)0.610 (5)0.174 (2)0.087*
O110.63800 (17)0.1472 (3)0.16637 (12)0.0550 (4)
H11A0.670 (3)0.237 (4)0.185 (2)0.083*
H11B0.684 (3)0.105 (5)0.1364 (18)0.083*
C10.02142 (13)0.2350 (2)0.03132 (9)0.0197 (3)
C20.00396 (13)0.1757 (2)0.10903 (9)0.0206 (3)
C30.10096 (14)0.1725 (2)0.16637 (9)0.0226 (3)
H3A0.08940.13640.21780.027*
C40.21371 (13)0.2209 (2)0.15000 (9)0.0206 (3)
C50.23002 (13)0.2838 (2)0.07363 (9)0.0200 (3)
C60.13433 (13)0.2908 (2)0.01662 (9)0.0215 (3)
H60.14580.33460.03370.026*
C70.06914 (14)0.2442 (2)0.04115 (9)0.0228 (3)
C80.10917 (14)0.1118 (3)0.14150 (10)0.0271 (3)
C90.31274 (14)0.1926 (2)0.21464 (9)0.0234 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0351 (2)0.0653 (3)0.0320 (2)0.0125 (2)0.00281 (17)0.00328 (19)
K20.0313 (2)0.0281 (2)0.0408 (2)0.00191 (14)0.00200 (16)0.00395 (15)
S10.01787 (19)0.0253 (2)0.0282 (2)0.00182 (14)0.00390 (15)0.00339 (14)
O10.0289 (6)0.0572 (8)0.0201 (6)0.0081 (6)0.0058 (5)0.0079 (5)
O20.0185 (6)0.0633 (9)0.0270 (6)0.0040 (6)0.0044 (5)0.0022 (6)
O30.0190 (6)0.0747 (10)0.0311 (7)0.0077 (6)0.0024 (5)0.0068 (7)
O40.0319 (7)0.0950 (13)0.0293 (7)0.0137 (8)0.0062 (6)0.0144 (8)
O50.0280 (6)0.0632 (9)0.0193 (6)0.0116 (6)0.0065 (5)0.0087 (6)
O60.0264 (6)0.0488 (8)0.0274 (6)0.0109 (6)0.0033 (5)0.0043 (5)
O70.0244 (6)0.0305 (6)0.0439 (7)0.0062 (5)0.0002 (5)0.0055 (5)
O80.0303 (7)0.0495 (8)0.0409 (7)0.0022 (6)0.0064 (6)0.0224 (6)
O90.0276 (6)0.0319 (6)0.0397 (7)0.0029 (5)0.0134 (5)0.0001 (5)
O100.0397 (9)0.0828 (13)0.0506 (10)0.0053 (9)0.0017 (7)0.0169 (9)
O110.0513 (11)0.0572 (11)0.0553 (11)0.0060 (8)0.0011 (8)0.0028 (8)
C10.0168 (7)0.0230 (7)0.0184 (7)0.0008 (5)0.0021 (5)0.0016 (5)
C20.0162 (7)0.0261 (7)0.0193 (7)0.0008 (5)0.0012 (5)0.0020 (5)
C30.0200 (7)0.0312 (8)0.0163 (7)0.0005 (6)0.0007 (5)0.0002 (6)
C40.0181 (7)0.0253 (7)0.0177 (7)0.0000 (6)0.0019 (5)0.0020 (5)
C50.0165 (7)0.0228 (7)0.0208 (7)0.0021 (5)0.0016 (5)0.0008 (5)
C60.0208 (7)0.0261 (7)0.0174 (7)0.0013 (6)0.0007 (5)0.0024 (5)
C70.0200 (7)0.0268 (7)0.0203 (7)0.0014 (6)0.0041 (5)0.0017 (6)
C80.0201 (7)0.0364 (9)0.0255 (8)0.0008 (6)0.0056 (6)0.0007 (6)
C90.0208 (7)0.0288 (7)0.0198 (7)0.0006 (6)0.0026 (6)0.0008 (6)
Geometric parameters (Å, º) top
K1—O72.6745 (14)O4—C81.215 (2)
K1—O4i2.6990 (16)O4—K1viii2.6990 (16)
K1—O8ii2.7708 (13)O5—C91.313 (2)
K1—O3iii2.8496 (16)O5—K2i3.3744 (14)
K1—O102.960 (2)O5—H50.835 (17)
K1—O10iv3.039 (2)O6—C91.210 (2)
K1—O93.1156 (15)O7—K2x2.6768 (14)
K1—O63.1981 (15)O8—K1ii2.7708 (13)
K2—O7v2.6768 (14)O8—K2x3.2558 (17)
K2—O112.747 (2)O9—K2vii2.8130 (13)
K2—O62.7749 (14)O10—K1xi3.039 (2)
K2—O92.7811 (14)O10—H10A0.815 (18)
K2—O2vi2.8037 (13)O10—H10B0.842 (18)
K2—O9vii2.8130 (13)O11—H11A0.788 (18)
K2—O8v3.2558 (17)O11—H11B0.823 (18)
K2—O5viii3.3744 (14)C1—C61.395 (2)
S1—O81.4440 (13)C1—C21.416 (2)
S1—O71.4527 (13)C1—C71.524 (2)
S1—O91.4570 (13)C2—C31.397 (2)
S1—C51.7845 (15)C2—C81.524 (2)
O1—C71.235 (2)C3—C41.387 (2)
O2—C71.274 (2)C3—H3A0.9300
O2—K2vi2.8037 (13)C4—C51.400 (2)
O3—C81.287 (2)C4—C91.506 (2)
O3—K1ix2.8496 (16)C5—C61.384 (2)
O3—H30.890 (17)C6—H60.9300
O7—K1—O4i82.11 (4)O9—S1—C5106.41 (7)
O7—K1—O8ii75.74 (4)C7—O2—K2vi154.89 (11)
O4i—K1—O8ii115.68 (6)C8—O3—K1ix107.01 (11)
O7—K1—O3iii134.59 (4)C8—O3—H3108 (2)
O4i—K1—O3iii142.99 (5)K1ix—O3—H3114.7 (19)
O8ii—K1—O3iii77.36 (4)C8—O4—K1viii156.56 (16)
O7—K1—O10124.61 (5)C9—O5—K2i149.09 (10)
O4i—K1—O1070.47 (6)C9—O5—H5106.8 (19)
O8ii—K1—O1074.63 (5)K2i—O5—H5100.4 (19)
O3iii—K1—O1081.27 (5)C9—O6—K2122.48 (11)
O7—K1—O10iv118.08 (5)C9—O6—K1120.93 (12)
O4i—K1—O10iv77.34 (6)K2—O6—K196.73 (4)
O8ii—K1—O10iv163.26 (5)S1—O7—K1108.31 (7)
O3iii—K1—O10iv85.94 (5)S1—O7—K2x112.63 (7)
O10—K1—O10iv101.88 (3)K1—O7—K2x113.03 (5)
O7—K1—O948.76 (4)S1—O8—K1ii159.82 (8)
O4i—K1—O9128.90 (4)S1—O8—K2x87.46 (7)
O8ii—K1—O970.33 (4)K1ii—O8—K2x95.27 (4)
O3iii—K1—O987.82 (4)S1—O9—K2128.91 (7)
O10—K1—O9144.79 (4)S1—O9—K2vii126.00 (7)
O10iv—K1—O9110.65 (5)K2—O9—K2vii103.03 (4)
O7—K1—O660.56 (4)S1—O9—K189.21 (6)
O4i—K1—O689.84 (5)K2—O9—K198.51 (4)
O8ii—K1—O6125.70 (4)K2vii—O9—K197.59 (4)
O3iii—K1—O6110.95 (4)K1—O10—K1xi120.46 (6)
O10—K1—O6157.36 (5)K1—O10—H10A94 (3)
O10iv—K1—O661.66 (4)K1xi—O10—H10A74 (3)
O9—K1—O657.08 (3)K1—O10—H10B141 (3)
O7v—K2—O1187.52 (5)K1xi—O10—H10B98 (3)
O7v—K2—O6124.73 (4)H10A—O10—H10B105 (3)
O11—K2—O675.47 (5)K2—O11—H11A122 (3)
O7v—K2—O9168.30 (4)K2—O11—H11B109 (3)
O11—K2—O990.85 (5)H11A—O11—H11B104 (4)
O6—K2—O965.79 (4)C6—C1—C2118.09 (13)
O7v—K2—O2vi87.63 (4)C6—C1—C7114.04 (13)
O11—K2—O2vi169.56 (5)C2—C1—C7127.87 (13)
O6—K2—O2vi99.85 (4)C3—C2—C1118.37 (13)
O9—K2—O2vi95.73 (4)C3—C2—C8112.62 (13)
O7v—K2—O9vii91.39 (4)C1—C2—C8129.00 (14)
O11—K2—O9vii76.47 (5)C4—C3—C2122.86 (14)
O6—K2—O9vii132.33 (4)C4—C3—H3A118.6
O9—K2—O9vii76.97 (4)C2—C3—H3A118.6
O2vi—K2—O9vii112.90 (4)C3—C4—C5118.53 (13)
O7v—K2—O8v46.77 (4)C3—C4—C9117.65 (13)
O11—K2—O8v118.12 (5)C5—C4—C9123.74 (13)
O6—K2—O8v159.68 (4)C6—C5—C4119.17 (13)
O9—K2—O8v125.33 (4)C6—C5—S1118.20 (11)
O2vi—K2—O8v64.03 (4)C4—C5—S1122.55 (11)
O9vii—K2—O8v67.73 (4)C5—C6—C1122.89 (14)
O7v—K2—O5viii72.59 (4)C5—C6—H6118.6
O11—K2—O5viii111.13 (5)C1—C6—H6118.6
O6—K2—O5viii66.04 (4)O1—C7—O2121.23 (14)
O9—K2—O5viii118.66 (4)O1—C7—C1118.53 (14)
O2vi—K2—O5viii58.53 (3)O2—C7—C1120.22 (14)
O9vii—K2—O5viii161.48 (4)O4—C8—O3120.63 (16)
O8v—K2—O5viii94.11 (4)O4—C8—C2119.37 (15)
O8—S1—O7112.88 (9)O3—C8—C2120.00 (14)
O8—S1—O9113.54 (9)O6—C9—O5124.13 (15)
O7—S1—O9112.81 (8)O6—C9—C4123.08 (14)
O8—S1—C5105.72 (7)O5—C9—C4112.73 (13)
O7—S1—C5104.56 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+3/2, y1/2, z+1/2; (v) x, y1, z; (vi) x, y, z; (vii) x+1, y, z; (viii) x+1/2, y1/2, z+1/2; (ix) x1, y, z; (x) x, y+1, z; (xi) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.89 (2)1.49 (2)2.3771 (19)176 (3)
O5—H5···O1xii0.84 (2)1.81 (2)2.6400 (18)172 (3)
O10—H10A···O11xi0.82 (2)2.05 (2)2.814 (3)155 (3)
O10—H10B···O1ii0.84 (2)2.12 (2)2.952 (2)172 (3)
O11—H11A···O4viii0.79 (2)2.42 (3)2.958 (3)127 (3)
O11—H11B···O3iii0.82 (2)2.13 (2)2.888 (2)154 (4)
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y, z; (viii) x+1/2, y1/2, z+1/2; (xi) x+3/2, y+1/2, z+1/2; (xii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[K2(C9H4O9S)(H2O)2]
Mr402.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.4108 (6), 7.1795 (4), 16.9372 (9)
β (°) 95.774 (1)
V3)1380.52 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.24 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.813, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
12572, 3411, 3056
Rint0.021
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.094, 1.00
No. of reflections3411
No. of parameters208
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.51

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).

Selected bond lengths (Å) top
K1—O72.6745 (14)K2—O7v2.6768 (14)
K1—O4i2.6990 (16)K2—O112.747 (2)
K1—O8ii2.7708 (13)K2—O62.7749 (14)
K1—O3iii2.8496 (16)K2—O92.7811 (14)
K1—O102.960 (2)K2—O2vi2.8037 (13)
K1—O10iv3.039 (2)K2—O9vii2.8130 (13)
K1—O93.1156 (15)K2—O8v3.2558 (17)
K1—O63.1981 (15)K2—O5viii3.3744 (14)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+3/2, y1/2, z+1/2; (v) x, y1, z; (vi) x, y, z; (vii) x+1, y, z; (viii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.890 (17)1.489 (18)2.3771 (19)176 (3)
O5—H5···O1ix0.835 (17)1.811 (18)2.6400 (18)172 (3)
O10—H10A···O11x0.815 (18)2.05 (2)2.814 (3)155 (3)
O10—H10B···O1ii0.842 (18)2.116 (19)2.952 (2)172 (3)
O11—H11A···O4viii0.788 (18)2.42 (3)2.958 (3)127 (3)
O11—H11B···O3iii0.823 (18)2.13 (2)2.888 (2)154 (4)
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y, z; (viii) x+1/2, y1/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+3/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds