Download citation
Download citation
link to html
Six ammonium carboxyl­ate salts, namely cyclo­pentyl­ammonium cinnamate, C5H12N+·C9H7O2, (I), cyclo­hexyl­ammonium cinnamate, C6H14N+·C9H7O2, (II), cyclo­heptyl­ammonium cinnamate form I, C7H16N+·C9H7O2, (IIIa), and form II, (IIIb), cyclo­octylammonium cinnamate, C8H18N+·C9H7O2, (IV), and cyclo­dodecyl­ammonium cinnamate, C12H26N+·C9H7O2, (V), are reported. Salts (II)–(V) all have a 1:1 ratio of cation to anion and feature three N+—H...O hydrogen bonds forming one-dimensional hydrogen-bonded columns consisting of repeat­ing R43(10) rings, while salt (I) has a two-dimensional network made up of alternating R44(12) and R68(20) rings. Salt (III) consists of two polymorphic forms, viz. form I having Z′ = 1 and form II with Z′ = 2. The latter polymorph has disorder of the cyclo­heptane rings in the two cations, as well as whole-mol­ecule disorder of one of the cinnamate anions. A similar, but ordered, Z′ = 2 structure is seen in salt (IV).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112013534/em3048sup1.cif
Contains datablocks global, I, II, IIIa, IIIb, IV, V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112013534/em3048Isup2.hkl
Contains datablock I

mol

MDL mol file https://doi.org/10.1107/S0108270112013534/em3048Isup7.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112013534/em3048IIsup3.hkl
Contains datablock II

mol

MDL mol file https://doi.org/10.1107/S0108270112013534/em3048IIsup8.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112013534/em3048IIIasup4.hkl
Contains datablock IIIa

mol

MDL mol file https://doi.org/10.1107/S0108270112013534/em3048IIIasup9.mol
Supplementary material

mol

MDL mol file https://doi.org/10.1107/S0108270112013534/em3048IIIbsup10.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112013534/em3048IIIbsup5.hkl
Contains datablock IIIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112013534/em3048IVsup12.hkl
Contains datablock IV

mol

MDL mol file https://doi.org/10.1107/S0108270112013534/em3048Vsup11.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112013534/em3048Vsup6.hkl
Contains datablock V

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112013534/em3048Isup13.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112013534/em3048IIsup14.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112013534/em3048IIIasup15.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112013534/em3048IIIbsup16.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112013534/em3048IVsup17.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112013534/em3048Vsup18.cml
Supplementary material

CCDC references: 879456; 879457; 879458; 879459; 879460; 879461

Comment top

Understanding how to control the solid-state formation of molecules using a variety of intermolecular interactions is at the heart of crystal engineering (Tiekink et al., 2010). Supramolecular synthesis makes use especially of the hydrogen bond, as the most directional of the known intermolecular interactions (Aakeröy & Beatty, 2001). Concepts of crystal engineering have been applied in the synthesis of aminium carboxylate salts, of general formula (R–NH3+).(R'–COO-), to form hydrogen-bonded one-dimensional columns in the solid state (Lemmerer, 2008, 2011a,b,c; Nagahama et al., 2003; Odendal et al., 2010; Yuge et al., 2008)). The hydrogen bond used in these molecular salts is the robust charge-assisted N+—H···O- interaction (Braga et al., 2000), and three such hydrogen bonds can be formed from the primary aminium cation to carboxylate anion. In the past, we have made one-dimensional columns using this type of hydrogen bond (Lemmerer et al., 2010) and the most commonly encountered consists of repeating R43(10) rings (Fig. 1), described using graph-set notation (Bernstein et al., 1995). The packing of columns is based on the close packing principle of bumps in hollows. Each individual column, when viewed down its length, resembles a cross, X, as the hydrogen-bonding functional groups point inward (centred at the centre of the cross), and the hydrocarbon parts point outward, and the latter then interdigitate as best as possible with neighbouring columns (X). The counter-cations are cycloalkylaminium cations with ring sizes ranging from three- to 12-membered. So far, the anion has been planar and the carboxylate functional groups coplanar with the hydrocarbon backbone. In this study, we want to observe if similar hydrogen-bonded rings and assemblies are found for molecules where the carboxylate functional groups are extended further out from the ring, yet still predominantly planar by using cinnamic acid. To this end, we synthesized and characterized, using single-crystal X-ray diffraction, six salts, namely cyclopentylaminium cinnamate, (I), cyclohexylaminium cinnamate, (II), cycloheptylaminium cinnamate form I, (IIIa), cycloheptylaminium cinnamate form II, (IIIb), cyclooctylaminium cinnamate, (IV), and cyclododecylaminium cinnamate, (V). These six aminium carboxylate salts were all prepared in an identical manner. A 1:1 stoichiometric ratio of amine-to-acid was dissolved in methanol and crystals grown by slow evaporation at room temperature. Since the hydrogen-bonded interactions are central to this study, the H atoms on the aminium group are all labelled consistently in order to make comparisons of the six structures easier. H1A on the aminium group is always trans to the methine H10 atom on the cyclic hydrocarbon ring and forms a symmetry-independent hydrogen bond to O1 or O2 on the benzoate anion. Similarly, H2A is trans to the methine H atom, and forms a symmetry-independent hydrogen bond to O3 or O4 for those salts with Z' = 2. H1B and H1C are then labelled clockwise relative to H1A, viewed from N1 to the C atom of the hydrocarbon ring, and similarly for H2B and H2C. For the cinnamate anion, O1 is anti to the double bond and O2 is syn, and similarly for O3 and O4.

The molecular structure and atom-numbering scheme of the asymmetric unit of the 1:1 salt cyclopentylaminium cinnamate, (I), are shown in Fig. 2. The asymmetric unit consists of one cyclopentylaminium cation and one cinnamate anion, both on general positions. The cyclopentyl ring has an envelope conformation. The aminium group forms three charge-assisted hydrogen bonds to form two types of rings: (i) an R44(12) ring, consisting of two aminium cations and two carboxylate anions, involving atoms O1 and O2, and (ii) a second, larger R68(20) ring, using four cations, two anions using both O atoms and two anions using only one O atom (Fig. 3a). This hydrogen-bonded pattern leads to a two-dimensional network parallel to the ab plane, which has the hydrocarbon ends of the ions approximately perpendicular to the hydrogen-bonded layers. Adjacent layers are interdigitated through the aromatic rings of the cinnamate anions (Fig. 3b).

The molecular structure and atom-numbering scheme of the asymmetric unit of the 1:1 salt cyclohexylaminium cinnamate, (II), are shown in Fig. 4. The asymmetric unit consists of one cyclohexylaminium cation and one cinnamate anion, both on general positions. The cyclohexyl ring has a chair conformation. The aminium group forms three charge-assisted hydrogen bonds to form a ring [graph-set notation R43(10)] consisting of two aminium cations and two carboxylate anions, one involving both atoms O1 and O2 and the second involving only atom O2 (see Fig. 5a). All three aminium H atoms are used to form the rings and atom O2 acts as a bifurcated hydrogen-bond acceptor and forms a symmetry-independent hydrogen bond to H1A. This hydrogen-bonded pattern has translational symmetry via a twofold screw axis along the crystallographic b axis inherent in the space group P21/n, leading to one-dimensional hydrogen-bonded columns. The columns pack closely by interdigitation of the cyclohexane and aromatic rings (Fig. 5b).

The molecular structure and atom-numbering scheme of the asymmetric unit of form I of the 1:1 salt cycloheptylaminium cinnamate, (IIIa), are shown in Fig. 6. The asymmetric unit consists of one cycloheptylaminium cation and one cinnamate anion, both on general positions. The cycloheptyl ring has a twist-boat conformation. The aminium group forms three charge-assisted hydrogen bonds to form a ring [graph-set notation R43(10)] consisting of two aminium cations and two carboxylate anions, one involving both atoms O1 and O2 and the second involving only atom O1, different to (II). All three aminium H atoms are used to form the rings and atom O1 acts as a bifurcated hydrogen-bond acceptor and forms a symmetry-independent hydrogen bond to H1A in this case. This hydrogen-bonded pattern has translational symmetry via a twofold screw axis along the crystallographic a axis inherent in the space group P212121, and forms one-dimensional hydrogen-bonded columns. The columns pack closely by interdigitation of the cycloheptyl and aromatic rings (Fig. 7).

The molecular structure and atom-numbering scheme of the asymmetric unit of form II of the 1:1 salt cycloheptylaminium cinnamate, (IIIb), are shown in Fig. 8. The asymmetric unit consists of two cycloheptylaminium cations (labelled N1 and N2), and two cinnamate anions (labelled O1/O2 and O3/O4), all on general positions. Both N1 and N2 cations have two ring C atoms split over two positions, such that the cycloheptyl rings adopt one of two twist-chair conformations. The cinnamate anion O1/O2 features whole-molecule disorder. The second anion is completely ordered. In the descriptions of the hydrogen bonding, we will focus on the major parts of the disordered components. Both sets of cation/anion pairs form R43(10) rings as seen in (II), where the symmetry-independent hydrogen bonds from H1A and H2A are to O2 and O4, respectively. This leads to two symmetry-independent one-dimensional columns, running along the b axis, and which again interdigitate through the cycloheptyl and aromatic rings (Fig. 9).

The molecular structure and atom-numbering scheme of the asymmetric unit of the 1:1 salt cyclooctylaminium cinnamate, (IV), are shown in Fig. 10. The asymmetric unit consists of two cyclooctylaminium cations (labelled N1 and N2), and two cinnamate anions (labelled O1/O2 and O3/O4), all on general positions. Both N1 and N2 cations have boat–chair conformations. Both sets of cation/anion pairs form R43(10) rings as seen in (IIIb), where the symmetry-independent hydrogen bonds from H1A and H2A are to O2 and O4, respectively. This leads to two symmetry-independent one-dimensional columns, running along the b axis, and again interdigitate through the cyclooctyl and aromatic rings (Fig. 11).

The molecular structure and atom-numbering scheme of the asymmetric unit of the 1:1 salt cyclododecylaminium cinnamate, (V), are shown in Fig. 12. The asymmetric unit consists of one cycloheptylaminium cation and one cinnamate anion, both on general positions. The aminium group forms three charge-assisted hydrogen bonds to form a ring [graph-set notation R43(10)] consisting of two aminium cations and two carboxylate anions, one involving both atoms O1 and O2 and the second involving only atom O1, as seen in (IIIa). All three aminium H atoms are used to form the rings, and atom O1 acts as a bifurcated hydrogen-bond acceptor and forms a symmetry-independent hydrogen bond to H1A in this case. This hydrogen-bonded pattern has translational symmetry via a twofold screw axis along the crystallographic b axis inherent in the space group P21, and forms one-dimensional hydrogen-bonded columns. The columns back [pack?] closely by interdigitation of the cycloheptyl and aromatic rings (Fig. 13).

Related literature top

For related literature, see: Aakeröy & Beatty, 2001; Bernstein et al. (1995); Braga et al. (2000); Flack & Bernardinelli (2000); Lemmerer (2008); Lemmerer et al., (2010); Lemmerer (2011a, 2011b, 2011c); Nagahama et al. (2003); Odendal et al. (2010); Tiekink et al. (2010); Yuge et al. (2008).

Experimental top

All chemicals were purchased from commercial sources and used as received. Crystals were grown by slow evaporation at ambient conditions of a methanol solution containing a 1:1 ratio of amine and acid. Detailed masses and volumes are as follows: for (I), cyclopentylamine (0.115 g, 1.35 mmol) and cinnamic acid (0.200 g, 1.35 mmol) in methanol (8 ml); for (II), cyclohexylamine (0.134 g, 1.35 mmol) and cinnamic acid (0.200 g, 1.35 mmol) in methanol (8 ml); for (IIIa), cycloheptylamine (0.153 g, 1.35 mmol) and cinnamic acid (0.200 g, 1.35 mmol) in methanol (8 ml); for (IIIb), cycloheptylamine (0.153 g, 1.35 mmol) and cinnamic acid (0.200 g, 1.35 mmol) dissolved in hot methanol (8 ml) using sonication for 2 min; for (IV), cyclooctylamine (0.172 g, 1.35 mmol) and cinnamic acid (0.200 g, 1.35 mmol) in methanol (8 ml); for (V), cyclododecylamine (0.248 g, 1.35 mmol) and cinnamic acid (0.200 g, 1.35 mmol) in methanol (8 ml).

Refinement top

For all compounds, the C-bound H atoms were geometrically placed [C—H bond lengths of 1.00 (methine CH), 0.99 (ethylene CH2) and 0.95 Å (Ar—H)] and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in the difference map and their coordinates allowed to refine freely, with Uiso(H) = 1.5Ueq(N).

The whole-molecule disorder of one of the cinnamate anions in (IIIb) was modelled by finding alternative positions for all the atoms in the molecule. The corresponding bonded distance and the one-angle nonbonded distances in the two disorder components were restrained to have similar values, subject to s.u. values of 0.005 and 0.01 Å, respectively. For the carboxylate groups, the bond lengths and angles were restrained to values of the second cinnamate anion, which was ordered. Refinement of the site occupancies gave values of 0.583 (5) and 0.417 (5). For the two cycloheptane cations, the disorder of the C12 and C15 atoms in cation N1, and of C28 and C31 in cation N2 was resolved by finding alternative positions for the two in the difference Fourier map, and were then refined anisotropically together with their site occupancy, such that the sum of the occupancies summed to one. Refinement of the site occupancies gave values of 0.835 (3) and 0.165 (3) for cation N1, and values of 0.616 (3) and 0.384 (3) for cation N2.

In (IIIa) and (V), the absolute structure was chosen arbitrarily, and refinement of the absolute structure parameter (Flack & Bernardinelli, 2000) led to values whose precision was too poor to enable conclusions to be drawn about the absolute structure, so the Friedel pairs of reflections were merged prior to the final refinements.

In (IV), the diffraction data have been cut off at a 2θ angle of 47° because of weak data above this angle.

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The most common type of ladder formed by ammonium carboxylate salts.
[Figure 2] Fig. 2. A perspective view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius. The dashed line indicates the symmetry-independent N+—H···O- hydrogen bond.
[Figure 3] Fig. 3. (a) View of the two-dimensional hydrogen-bonded layer formed by the R44(12) and R86(20) rings in (I). The hydrocarbon ring of the cation has been omitted for clarity. (b) The packing of the layers, interdigitated through the cinnamate anions. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 4] Fig. 4. A perspective view of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius. The dashed line indicates the symmetry-independent N+—H···O- hydrogen bond.
[Figure 5] Fig. 5. (a) The R43(10) rings forming a one-dimensional column in (II). (b) Packing diagram of the columns. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 6] Fig. 6. A perspective view of (IIIa), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius. The dashed line indicates the symmetry-independent N+—H···O- hydrogen bond.
[Figure 7] Fig. 7. Packing of the hydrogen-bonded columns in (IIIa), formed by repeating R43(10) rings. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 8] Fig. 8. A perspective view of (IIIb), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius. The dashed line indicates the symmetry-independent N+—H···O- hydrogen bond. Only the major parts of the disorder are shown, and C-bound H atoms have been omitted for clarity.
[Figure 9] Fig. 9. Packing of the two symmetry-independent hydrogen-bonded columns in (IIIb), formed by repeating R43(10) rings. Note the alternating pattern along the c axis of the two columns. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 10] Fig. 10. A perspective view of (IV), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius. The dashed line indicates the symmetry-independent N+—H···O- hydrogen bond. C-bound H atoms have been omitted for clarity.
[Figure 11] Fig. 11. Packing of the hydrogen-bonded columns in (IV), formed by repeating R43(10) rings. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 12] Fig. 12. A perspective view of (V), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius. The dashed line indicates the symmetry-independent N+—H···O- hydrogen bond.
[Figure 13] Fig. 13. Packing of the hydrogen-bonded columns in (V), formed by repeating R43(10) rings. H atoms not involved in hydrogen bonding have been omitted for clarity.
(I) cyclopentylaminium cinnamate top
Crystal data top
C5H12N+·C9H7O2F(000) = 1008
Mr = 233.3Dx = 1.211 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3764 reflections
a = 8.2523 (3) Åθ = 2.9–27.8°
b = 11.1475 (3) ŵ = 0.08 mm1
c = 27.8170 (7) ÅT = 173 K
V = 2558.96 (13) Å3Block, colourless
Z = 80.55 × 0.4 × 0.1 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2170 reflections with I > 2σ(I)
ω scansRint = 0.051
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28°, θmin = 1.5°
Tmin = 0.957, Tmax = 0.992h = 1010
14051 measured reflectionsk = 1413
3092 independent reflectionsl = 3631
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0557P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max = 0.004
S = 1.02Δρmax = 0.21 e Å3
3092 reflectionsΔρmin = 0.20 e Å3
163 parameters
Crystal data top
C5H12N+·C9H7O2V = 2558.96 (13) Å3
Mr = 233.3Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.2523 (3) ŵ = 0.08 mm1
b = 11.1475 (3) ÅT = 173 K
c = 27.8170 (7) Å0.55 × 0.4 × 0.1 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3092 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2170 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.992Rint = 0.051
14051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.21 e Å3
3092 reflectionsΔρmin = 0.20 e Å3
163 parameters
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16314 (16)0.71801 (11)0.31780 (4)0.0234 (3)
C20.10164 (18)0.60335 (12)0.32449 (4)0.0289 (3)
H20.10050.56910.35580.035*
C30.04205 (19)0.53868 (12)0.28602 (5)0.0326 (3)
H30.00140.45990.2910.039*
C40.04103 (19)0.58768 (13)0.24029 (4)0.0342 (4)
H40.0020.54340.21410.041*
C50.1026 (2)0.70061 (13)0.23307 (5)0.0357 (4)
H50.1040.73410.20170.043*
C60.16251 (18)0.76564 (12)0.27150 (4)0.0306 (3)
H60.20390.84410.26620.037*
C70.22545 (16)0.79085 (11)0.35776 (4)0.0240 (3)
H70.24950.87230.35060.029*
C80.25204 (16)0.75598 (11)0.40266 (4)0.0243 (3)
H80.22880.67530.41120.029*
C90.31679 (15)0.83817 (11)0.44020 (4)0.0219 (3)
O10.36421 (11)0.79116 (8)0.47944 (3)0.0275 (2)
O20.32445 (12)0.94812 (7)0.43152 (3)0.0277 (2)
C100.21780 (16)0.54661 (11)0.55691 (4)0.0235 (3)
H100.13730.48290.56530.028*
C110.38635 (17)0.49326 (12)0.55821 (4)0.0290 (3)
H11A0.46610.54750.54290.035*
H11B0.38940.41450.54180.035*
C120.4194 (2)0.48004 (12)0.61204 (5)0.0347 (4)
H12A0.53650.48950.61890.042*
H12B0.3840.40030.62360.042*
C130.32135 (18)0.57989 (14)0.63636 (5)0.0368 (4)
H13A0.24960.54590.66140.044*
H13B0.39470.6390.65160.044*
C140.22164 (19)0.63925 (13)0.59706 (4)0.0340 (3)
H14A0.27350.71450.58610.041*
H14B0.11080.65750.60860.041*
N10.17382 (15)0.59947 (10)0.50967 (4)0.0221 (2)
H1A0.244 (2)0.6603 (13)0.5014 (5)0.033*
H1B0.070 (2)0.6355 (12)0.5116 (5)0.033*
H1C0.1743 (18)0.5423 (13)0.4854 (5)0.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0237 (7)0.0241 (6)0.0223 (6)0.0036 (5)0.0014 (5)0.0033 (5)
C20.0349 (8)0.0292 (7)0.0228 (6)0.0013 (6)0.0017 (5)0.0016 (5)
C30.0367 (9)0.0290 (7)0.0321 (7)0.0052 (6)0.0001 (6)0.0064 (6)
C40.0366 (9)0.0404 (8)0.0257 (7)0.0028 (7)0.0058 (6)0.0116 (6)
C50.0474 (10)0.0391 (8)0.0206 (6)0.0042 (7)0.0053 (6)0.0004 (6)
C60.0395 (9)0.0271 (7)0.0253 (6)0.0018 (6)0.0038 (6)0.0011 (6)
C70.0267 (7)0.0202 (6)0.0252 (6)0.0017 (5)0.0013 (5)0.0008 (5)
C80.0272 (7)0.0203 (6)0.0255 (6)0.0013 (5)0.0025 (5)0.0004 (5)
C90.0215 (7)0.0240 (7)0.0203 (6)0.0011 (5)0.0024 (5)0.0014 (5)
O10.0316 (6)0.0295 (5)0.0214 (4)0.0060 (4)0.0051 (4)0.0029 (4)
O20.0373 (6)0.0218 (5)0.0239 (4)0.0018 (4)0.0026 (4)0.0021 (4)
C100.0270 (7)0.0248 (7)0.0188 (6)0.0007 (6)0.0018 (5)0.0010 (5)
C110.0305 (8)0.0302 (7)0.0263 (7)0.0054 (6)0.0030 (6)0.0008 (6)
C120.0386 (9)0.0359 (8)0.0295 (7)0.0025 (7)0.0048 (6)0.0008 (6)
C130.0309 (9)0.0544 (10)0.0250 (7)0.0034 (7)0.0016 (6)0.0074 (6)
C140.0417 (9)0.0351 (8)0.0252 (6)0.0063 (7)0.0011 (6)0.0075 (6)
N10.0252 (6)0.0216 (6)0.0194 (5)0.0006 (5)0.0013 (4)0.0022 (4)
Geometric parameters (Å, º) top
C1—C21.3878 (18)C10—N11.4850 (15)
C1—C61.3931 (17)C10—C111.5132 (19)
C1—C71.4695 (17)C10—C141.5216 (17)
C2—C31.3808 (18)C10—H101
C2—H20.95C11—C121.5292 (18)
C3—C41.3844 (18)C11—H11A0.99
C3—H30.95C11—H11B0.99
C4—C51.372 (2)C12—C131.534 (2)
C4—H40.95C12—H12A0.99
C5—C61.3830 (19)C12—H12B0.99
C5—H50.95C13—C141.5199 (19)
C6—H60.95C13—H13A0.99
C7—C81.3264 (17)C13—H13B0.99
C7—H70.95C14—H14A0.99
C8—C91.4884 (17)C14—H14B0.99
C8—H80.95N1—H1A0.921 (16)
C9—O21.2508 (14)N1—H1B0.949 (17)
C9—O11.2725 (14)N1—H1C0.928 (15)
C2—C1—C6118.27 (11)C14—C10—H10109
C2—C1—C7122.37 (11)C10—C11—C12103.04 (10)
C6—C1—C7119.34 (11)C10—C11—H11A111.2
C3—C2—C1120.48 (12)C12—C11—H11A111.2
C3—C2—H2119.8C10—C11—H11B111.2
C1—C2—H2119.8C12—C11—H11B111.2
C2—C3—C4120.55 (13)H11A—C11—H11B109.1
C2—C3—H3119.7C11—C12—C13105.53 (11)
C4—C3—H3119.7C11—C12—H12A110.6
C5—C4—C3119.61 (12)C13—C12—H12A110.6
C5—C4—H4120.2C11—C12—H12B110.6
C3—C4—H4120.2C13—C12—H12B110.6
C4—C5—C6120.01 (12)H12A—C12—H12B108.8
C4—C5—H5120C14—C13—C12106.53 (10)
C6—C5—H5120C14—C13—H13A110.4
C5—C6—C1121.07 (13)C12—C13—H13A110.4
C5—C6—H6119.5C14—C13—H13B110.4
C1—C6—H6119.5C12—C13—H13B110.4
C8—C7—C1127.46 (12)H13A—C13—H13B108.6
C8—C7—H7116.3C13—C14—C10104.11 (11)
C1—C7—H7116.3C13—C14—H14A110.9
C7—C8—C9122.66 (12)C10—C14—H14A110.9
C7—C8—H8118.7C13—C14—H14B110.9
C9—C8—H8118.7C10—C14—H14B110.9
O2—C9—O1123.61 (11)H14A—C14—H14B109
O2—C9—C8119.07 (10)C10—N1—H1A111.1 (9)
O1—C9—C8117.30 (11)C10—N1—H1B109.9 (8)
N1—C10—C11113.70 (10)H1A—N1—H1B105.7 (12)
N1—C10—C14112.66 (10)C10—N1—H1C111.7 (9)
C11—C10—C14103.30 (11)H1A—N1—H1C108.7 (12)
N1—C10—H10109H1B—N1—H1C109.5 (12)
C11—C10—H10109
C6—C1—C2—C30.2 (2)C1—C7—C8—C9179.61 (12)
C7—C1—C2—C3179.02 (13)C7—C8—C9—O210.8 (2)
C1—C2—C3—C40.7 (2)C7—C8—C9—O1168.01 (12)
C2—C3—C4—C51.2 (2)N1—C10—C11—C12164.01 (11)
C3—C4—C5—C61.2 (2)C14—C10—C11—C1241.59 (13)
C4—C5—C6—C10.6 (2)C10—C11—C12—C1329.09 (15)
C2—C1—C6—C50.1 (2)C11—C12—C13—C145.70 (16)
C7—C1—C6—C5179.00 (13)C12—C13—C14—C1019.80 (16)
C2—C1—C7—C89.4 (2)N1—C10—C14—C13161.27 (12)
C6—C1—C7—C8171.81 (14)C11—C10—C14—C1338.16 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.921 (16)1.866 (16)2.7824 (15)172.4 (14)
N1—H1B···O1i0.949 (17)1.900 (17)2.8471 (15)175.6 (12)
N1—H1C···O2ii0.928 (15)1.830 (15)2.7519 (13)171.6 (13)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z.
(II) cyclohexylaminium cinnamate top
Crystal data top
C6H14N+·C9H7O2F(000) = 536
Mr = 247.33Dx = 1.186 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2560 reflections
a = 13.4992 (4) Åθ = 3.2–24.8°
b = 6.4723 (2) ŵ = 0.08 mm1
c = 16.7352 (5) ÅT = 173 K
β = 108.610 (2)°Block, colourless
V = 1385.72 (7) Å30.5 × 0.26 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1957 reflections with I > 2σ(I)
ω scansRint = 0.134
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28°, θmin = 1.7°
Tmin = 0.962, Tmax = 0.995h = 1617
14450 measured reflectionsk = 88
3348 independent reflectionsl = 2220
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0841P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.174(Δ/σ)max = 0.01
S = 0.99Δρmax = 0.45 e Å3
3348 reflectionsΔρmin = 0.19 e Å3
172 parameters
Crystal data top
C6H14N+·C9H7O2V = 1385.72 (7) Å3
Mr = 247.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.4992 (4) ŵ = 0.08 mm1
b = 6.4723 (2) ÅT = 173 K
c = 16.7352 (5) Å0.5 × 0.26 × 0.06 mm
β = 108.610 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3348 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1957 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.995Rint = 0.134
14450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.45 e Å3
3348 reflectionsΔρmin = 0.19 e Å3
172 parameters
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14249 (13)0.5524 (3)0.55372 (11)0.0498 (4)
C20.16377 (16)0.4458 (3)0.62962 (12)0.0656 (6)
H20.18990.30850.63390.079*
C30.14728 (19)0.5378 (4)0.69839 (14)0.0801 (7)
H30.16210.46380.74990.096*
C40.10984 (19)0.7341 (4)0.69302 (16)0.0842 (7)
H40.09750.79630.74040.101*
C50.08984 (18)0.8424 (4)0.61901 (17)0.0808 (7)
H50.06450.98010.61530.097*
C60.10661 (16)0.7507 (3)0.54981 (13)0.0642 (5)
H60.0930.82670.49890.077*
C70.15793 (13)0.4600 (3)0.47784 (11)0.0514 (5)
H70.14870.54970.43110.062*
C80.18225 (14)0.2731 (3)0.46787 (11)0.0533 (5)
H80.19450.18380.51510.064*
C90.19322 (12)0.1814 (3)0.38900 (10)0.0423 (4)
O10.19899 (11)0.00988 (18)0.38811 (7)0.0628 (4)
O20.19758 (10)0.29665 (17)0.32964 (7)0.0524 (3)
C100.43583 (12)0.2145 (2)0.28991 (10)0.0438 (4)
H100.48290.20150.25460.053*
C110.45480 (13)0.4230 (2)0.33263 (12)0.0564 (5)
H11A0.40540.44330.36480.068*
H11B0.4420.53310.28950.068*
C120.56642 (15)0.4389 (3)0.39204 (13)0.0698 (6)
H12A0.61550.43120.35910.084*
H12B0.57640.57410.42120.084*
C130.59061 (15)0.2670 (3)0.45683 (13)0.0623 (5)
H13A0.66460.27680.49290.075*
H13B0.54610.28230.49340.075*
C140.57139 (14)0.0595 (3)0.41441 (12)0.0590 (5)
H14A0.58340.04990.45780.071*
H14B0.62190.03810.38330.071*
C150.46079 (14)0.0402 (2)0.35346 (11)0.0528 (5)
H15A0.45320.09360.32350.063*
H15B0.41050.04230.38540.063*
N10.32587 (11)0.1992 (2)0.23339 (9)0.0432 (4)
H1A0.2772 (16)0.221 (3)0.2666 (13)0.065*
H1B0.3177 (15)0.068 (3)0.2093 (12)0.065*
H1C0.3120 (15)0.310 (3)0.1933 (13)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0414 (9)0.0636 (11)0.0461 (10)0.0115 (7)0.0164 (7)0.0147 (8)
C20.0708 (13)0.0686 (12)0.0605 (13)0.0054 (10)0.0254 (10)0.0094 (10)
C30.0885 (17)0.1058 (19)0.0537 (12)0.0139 (13)0.0333 (12)0.0118 (12)
C40.0746 (15)0.118 (2)0.0695 (15)0.0161 (13)0.0364 (12)0.0452 (15)
C50.0709 (14)0.0764 (14)0.0965 (18)0.0022 (11)0.0289 (13)0.0359 (14)
C60.0623 (12)0.0657 (12)0.0665 (13)0.0049 (9)0.0233 (10)0.0100 (10)
C70.0473 (10)0.0589 (11)0.0483 (10)0.0036 (8)0.0156 (8)0.0016 (8)
C80.0597 (11)0.0537 (10)0.0463 (10)0.0072 (8)0.0164 (8)0.0034 (8)
C90.0399 (8)0.0460 (9)0.0390 (9)0.0029 (7)0.0096 (7)0.0036 (7)
O10.0944 (11)0.0470 (7)0.0452 (7)0.0011 (6)0.0198 (7)0.0017 (6)
O20.0626 (8)0.0490 (7)0.0496 (7)0.0036 (5)0.0232 (6)0.0048 (6)
C100.0430 (9)0.0479 (9)0.0412 (9)0.0024 (7)0.0144 (7)0.0037 (7)
C110.0532 (10)0.0409 (9)0.0649 (12)0.0045 (7)0.0045 (9)0.0049 (8)
C120.0566 (12)0.0572 (11)0.0798 (15)0.0157 (9)0.0004 (10)0.0119 (10)
C130.0508 (11)0.0692 (12)0.0562 (11)0.0092 (8)0.0020 (9)0.0043 (10)
C140.0597 (11)0.0598 (11)0.0515 (11)0.0091 (8)0.0094 (9)0.0139 (9)
C150.0635 (11)0.0399 (9)0.0481 (10)0.0001 (7)0.0080 (8)0.0029 (7)
N10.0485 (8)0.0407 (7)0.0380 (8)0.0003 (6)0.0106 (6)0.0007 (6)
Geometric parameters (Å, º) top
C1—C61.366 (3)C10—C151.513 (2)
C1—C21.393 (3)C10—H101
C1—C71.478 (2)C11—C121.521 (2)
C2—C31.376 (3)C11—H11A0.99
C2—H20.95C11—H11B0.99
C3—C41.360 (3)C12—C131.515 (3)
C3—H30.95C12—H12A0.99
C4—C51.373 (3)C12—H12B0.99
C4—H40.95C13—C141.502 (2)
C5—C61.382 (3)C13—H13A0.99
C5—H50.95C13—H13B0.99
C6—H60.95C14—C151.521 (2)
C7—C81.278 (2)C14—H14A0.99
C7—H70.95C14—H14B0.99
C8—C91.497 (2)C15—H15A0.99
C8—H80.95C15—H15B0.99
C9—O11.2408 (19)N1—H1A1.00 (2)
C9—O21.2587 (19)N1—H1B0.93 (2)
C10—N11.487 (2)N1—H1C0.96 (2)
C10—C111.510 (2)
C6—C1—C2118.45 (17)C12—C11—H11A109.5
C6—C1—C7118.98 (18)C10—C11—H11B109.5
C2—C1—C7122.58 (16)C12—C11—H11B109.5
C3—C2—C1120.5 (2)H11A—C11—H11B108.1
C3—C2—H2119.8C13—C12—C11111.14 (15)
C1—C2—H2119.8C13—C12—H12A109.4
C4—C3—C2120.4 (2)C11—C12—H12A109.4
C4—C3—H3119.8C13—C12—H12B109.4
C2—C3—H3119.8C11—C12—H12B109.4
C3—C4—C5119.9 (2)H12A—C12—H12B108
C3—C4—H4120C14—C13—C12110.68 (16)
C5—C4—H4120.1C14—C13—H13A109.5
C4—C5—C6120.0 (2)C12—C13—H13A109.5
C4—C5—H5120C14—C13—H13B109.5
C6—C5—H5120C12—C13—H13B109.5
C1—C6—C5120.9 (2)H13A—C13—H13B108.1
C1—C6—H6119.6C13—C14—C15112.02 (14)
C5—C6—H6119.6C13—C14—H14A109.2
C8—C7—C1127.45 (18)C15—C14—H14A109.2
C8—C7—H7116.3C13—C14—H14B109.2
C1—C7—H7116.3C15—C14—H14B109.2
C7—C8—C9126.32 (18)H14A—C14—H14B107.9
C7—C8—H8116.8C10—C15—C14111.16 (14)
C9—C8—H8116.8C10—C15—H15A109.4
O1—C9—O2124.25 (15)C14—C15—H15A109.4
O1—C9—C8115.50 (15)C10—C15—H15B109.4
O2—C9—C8120.23 (15)C14—C15—H15B109.4
N1—C10—C11110.16 (13)H15A—C15—H15B108
N1—C10—C15110.52 (13)C10—N1—H1A109.7 (12)
C11—C10—C15111.56 (13)C10—N1—H1B107.0 (12)
N1—C10—H10108.2H1A—N1—H1B111.4 (16)
C11—C10—H10108.2C10—N1—H1C109.1 (12)
C15—C10—H10108.2H1A—N1—H1C105.5 (15)
C10—C11—C12110.65 (14)H1B—N1—H1C114.1 (16)
C10—C11—H11A109.5
C6—C1—C2—C31.0 (3)C7—C8—C9—O1167.67 (18)
C7—C1—C2—C3179.43 (18)C7—C8—C9—O213.3 (3)
C1—C2—C3—C40.1 (3)N1—C10—C11—C12178.81 (15)
C2—C3—C4—C51.0 (4)C15—C10—C11—C1255.7 (2)
C3—C4—C5—C60.8 (4)C10—C11—C12—C1356.7 (2)
C2—C1—C6—C51.2 (3)C11—C12—C13—C1456.4 (2)
C7—C1—C6—C5179.20 (17)C12—C13—C14—C1555.3 (2)
C4—C5—C6—C10.4 (3)N1—C10—C15—C14177.29 (14)
C6—C1—C7—C8173.66 (18)C11—C10—C15—C1454.4 (2)
C2—C1—C7—C86.8 (3)C13—C14—C15—C1054.4 (2)
C1—C7—C8—C9177.37 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O21.00 (2)1.80 (2)2.7878 (19)172.0 (15)
N1—H1B···O2i0.93 (2)1.86 (2)2.7907 (19)175.1 (17)
N1—H1C···O1ii0.96 (2)1.76 (2)2.7123 (18)170.1 (18)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
(IIIa) cycloheptylaminium cinnamate top
Crystal data top
C7H16N+·C9H7O2F(000) = 568
Mr = 261.35Dx = 1.164 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1437 reflections
a = 5.7790 (4) Åθ = 2.5–26.3°
b = 11.3400 (11) ŵ = 0.08 mm1
c = 22.7510 (15) ÅT = 173 K
V = 1491.0 (2) Å3Block, colourless
Z = 40.59 × 0.14 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1513 reflections with I > 2σ(I)
ω scansRint = 0.048
Absorption correction: integration
(XPREP; Bruker, 2004)
θmax = 28.0°, θmin = 1.8°
Tmin = 0.957, Tmax = 0.996h = 77
5537 measured reflectionsk = 1414
2094 independent reflectionsl = 3020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0394P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max < 0.001
S = 0.95Δρmax = 0.14 e Å3
2094 reflectionsΔρmin = 0.19 e Å3
181 parameters
Crystal data top
C7H16N+·C9H7O2V = 1491.0 (2) Å3
Mr = 261.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.7790 (4) ŵ = 0.08 mm1
b = 11.3400 (11) ÅT = 173 K
c = 22.7510 (15) Å0.59 × 0.14 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2094 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2004)
1513 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.996Rint = 0.048
5537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.14 e Å3
2094 reflectionsΔρmin = 0.19 e Å3
181 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2427 (3)0.37339 (18)0.70281 (8)0.0256 (5)
C20.4604 (4)0.4161 (2)0.71759 (9)0.0316 (5)
H20.52350.4810.69660.038*
C30.5861 (4)0.3649 (2)0.76269 (9)0.0387 (6)
H30.73330.39590.7730.046*
C40.4980 (4)0.2685 (2)0.79279 (9)0.0406 (6)
H40.58430.23370.82380.049*
C50.2854 (4)0.2236 (2)0.77760 (9)0.0383 (6)
H50.22590.15660.79760.046*
C60.1580 (4)0.27565 (19)0.73320 (8)0.0305 (5)
H60.01060.24440.72320.037*
C70.0931 (4)0.43320 (18)0.65971 (8)0.0263 (5)
H70.06530.41070.65960.032*
C80.1546 (4)0.51463 (18)0.62119 (8)0.0276 (5)
H80.31340.53530.6180.033*
C90.0171 (4)0.57511 (18)0.58264 (8)0.0249 (4)
O10.0645 (2)0.63720 (13)0.54083 (6)0.0329 (4)
O20.2280 (3)0.56363 (14)0.59246 (6)0.0356 (4)
C100.5521 (4)0.54344 (18)0.44979 (8)0.0295 (5)
H100.71880.55020.43850.035*
C110.5126 (5)0.4189 (2)0.47286 (10)0.0440 (7)
H11A0.60970.36420.44960.053*
H11B0.56810.41560.5140.053*
C120.2670 (5)0.3741 (2)0.47151 (9)0.0488 (7)
H12A0.16090.44080.47930.059*
H12B0.24660.31590.50350.059*
C130.1979 (5)0.3161 (2)0.41293 (10)0.0468 (7)
H13A0.31530.25580.40290.056*
H13B0.04850.27490.41850.056*
C140.1741 (4)0.4004 (2)0.36106 (9)0.0392 (6)
H14A0.14810.35310.32510.047*
H14B0.03450.44940.36730.047*
C150.3789 (4)0.4821 (2)0.35036 (9)0.0369 (6)
H15A0.36010.51970.31140.044*
H15B0.52210.43420.34910.044*
C160.4079 (4)0.5784 (2)0.39664 (8)0.0338 (5)
H16A0.48080.64780.37780.041*
H16B0.25260.60270.41040.041*
N10.5074 (3)0.62991 (18)0.49809 (7)0.0261 (4)
H1A0.347 (4)0.620 (2)0.5127 (9)0.039*
H1B0.530 (4)0.704 (2)0.4858 (9)0.039*
H1C0.621 (4)0.616 (2)0.5311 (9)0.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0313 (11)0.0267 (11)0.0190 (9)0.0027 (11)0.0005 (8)0.0013 (9)
C20.0347 (11)0.0326 (12)0.0274 (10)0.0004 (10)0.0019 (10)0.0038 (10)
C30.0351 (12)0.0453 (14)0.0356 (12)0.0058 (12)0.0053 (10)0.0028 (12)
C40.0490 (15)0.0468 (15)0.0262 (11)0.0192 (13)0.0027 (11)0.0057 (11)
C50.0504 (14)0.0313 (12)0.0331 (11)0.0108 (12)0.0097 (12)0.0082 (11)
C60.0374 (12)0.0271 (11)0.0269 (11)0.0003 (10)0.0046 (10)0.0014 (10)
C70.0290 (11)0.0291 (11)0.0207 (9)0.0007 (10)0.0007 (8)0.0034 (9)
C80.0281 (11)0.0312 (12)0.0234 (10)0.0009 (10)0.0016 (9)0.0003 (10)
C90.0296 (11)0.0260 (11)0.0191 (9)0.0007 (9)0.0007 (9)0.0032 (9)
O10.0364 (8)0.0315 (8)0.0309 (8)0.0049 (8)0.0071 (7)0.0093 (7)
O20.0294 (8)0.0520 (10)0.0253 (7)0.0009 (8)0.0032 (6)0.0070 (8)
C100.0312 (11)0.0308 (12)0.0264 (10)0.0058 (10)0.0006 (9)0.0007 (10)
C110.0702 (18)0.0272 (12)0.0345 (12)0.0097 (14)0.0130 (12)0.0028 (10)
C120.0838 (19)0.0307 (13)0.0318 (12)0.0112 (16)0.0032 (13)0.0051 (11)
C130.0709 (18)0.0330 (13)0.0364 (12)0.0083 (13)0.0062 (13)0.0049 (11)
C140.0464 (14)0.0398 (14)0.0315 (12)0.0012 (12)0.0029 (10)0.0075 (11)
C150.0489 (14)0.0398 (13)0.0220 (10)0.0024 (12)0.0003 (10)0.0005 (10)
C160.0444 (14)0.0319 (12)0.0252 (10)0.0022 (11)0.0029 (9)0.0058 (10)
N10.0304 (10)0.0253 (9)0.0227 (8)0.0009 (9)0.0024 (8)0.0036 (8)
Geometric parameters (Å, º) top
C1—C21.390 (3)C10—H101
C1—C61.395 (3)C11—C121.507 (4)
C1—C71.473 (3)C11—H11A0.99
C2—C31.385 (3)C11—H11B0.99
C2—H20.95C12—C131.539 (3)
C3—C41.387 (3)C12—H12A0.99
C3—H30.95C12—H12B0.99
C4—C51.374 (3)C13—C141.525 (3)
C4—H40.95C13—H13A0.99
C5—C61.383 (3)C13—H13B0.99
C5—H50.95C14—C151.523 (3)
C6—H60.95C14—H14A0.99
C7—C81.322 (3)C14—H14B0.99
C7—H70.95C15—C161.526 (3)
C8—C91.491 (3)C15—H15A0.99
C8—H80.95C15—H15B0.99
C9—O21.246 (2)C16—H16A0.99
C9—O11.274 (2)C16—H16B0.99
C10—N11.495 (3)N1—H1A0.99 (2)
C10—C161.521 (3)N1—H1B0.89 (3)
C10—C111.524 (3)N1—H1C1.01 (2)
C2—C1—C6118.35 (19)H11A—C11—H11B107.3
C2—C1—C7122.14 (19)C11—C12—C13114.0 (2)
C6—C1—C7119.33 (19)C11—C12—H12A108.8
C3—C2—C1120.5 (2)C13—C12—H12A108.8
C3—C2—H2119.7C11—C12—H12B108.8
C1—C2—H2119.7C13—C12—H12B108.8
C2—C3—C4120.3 (2)H12A—C12—H12B107.7
C2—C3—H3119.9C14—C13—C12115.21 (19)
C4—C3—H3119.9C14—C13—H13A108.5
C5—C4—C3119.8 (2)C12—C13—H13A108.5
C5—C4—H4120.1C14—C13—H13B108.5
C3—C4—H4120.1C12—C13—H13B108.5
C4—C5—C6120.1 (2)H13A—C13—H13B107.5
C4—C5—H5120C15—C14—C13115.8 (2)
C6—C5—H5120C15—C14—H14A108.3
C5—C6—C1121.0 (2)C13—C14—H14A108.3
C5—C6—H6119.5C15—C14—H14B108.3
C1—C6—H6119.5C13—C14—H14B108.3
C8—C7—C1127.3 (2)H14A—C14—H14B107.4
C8—C7—H7116.4C14—C15—C16114.22 (19)
C1—C7—H7116.4C14—C15—H15A108.7
C7—C8—C9122.17 (19)C16—C15—H15A108.7
C7—C8—H8118.9C14—C15—H15B108.7
C9—C8—H8118.9C16—C15—H15B108.7
O2—C9—O1123.61 (19)H15A—C15—H15B107.6
O2—C9—C8119.82 (18)C10—C16—C15114.97 (18)
O1—C9—C8116.57 (18)C10—C16—H16A108.5
N1—C10—C16108.61 (16)C15—C16—H16A108.5
N1—C10—C11109.19 (17)C10—C16—H16B108.5
C16—C10—C11115.68 (19)C15—C16—H16B108.5
N1—C10—H10107.7H16A—C16—H16B107.5
C16—C10—H10107.7C10—N1—H1A109.7 (13)
C11—C10—H10107.7C10—N1—H1B111.0 (14)
C12—C11—C10116.5 (2)H1A—N1—H1B110 (2)
C12—C11—H11A108.2C10—N1—H1C109.6 (12)
C10—C11—H11A108.2H1A—N1—H1C110.0 (16)
C12—C11—H11B108.2H1B—N1—H1C107 (2)
C10—C11—H11B108.2
C6—C1—C2—C32.0 (3)C7—C8—C9—O211.5 (3)
C7—C1—C2—C3173.2 (2)C7—C8—C9—O1168.77 (19)
C1—C2—C3—C41.4 (3)N1—C10—C11—C1285.0 (2)
C2—C3—C4—C50.2 (3)C16—C10—C11—C1237.8 (3)
C3—C4—C5—C61.2 (3)C10—C11—C12—C1386.9 (3)
C4—C5—C6—C10.6 (3)C11—C12—C13—C1470.0 (3)
C2—C1—C6—C51.1 (3)C12—C13—C14—C1551.4 (3)
C7—C1—C6—C5174.27 (18)C13—C14—C15—C1670.5 (3)
C2—C1—C7—C815.7 (3)N1—C10—C16—C15163.24 (18)
C6—C1—C7—C8169.1 (2)C11—C10—C16—C1540.1 (3)
C1—C7—C8—C9175.43 (18)C14—C15—C16—C1087.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.99 (2)1.76 (2)2.739 (2)167 (2)
N1—H1B···O1i0.89 (3)1.92 (3)2.805 (2)178 (2)
N1—H1C···O2ii1.01 (2)1.75 (2)2.741 (2)166 (2)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z.
(IIIb) cycloheptylaminium cinnamate top
Crystal data top
C7H16N+·C9H7O2F(000) = 1136
Mr = 261.35Dx = 1.156 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5663 reflections
a = 11.4496 (2) Åθ = 2.4–23.1°
b = 6.1011 (1) ŵ = 0.08 mm1
c = 43.0883 (8) ÅT = 173 K
β = 93.659 (1)°Needle, colourless
V = 3003.80 (9) Å30.45 × 0.3 × 0.21 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4684 reflections with I > 2σ(I)
ω scansRint = 0.047
Absorption correction: multi-scan
(XPREP; Bruker, 2004)
θmax = 28°, θmin = 1.8°
Tmin = 0.967, Tmax = 0.984h = 1415
37019 measured reflectionsk = 77
7152 independent reflectionsl = 5456
Refinement top
Refinement on F231 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0718P)2 + 0.3266P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.149(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.25 e Å3
7152 reflectionsΔρmin = 0.29 e Å3
487 parameters
Crystal data top
C7H16N+·C9H7O2V = 3003.80 (9) Å3
Mr = 261.35Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.4496 (2) ŵ = 0.08 mm1
b = 6.1011 (1) ÅT = 173 K
c = 43.0883 (8) Å0.45 × 0.3 × 0.21 mm
β = 93.659 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7152 independent reflections
Absorption correction: multi-scan
(XPREP; Bruker, 2004)
4684 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.984Rint = 0.047
37019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05231 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
7152 reflectionsΔρmin = 0.29 e Å3
487 parameters
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.3468 (4)0.5922 (7)0.15153 (10)0.0328 (13)0.583 (5)
C2A0.4384 (4)0.4561 (5)0.14418 (9)0.0463 (11)0.583 (5)
H2D0.44970.31940.15450.056*0.583 (5)
C3A0.5136 (3)0.5202 (6)0.12177 (8)0.0501 (11)0.583 (5)
H3A0.57620.42720.11680.06*0.583 (5)
C4A0.4971 (3)0.7203 (7)0.10670 (6)0.0452 (13)0.583 (5)
H4A0.54850.76410.09140.054*0.583 (5)
C5A0.4055 (4)0.8563 (4)0.11404 (9)0.0502 (12)0.583 (5)
H5A0.39430.99310.10370.06*0.583 (5)
C6A0.3303 (3)0.7923 (6)0.13646 (11)0.0412 (14)0.583 (5)
H6A0.26770.88530.14150.049*0.583 (5)
C7A0.2612 (2)0.5224 (5)0.17422 (6)0.0337 (8)0.583 (5)
H7A0.21420.63330.18260.04*0.583 (5)
C8A0.2451 (2)0.3203 (6)0.18364 (6)0.0360 (8)0.583 (5)
H8A0.29310.21030.17540.043*0.583 (5)
C9A0.1588 (6)0.2468 (12)0.20600 (17)0.0254 (13)0.583 (5)
O1A0.1477 (7)0.0431 (10)0.2084 (2)0.0467 (11)0.583 (5)
O2A0.0963 (6)0.3882 (10)0.21879 (12)0.0435 (10)0.583 (5)
C1B0.3484 (7)0.5380 (13)0.14678 (18)0.0385 (17)0.417 (5)
C2B0.4453 (6)0.4759 (10)0.13152 (17)0.0510 (15)0.417 (5)
H2E0.47670.33350.13520.061*0.417 (5)
C3B0.4983 (6)0.6120 (16)0.11118 (19)0.060 (2)0.417 (5)
H3B0.56470.56360.10090.072*0.417 (5)
C4B0.4531 (7)0.8228 (16)0.10580 (15)0.0560 (18)0.417 (5)
H4B0.48780.91920.09170.067*0.417 (5)
C5B0.3577 (6)0.8877 (15)0.12123 (18)0.0605 (17)0.417 (5)
H5B0.32551.02980.11780.073*0.417 (5)
C6B0.3088 (8)0.7471 (14)0.1417 (3)0.055 (2)0.417 (5)
H6B0.24470.79730.15270.066*0.417 (5)
C7B0.2930 (3)0.3899 (7)0.16791 (9)0.0382 (12)0.417 (5)
H7B0.31550.24030.1670.046*0.417 (5)
C8B0.2152 (4)0.4388 (8)0.18821 (9)0.0380 (11)0.417 (5)
H8B0.19630.5890.19080.046*0.417 (5)
C9B0.1563 (12)0.2787 (19)0.2069 (3)0.054 (4)0.417 (5)
O1B0.0981 (9)0.3507 (14)0.22889 (16)0.0462 (15)0.417 (5)
O2B0.1728 (11)0.0765 (16)0.2032 (3)0.0556 (19)0.417 (5)
C100.20726 (13)0.7872 (3)0.27856 (4)0.0496 (4)
H100.20140.93550.28820.059*
C110.18113 (14)0.6194 (3)0.30320 (4)0.0550 (4)
H11A0.15930.47990.29260.066*0.835 (3)
H11B0.11210.67030.31390.066*0.835 (3)
H11C0.09760.59180.30230.066*0.165 (3)
H11D0.20380.67870.32360.066*0.165 (3)
C12A0.27988 (17)0.5721 (4)0.32787 (4)0.0538 (6)0.835 (3)
H12A0.32330.70950.33270.065*0.835 (3)
H12B0.24550.52250.34720.065*0.835 (3)
C12B0.2436 (13)0.393 (3)0.2972 (5)0.213 (18)0.165 (3)
H12C0.25730.37590.27490.255*0.165 (3)
H12D0.19460.26930.30370.255*0.165 (3)
C130.36543 (18)0.3983 (4)0.31773 (5)0.0729 (6)
H13A0.41610.35460.33620.087*0.835 (3)
H13B0.31980.26750.31070.087*0.835 (3)
H13C0.36910.5040.33460.087*0.165 (3)
H13D0.38410.25350.32590.087*0.165 (3)
C140.44275 (17)0.4621 (4)0.29236 (5)0.0722 (6)
H14A0.49010.33320.28710.087*0.835 (3)
H14B0.49750.57740.30040.087*0.835 (3)
H14C0.4230.37020.27440.087*0.165 (3)
H14D0.52330.43130.29930.087*0.165 (3)
C15A0.3781 (2)0.5464 (4)0.26252 (5)0.0657 (8)0.835 (3)
H15A0.43320.54740.24570.079*0.835 (3)
H15B0.31420.44290.25640.079*0.835 (3)
C15B0.4320 (9)0.711 (3)0.2831 (3)0.076 (5)0.165 (3)
H15C0.43720.79980.30240.091*0.165 (3)
H15D0.49990.75070.27110.091*0.165 (3)
C160.32704 (15)0.7719 (4)0.26521 (5)0.0695 (6)
H16A0.32130.83890.24420.083*0.835 (3)
H16B0.38260.86160.27840.083*0.835 (3)
H16C0.31690.67570.24730.083*0.165 (3)
H16D0.3440.91610.25710.083*0.165 (3)
N10.11365 (12)0.7726 (3)0.25288 (3)0.0469 (3)
H1A0.1114 (17)0.629 (4)0.2428 (4)0.07*
H1B0.1237 (17)0.878 (4)0.2367 (5)0.07*
H1C0.0414 (19)0.794 (3)0.2603 (4)0.07*
C170.14996 (11)0.1313 (2)0.40206 (3)0.0340 (3)
C180.12382 (13)0.0346 (3)0.37316 (3)0.0450 (4)
H180.15640.10410.36860.054*
C190.05049 (15)0.1394 (3)0.35100 (4)0.0527 (4)
H190.03280.07140.33140.063*
C200.00306 (14)0.3412 (3)0.35712 (4)0.0507 (4)
H200.04690.41250.34180.061*
C210.02855 (13)0.4389 (3)0.38553 (4)0.0484 (4)
H210.00380.57810.38990.058*
C220.10139 (12)0.3345 (2)0.40781 (4)0.0405 (3)
H220.11840.40320.42740.049*
C230.22490 (11)0.0255 (2)0.42674 (3)0.0342 (3)
H230.24330.11070.44480.041*
C240.26950 (11)0.1737 (2)0.42665 (3)0.0341 (3)
H240.25250.2620.40880.041*
C250.34476 (11)0.2698 (2)0.45266 (3)0.0313 (3)
O30.38006 (9)0.46245 (16)0.44897 (2)0.0416 (3)
O40.37025 (8)0.15742 (16)0.47688 (2)0.0381 (2)
C260.32752 (12)0.3396 (2)0.52485 (3)0.0383 (3)
H260.36260.47740.53390.046*
C270.20571 (13)0.3952 (3)0.51090 (4)0.0487 (4)
H27A0.1780.27590.49670.058*0.616 (3)
H27B0.20950.53150.49860.058*0.616 (3)
H27C0.21390.46770.49110.058*0.384 (3)
H27D0.17160.50050.52460.058*0.384 (3)
C28A0.1182 (2)0.4259 (5)0.53605 (7)0.0556 (8)0.616 (3)
H28A0.06050.54080.52970.067*0.616 (3)
H28B0.15960.47060.55590.067*0.616 (3)
C28B0.1169 (4)0.1972 (9)0.50578 (10)0.0550 (13)0.384 (3)
H28C0.15830.05830.5020.066*0.384 (3)
H28D0.0590.22580.48820.066*0.384 (3)
C290.05271 (18)0.1917 (4)0.54013 (6)0.0921 (8)
H29A0.02460.21550.54870.11*0.616 (3)
H29B0.04020.11870.51970.11*0.616 (3)
H29C0.04870.33810.54880.11*0.384 (3)
H29D0.02610.13360.53740.11*0.384 (3)
C300.12780 (19)0.0494 (4)0.56195 (5)0.0735 (6)
H30A0.08310.08330.56710.088*0.616 (3)
H30B0.14680.13050.58150.088*0.616 (3)
H30C0.08550.00350.57960.088*0.384 (3)
H30D0.15370.07950.55110.088*0.384 (3)
C31A0.2451 (3)0.0219 (5)0.54751 (7)0.0574 (8)0.616 (3)
H31A0.27780.15260.55860.069*0.616 (3)
H31B0.22920.06060.52530.069*0.616 (3)
C31B0.2306 (4)0.1986 (9)0.57275 (10)0.0573 (13)0.384 (3)
H31C0.2580.16110.59430.069*0.384 (3)
H31D0.20480.35350.57230.069*0.384 (3)
C320.33391 (15)0.1671 (3)0.55040 (4)0.0526 (4)
H32A0.32430.24220.57040.063*0.616 (3)
H32B0.41350.10280.55140.063*0.616 (3)
H32C0.40810.17930.56250.063*0.384 (3)
H32D0.32980.02220.54110.063*0.384 (3)
N20.40192 (10)0.2666 (2)0.49937 (3)0.0322 (3)
H2A0.3774 (14)0.128 (3)0.4911 (4)0.048*
H2B0.4820 (16)0.245 (3)0.5069 (4)0.048*
H2C0.3960 (14)0.372 (3)0.4819 (4)0.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0342 (19)0.031 (3)0.033 (2)0.0002 (16)0.0041 (14)0.0013 (18)
C2A0.044 (2)0.048 (2)0.049 (3)0.0027 (14)0.015 (2)0.0161 (17)
C3A0.054 (2)0.046 (3)0.052 (2)0.0110 (17)0.0189 (18)0.0100 (16)
C4A0.047 (3)0.051 (4)0.0384 (18)0.003 (2)0.0129 (16)0.012 (2)
C5A0.042 (4)0.048 (2)0.062 (4)0.001 (2)0.018 (2)0.019 (2)
C6A0.043 (2)0.031 (2)0.052 (3)0.0009 (18)0.011 (2)0.0091 (19)
C7A0.0330 (13)0.0331 (18)0.0353 (14)0.0033 (12)0.0042 (11)0.0041 (12)
C8A0.0356 (14)0.037 (2)0.0368 (15)0.0030 (13)0.0100 (12)0.0011 (13)
C9A0.021 (2)0.032 (3)0.023 (2)0.0015 (17)0.0059 (18)0.0031 (17)
O1A0.061 (3)0.036 (2)0.044 (2)0.0004 (17)0.0095 (15)0.0065 (16)
O2A0.0396 (14)0.043 (2)0.050 (3)0.0060 (14)0.017 (2)0.0098 (18)
C1B0.041 (3)0.039 (3)0.036 (3)0.008 (2)0.004 (2)0.004 (3)
C2B0.047 (3)0.046 (3)0.062 (4)0.001 (2)0.017 (4)0.007 (3)
C3B0.048 (3)0.078 (7)0.056 (4)0.006 (3)0.023 (3)0.019 (4)
C4B0.045 (5)0.079 (5)0.045 (3)0.012 (4)0.013 (3)0.003 (3)
C5B0.049 (4)0.076 (4)0.059 (4)0.003 (3)0.024 (3)0.008 (3)
C6B0.055 (3)0.057 (4)0.056 (3)0.011 (3)0.024 (3)0.009 (3)
C7B0.044 (2)0.030 (2)0.041 (2)0.0050 (18)0.0013 (18)0.0030 (18)
C8B0.048 (2)0.029 (2)0.038 (2)0.002 (2)0.0057 (18)0.0013 (19)
C9B0.064 (7)0.038 (5)0.056 (6)0.005 (4)0.019 (5)0.003 (4)
O1B0.046 (2)0.039 (3)0.054 (4)0.0057 (19)0.013 (3)0.009 (3)
O2B0.085 (6)0.030 (3)0.052 (4)0.000 (3)0.005 (3)0.002 (3)
C100.0400 (8)0.0498 (10)0.0586 (10)0.0052 (7)0.0010 (7)0.0102 (8)
C110.0416 (9)0.0675 (12)0.0565 (10)0.0037 (8)0.0067 (7)0.0031 (9)
C12A0.0410 (11)0.0755 (16)0.0451 (11)0.0015 (10)0.0038 (8)0.0053 (10)
C12B0.37 (5)0.17 (3)0.102 (15)0.14 (3)0.07 (2)0.032 (16)
C130.0617 (12)0.0854 (16)0.0709 (13)0.0154 (11)0.0015 (10)0.0051 (11)
C140.0491 (10)0.1009 (18)0.0661 (12)0.0213 (11)0.0011 (9)0.0074 (12)
C15A0.0493 (13)0.091 (2)0.0578 (13)0.0110 (12)0.0135 (10)0.0049 (12)
C15B0.037 (6)0.129 (13)0.059 (7)0.022 (6)0.012 (5)0.039 (7)
C160.0407 (9)0.0880 (16)0.0807 (13)0.0051 (9)0.0113 (9)0.0125 (11)
N10.0414 (7)0.0406 (8)0.0586 (9)0.0029 (6)0.0027 (6)0.0107 (7)
C170.0274 (6)0.0378 (8)0.0369 (7)0.0029 (6)0.0023 (5)0.0039 (6)
C180.0461 (8)0.0461 (10)0.0422 (8)0.0032 (7)0.0011 (7)0.0007 (7)
C190.0531 (10)0.0633 (12)0.0401 (8)0.0046 (9)0.0100 (7)0.0028 (8)
C200.0385 (8)0.0584 (11)0.0540 (10)0.0018 (8)0.0074 (7)0.0191 (8)
C210.0418 (8)0.0418 (10)0.0616 (10)0.0033 (7)0.0030 (7)0.0102 (8)
C220.0366 (7)0.0395 (9)0.0451 (8)0.0017 (6)0.0009 (6)0.0020 (7)
C230.0316 (7)0.0375 (8)0.0335 (7)0.0021 (6)0.0034 (5)0.0022 (6)
C240.0347 (7)0.0354 (8)0.0322 (7)0.0054 (6)0.0024 (5)0.0010 (6)
C250.0306 (7)0.0312 (8)0.0324 (7)0.0039 (6)0.0052 (5)0.0020 (6)
O30.0561 (6)0.0308 (6)0.0380 (5)0.0046 (5)0.0034 (5)0.0010 (4)
O40.0420 (5)0.0330 (6)0.0383 (5)0.0021 (4)0.0047 (4)0.0044 (4)
C260.0403 (8)0.0350 (8)0.0403 (8)0.0067 (6)0.0085 (6)0.0063 (6)
C270.0423 (9)0.0481 (10)0.0573 (10)0.0026 (7)0.0148 (7)0.0029 (8)
C28A0.0457 (15)0.0492 (18)0.0746 (19)0.0003 (12)0.0261 (14)0.0080 (14)
C28B0.039 (2)0.073 (3)0.053 (3)0.014 (2)0.0062 (19)0.010 (2)
C290.0519 (12)0.0981 (19)0.131 (2)0.0138 (12)0.0432 (13)0.0144 (16)
C300.0774 (14)0.0665 (14)0.0810 (13)0.0257 (11)0.0399 (11)0.0011 (11)
C31A0.0666 (18)0.0430 (17)0.0654 (18)0.0036 (13)0.0251 (15)0.0015 (13)
C31B0.051 (3)0.076 (3)0.045 (2)0.016 (2)0.0097 (19)0.005 (2)
C320.0556 (10)0.0615 (12)0.0415 (8)0.0087 (8)0.0082 (7)0.0071 (8)
N20.0324 (6)0.0276 (7)0.0366 (6)0.0001 (5)0.0022 (5)0.0006 (5)
Geometric parameters (Å, º) top
C1A—C2A1.39C15B—H15C0.99
C1A—C6A1.39C15B—H15D0.99
C1A—C7A1.490 (4)C16—H16A0.99
C2A—C3A1.39C16—H16B0.99
C2A—H2D0.95C16—H16C0.97
C3A—C4A1.39C16—H16D0.97
C3A—H3A0.95N1—H1A0.98 (2)
C4A—C5A1.39N1—H1B0.96 (2)
C4A—H4A0.95N1—H1C0.91 (2)
C5A—C6A1.39C17—C221.388 (2)
C5A—H5A0.95C17—C181.393 (2)
C6A—H6A0.95C17—C231.4720 (19)
C7A—C8A1.315 (5)C18—C191.387 (2)
C7A—H7A0.95C18—H180.95
C8A—C9A1.493 (4)C19—C201.378 (2)
C8A—H8A0.95C19—H190.95
C9A—O1A1.254 (6)C20—C211.376 (2)
C9A—O2A1.268 (7)C20—H200.95
C1B—C6B1.367 (8)C21—C221.386 (2)
C1B—C2B1.378 (7)C21—H210.95
C1B—C7B1.456 (7)C22—H220.95
C2B—C3B1.376 (8)C23—C241.3181 (19)
C2B—H2E0.95C23—H230.95
C3B—C4B1.400 (9)C24—C251.4900 (19)
C3B—H3B0.95C24—H240.95
C4B—C5B1.373 (7)C25—O31.2563 (16)
C4B—H4B0.95C25—O41.2670 (16)
C5B—C6B1.374 (8)C26—N21.4994 (17)
C5B—H5B0.95C26—C271.521 (2)
C6B—H6B0.95C26—C321.521 (2)
C7B—C8B1.322 (7)C26—H261
C7B—H7B0.95C27—C28A1.533 (3)
C8B—C9B1.458 (10)C27—C28B1.585 (5)
C8B—H8B0.95C27—H27A0.99
C9B—O2B1.260 (8)C27—H27B0.99
C9B—O1B1.271 (8)C27—H27C0.97
C10—N11.493 (2)C27—H27D0.97
C10—C111.518 (2)C28A—C291.629 (4)
C10—C161.524 (2)C28A—H27D0.9296
C10—H101C28A—H28A0.99
C11—C12A1.529 (3)C28A—H28B0.99
C11—C12B1.584 (14)C28A—H29C1.1307
C11—H11A0.99C28B—C291.694 (5)
C11—H11B0.99C28B—H28C0.99
C11—H11C0.97C28B—H28D0.99
C11—H11D0.9699C29—C301.508 (3)
C12A—C131.526 (3)C29—H29A0.99
C12A—H11D1.0936C29—H29B0.99
C12A—H12A0.99C29—H29C0.97
C12A—H12B0.99C29—H29D0.97
C12A—H13C1.1238C30—C31B1.536 (5)
C12B—C131.603 (14)C30—C31A1.577 (3)
C12B—H12C0.99C30—H30A0.99
C12B—H12D0.99C30—H30B0.99
C13—C141.501 (3)C30—H30C0.9701
C13—H13A0.99C30—H30D0.97
C13—H13B0.99C31A—C321.537 (3)
C13—H13C0.97C31A—H30D1.1245
C13—H13D0.97C31A—H31A0.99
C14—C15A1.531 (3)C31A—H31B0.99
C14—C15B1.574 (14)C31A—H32D1.0587
C14—H14A0.99C31B—C321.584 (4)
C14—H14B0.99C31B—H31C0.99
C14—H14C0.97C31B—H31D0.99
C14—H14D0.97C32—H32A0.99
C15A—C161.502 (3)C32—H32B0.99
C15A—H14C1.2844C32—H32C0.9699
C15A—H15A0.99C32—H32D0.97
C15A—H15B0.99N2—H2A0.953 (18)
C15A—H16C1.2183N2—H2B0.962 (18)
C15B—C161.435 (10)N2—H2C0.986 (17)
C2A—C1A—C6A120C15A—C16—H16C54
C2A—C1A—C7A121.1 (3)C10—C16—H16C105.8
C6A—C1A—C7A118.8 (3)H16A—C16—H16C61.8
C3A—C2A—C1A120H16B—C16—H16C146.1
C3A—C2A—H2D120C15B—C16—H16D104.3
C1A—C2A—H2D120C15A—C16—H16D135.6
C2A—C3A—C4A120C10—C16—H16D106.6
C2A—C3A—H3A120H16A—C16—H16D45.7
C4A—C3A—H3A120H16B—C16—H16D64.4
C5A—C4A—C3A120H16C—C16—H16D106.3
C5A—C4A—H4A120C10—N1—H1A112.4 (11)
C3A—C4A—H4A120C10—N1—H1B112.6 (12)
C4A—C5A—C6A120H1A—N1—H1B106.1 (16)
C4A—C5A—H5A120C10—N1—H1C110.8 (12)
C6A—C5A—H5A120H1A—N1—H1C106.5 (17)
C5A—C6A—C1A120H1B—N1—H1C108.1 (17)
C5A—C6A—H6A120C22—C17—C18118.19 (13)
C1A—C6A—H6A120C22—C17—C23118.97 (13)
C8A—C7A—C1A125.5 (3)C18—C17—C23122.83 (14)
C8A—C7A—H7A117.2C19—C18—C17120.41 (16)
C1A—C7A—H7A117.2C19—C18—H18119.8
C7A—C8A—C9A126.3 (4)C17—C18—H18119.8
C7A—C8A—H8A116.8C20—C19—C18120.61 (16)
C9A—C8A—H8A116.8C20—C19—H19119.7
O1A—C9A—O2A125.1 (5)C18—C19—H19119.7
O1A—C9A—C8A115.2 (4)C21—C20—C19119.55 (15)
O2A—C9A—C8A119.4 (5)C21—C20—H20120.2
C6B—C1B—C2B116.7 (5)C19—C20—H20120.2
C6B—C1B—C7B121.7 (7)C20—C21—C22120.10 (16)
C2B—C1B—C7B121.6 (7)C20—C21—H21120
C3B—C2B—C1B122.7 (5)C22—C21—H21120
C3B—C2B—H2E118.7C21—C22—C17121.14 (15)
C1B—C2B—H2E118.7C21—C22—H22119.4
C2B—C3B—C4B119.1 (5)C17—C22—H22119.4
C2B—C3B—H3B120.5C24—C23—C17127.59 (13)
C4B—C3B—H3B120.5C24—C23—H23116.2
C5B—C4B—C3B118.8 (8)C17—C23—H23116.2
C5B—C4B—H4B120.6C23—C24—C25124.48 (13)
C3B—C4B—H4B120.6C23—C24—H24117.8
C4B—C5B—C6B120.0 (10)C25—C24—H24117.8
C4B—C5B—H5B120O3—C25—O4123.47 (12)
C6B—C5B—H5B120O3—C25—C24116.63 (12)
C1B—C6B—C5B122.7 (7)O4—C25—C24119.90 (12)
C1B—C6B—H6B118.6N2—C26—C27109.05 (12)
C5B—C6B—H6B118.6N2—C26—C32108.74 (12)
C8B—C7B—C1B127.8 (5)C27—C26—C32116.14 (13)
C8B—C7B—H7B116.1N2—C26—H26107.5
C1B—C7B—H7B116.1C27—C26—H26107.5
C7B—C8B—C9B124.7 (6)C32—C26—H26107.5
C7B—C8B—H8B117.6C26—C27—C28A111.84 (17)
C9B—C8B—H8B117.6C26—C27—C28B116.7 (2)
O2B—C9B—O1B121.6 (9)C28A—C27—C28B75.5 (2)
O2B—C9B—C8B120.4 (7)C26—C27—H27A109.2
O1B—C9B—C8B117.6 (9)C28A—C27—H27A109.2
N1—C10—C11108.30 (13)C28B—C27—H27A34.6
N1—C10—C16109.71 (14)C26—C27—H27B109.2
C11—C10—C16116.44 (15)C28A—C27—H27B109.2
N1—C10—H10107.3C28B—C27—H27B127.9
C11—C10—H10107.3H27A—C27—H27B107.9
C16—C10—H10107.3C26—C27—H27C108.1
C10—C11—C12A116.32 (15)C28A—C27—H27C132
C10—C11—C12B111.3 (8)C28B—C27—H27C108.8
C12A—C11—C12B68.1 (7)H27A—C27—H27C80.6
C10—C11—H11A108.2C26—C27—H27D107.6
C12A—C11—H11A108.2C28B—C27—H27D108.1
C10—C11—H11B108.2H27A—C27—H27D137.5
C12A—C11—H11B108.2H27B—C27—H27D78.6
C12B—C11—H11B137H27C—C27—H27D107.2
H11A—C11—H11B107.4C27—C28A—C29107.2 (2)
C10—C11—H11C109.1C29—C28A—H27D144.1
C12A—C11—H11C132.7C27—C28A—H28A110.3
C12B—C11—H11C107.2C29—C28A—H28A110.3
H11A—C11—H11C67.2H27D—C28A—H28A87.6
C10—C11—H11D109.2C27—C28A—H28B110.3
C12A—C11—H11D45.4C29—C28A—H28B110.3
C12B—C11—H11D112H27D—C28A—H28B91.8
H11A—C11—H11D141.6H28A—C28A—H28B108.5
H11B—C11—H11D68.7C27—C28A—H29C142.9
H11C—C11—H11D107.8H27D—C28A—H29C176.2
C13—C12A—C11113.05 (17)H28A—C28A—H29C89.4
C13—C12A—H11D152.1H28B—C28A—H29C91.4
C13—C12A—H12A109C27—C28B—C29101.7 (3)
C11—C12A—H12A109C27—C28B—H28C111.4
H11D—C12A—H12A85.2C29—C28B—H28C111.4
C13—C12A—H12B109C27—C28B—H28D111.4
C11—C12A—H12B109C29—C28B—H28D111.4
H11D—C12A—H12B88.2H28C—C28B—H28D109.3
H12A—C12A—H12B107.8C30—C29—C28A108.9 (2)
C11—C12A—H13C150.3C30—C29—C28B107.1 (2)
H11D—C12A—H13C164.8C28A—C29—C28B70.1 (2)
H12A—C12A—H13C79.8C30—C29—H29A109.9
H12B—C12A—H13C94.3C28A—C29—H29A109.9
C11—C12B—C13106.2 (13)C28B—C29—H29A140.3
C11—C12B—H12C110.5C30—C29—H29B109.9
C13—C12B—H12C110.5C28A—C29—H29B109.9
C11—C12B—H12D110.5H29A—C29—H29B108.3
C13—C12B—H12D110.5C30—C29—H29C109.3
H12C—C12B—H12D108.7C28B—C29—H29C110.6
C14—C13—C12A116.57 (19)H29A—C29—H29C69.9
C14—C13—C12B97.9 (8)H29B—C29—H29C138.5
C12A—C13—C12B67.7 (7)C30—C29—H29D110.8
C14—C13—H13A108.1C28A—C29—H29D137.7
C12A—C13—H13A108.1C28B—C29—H29D110.6
C12B—C13—H13A151.8H29B—C29—H29D69.2
C14—C13—H13B108.1H29C—C29—H29D108.5
C12A—C13—H13B108.1C29—C30—C31B104.0 (3)
C12B—C13—H13B52.6C29—C30—C31A112.25 (18)
H13A—C13—H13B107.3C31B—C30—C31A68.1 (2)
C14—C13—H13C111.9C29—C30—H30A109.2
C12A—C13—H13C47.3C31B—C30—H30A144.4
C12B—C13—H13C114.9C31A—C30—H30A109.2
H13A—C13—H13C65.4C29—C30—H30B109.2
H13B—C13—H13C139.5C31B—C30—H30B47.4
C14—C13—H13D111.9C31A—C30—H30B109.2
C12A—C13—H13D131.3H30A—C30—H30B107.9
C12B—C13—H13D110.2C29—C30—H30C111.2
H13A—C13—H13D50.1C31B—C30—H30C110.1
H13B—C13—H13D58.4C31A—C30—H30C135.3
H13C—C13—H13D109.6H30A—C30—H30C45.4
C13—C14—C15A115.01 (16)H30B—C30—H30C64.4
C13—C14—C15B113.2 (5)C29—C30—H30D110.3
C15A—C14—C15B55.8 (4)C31B—C30—H30D112
C13—C14—H14A108.5C31A—C30—H30D45
C15A—C14—H14A108.5H30A—C30—H30D67.9
C15B—C14—H14A138.1H30B—C30—H30D139.2
C13—C14—H14B108.5H30C—C30—H30D109.1
C15A—C14—H14B108.5C32—C31A—C30109.7 (2)
C15B—C14—H14B56C32—C31A—H30D147.1
H14A—C14—H14B107.5C32—C31A—H31A109.7
C13—C14—H14C108.2C30—C31A—H31A109.7
C15A—C14—H14C56.6H30D—C31A—H31A90.5
C15B—C14—H14C110.3C32—C31A—H31B109.7
H14A—C14—H14C57.4C30—C31A—H31B109.7
H14B—C14—H14C143.2H30D—C31A—H31B86.8
C13—C14—H14D108.5H31A—C31A—H31B108.2
C15A—C14—H14D136.4C30—C31A—H32D148.1
C15B—C14—H14D108.8H30D—C31A—H32D172.3
H14A—C14—H14D52.6H31A—C31A—H32D90.3
H14B—C14—H14D57.4H31B—C31A—H32D85.7
H14C—C14—H14D107.6C30—C31B—C32109.4 (3)
C16—C15A—C14114.4 (2)C30—C31B—H31C109.8
C16—C15A—H14C152.1C32—C31B—H31C109.8
C16—C15A—H15A108.7C30—C31B—H31D109.8
C14—C15A—H15A108.7C32—C31B—H31D109.8
H14C—C15A—H15A92.3H31C—C31B—H31D108.3
C16—C15A—H15B108.7C26—C32—C31A117.33 (18)
C14—C15A—H15B108.7C26—C32—C31B110.6 (2)
H14C—C15A—H15B81C31A—C32—C31B68.0 (2)
H15A—C15A—H15B107.6C26—C32—H32A108
C14—C15A—H16C154.1C31A—C32—H32A108
H14C—C15A—H16C163.4C26—C32—H32B108
H15A—C15A—H16C88.5C31A—C32—H32B108
H15B—C15A—H16C83C31B—C32—H32B137.8
C16—C15B—C14115.7 (8)H32A—C32—H32B107.2
C16—C15B—H15C108.4C26—C32—H32C109.5
C14—C15B—H15C108.4C31A—C32—H32C130.8
C16—C15B—H15D108.4C31B—C32—H32C109.1
C14—C15B—H15D108.4H32A—C32—H32C68.8
H15C—C15B—H15D107.4C26—C32—H32D109.5
C15B—C16—C15A59.3 (7)C31B—C32—H32D110
C15B—C16—C10123.7 (5)H32A—C32—H32D140.9
C15A—C16—C10116.70 (17)H32B—C32—H32D71.2
C15B—C16—H16A127H32C—C32—H32D108
C15A—C16—H16A108.1C26—N2—H2A111.6 (10)
C10—C16—H16A108.1C26—N2—H2B111.6 (9)
C15B—C16—H16B49.3H2A—N2—H2B104.7 (14)
C15A—C16—H16B108.1C26—N2—H2C110.5 (9)
C10—C16—H16B108.1H2A—N2—H2C106.8 (14)
H16A—C16—H16B107.3H2B—N2—H2C111.3 (14)
C15B—C16—H16C109
C6A—C1A—C2A—C3A0C14—C15A—C16—C15B31.0 (5)
C7A—C1A—C2A—C3A176.7 (4)C14—C15A—C16—C1084.1 (2)
C1A—C2A—C3A—C4A0N1—C10—C16—C15B159.5 (8)
C2A—C3A—C4A—C5A0C11—C10—C16—C15B36.1 (8)
C3A—C4A—C5A—C6A0N1—C10—C16—C15A90.1 (2)
C4A—C5A—C6A—C1A0C11—C10—C16—C15A33.3 (3)
C2A—C1A—C6A—C5A0C22—C17—C18—C190.4 (2)
C7A—C1A—C6A—C5A176.8 (4)C23—C17—C18—C19178.50 (14)
C2A—C1A—C7A—C8A16.6 (5)C17—C18—C19—C200.5 (2)
C6A—C1A—C7A—C8A160.1 (3)C18—C19—C20—C210.2 (2)
C1A—C7A—C8A—C9A179.1 (5)C19—C20—C21—C220.1 (2)
C7A—C8A—C9A—O1A170.7 (7)C20—C21—C22—C170.1 (2)
C7A—C8A—C9A—O2A3.3 (10)C18—C17—C22—C210.2 (2)
C6B—C1B—C2B—C3B2.4 (9)C23—C17—C22—C21178.82 (13)
C7B—C1B—C2B—C3B179.2 (8)C22—C17—C23—C24173.26 (14)
C1B—C2B—C3B—C4B0.5 (10)C18—C17—C23—C245.7 (2)
C2B—C3B—C4B—C5B0.6 (12)C17—C23—C24—C25179.87 (12)
C3B—C4B—C5B—C6B0.4 (13)C23—C24—C25—O3179.80 (13)
C2B—C1B—C6B—C5B3.4 (10)C23—C24—C25—O40.4 (2)
C7B—C1B—C6B—C5B178.2 (9)N2—C26—C27—C28A168.44 (16)
C4B—C5B—C6B—C1B2.5 (13)C32—C26—C27—C28A45.2 (2)
C6B—C1B—C7B—C8B12.1 (10)N2—C26—C27—C28B84.2 (2)
C2B—C1B—C7B—C8B166.2 (5)C32—C26—C27—C28B39.0 (2)
C1B—C7B—C8B—C9B174.8 (10)C26—C27—C28A—C2994.5 (2)
C7B—C8B—C9B—O2B4 (2)C28B—C27—C28A—C2918.9 (3)
C7B—C8B—C9B—O1B169.0 (9)C26—C27—C28B—C2989.8 (3)
N1—C10—C11—C12A166.84 (15)C28A—C27—C28B—C2917.7 (2)
C16—C10—C11—C12A42.7 (2)C27—C28A—C29—C3083.8 (3)
N1—C10—C11—C12B91.5 (7)C27—C28A—C29—C28B18.1 (2)
C16—C10—C11—C12B32.6 (8)C27—C28B—C29—C3087.4 (3)
C10—C11—C12A—C1385.5 (2)C27—C28B—C29—C28A17.1 (2)
C12B—C11—C12A—C1318.3 (9)C28A—C29—C30—C31B4.2 (3)
C10—C11—C12B—C1394.2 (10)C28B—C29—C30—C31B78.5 (3)
C12A—C11—C12B—C1316.6 (8)C28A—C29—C30—C31A67.6 (3)
C11—C12A—C13—C1469.7 (2)C28B—C29—C30—C31A6.7 (3)
C11—C12A—C13—C12B18.1 (9)C29—C30—C31A—C3279.3 (3)
C11—C12B—C13—C1498.9 (10)C31B—C30—C31A—C3217.4 (3)
C11—C12B—C13—C12A16.7 (8)C29—C30—C31B—C3291.8 (3)
C12A—C13—C14—C15A54.8 (3)C31A—C30—C31B—C3216.9 (3)
C12B—C13—C14—C15A14.1 (7)N2—C26—C32—C31A88.24 (19)
C12A—C13—C14—C15B6.8 (5)C27—C26—C32—C31A35.2 (2)
C12B—C13—C14—C15B75.7 (8)N2—C26—C32—C31B163.4 (2)
C13—C14—C15A—C1672.8 (3)C27—C26—C32—C31B40.0 (2)
C15B—C14—C15A—C1629.2 (5)C30—C31A—C32—C2685.7 (2)
C13—C14—C15B—C1674.2 (9)C30—C31A—C32—C31B16.9 (3)
C15A—C14—C15B—C1631.1 (6)C30—C31B—C32—C2694.8 (3)
C14—C15B—C16—C15A30.4 (6)C30—C31B—C32—C31A17.4 (3)
C14—C15B—C16—C1072.9 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2A0.98 (2)1.80 (2)2.768 (7)170.7 (17)
N1—H1B···O1Ai0.96 (2)1.62 (2)2.578 (6)175.6 (19)
N1—H1C···O2Aii0.91 (2)1.95 (2)2.854 (6)168.0 (18)
N1—H1A···O1B0.98 (2)1.81 (2)2.775 (9)172.0 (17)
N1—H1B···O2Bi0.96 (2)1.99 (2)2.945 (9)170.0 (18)
N1—H1C···O1Bii0.91 (2)1.73 (2)2.639 (9)174.4 (19)
N2—H2A···O40.953 (18)1.846 (18)2.7783 (16)165.3 (14)
N2—H2B···O4iii0.962 (18)1.867 (18)2.8205 (16)170.8 (15)
N2—H2C···O3i0.986 (17)1.745 (17)2.7277 (16)174.7 (15)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.
(IV) cyclooctylaminium cinnamate top
Crystal data top
C8H18N+·C9H7O2F(000) = 1200
Mr = 275.38Dx = 1.159 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1345 reflections
a = 24.4790 (4) Åθ = 3.2–24.5°
b = 6.2800 (4) ŵ = 0.08 mm1
c = 22.6340 (5) ÅT = 173 K
β = 114.894 (2)°Needle, colourless
V = 3156.2 (2) Å30.55 × 0.03 × 0.02 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2044 reflections with I > 2σ(I)
ω scansRint = 0.208
Absorption correction: integration
(XPREP; Bruker, 2004)
θmax = 23.5°, θmin = 1.8°
Tmin = 0.975, Tmax = 0.999h = 2726
15558 measured reflectionsk = 77
4649 independent reflectionsl = 2525
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.0382P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.160(Δ/σ)max < 0.001
S = 0.86Δρmax = 0.26 e Å3
4649 reflectionsΔρmin = 0.23 e Å3
379 parameters
Crystal data top
C8H18N+·C9H7O2V = 3156.2 (2) Å3
Mr = 275.38Z = 8
Monoclinic, P21/cMo Kα radiation
a = 24.4790 (4) ŵ = 0.08 mm1
b = 6.2800 (4) ÅT = 173 K
c = 22.6340 (5) Å0.55 × 0.03 × 0.02 mm
β = 114.894 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4649 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2004)
2044 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.999Rint = 0.208
15558 measured reflectionsθmax = 23.5°
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 0.86Δρmax = 0.26 e Å3
4649 reflectionsΔρmin = 0.23 e Å3
379 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.31107 (19)0.8034 (6)0.32320 (19)0.0243 (10)
C2A0.2570 (2)0.7036 (7)0.3143 (2)0.0353 (12)
H2D0.24760.5670.29450.042*
C3A0.2174 (2)0.8041 (8)0.3344 (2)0.0427 (13)
H3A0.18090.73580.32860.051*
C4A0.2305 (2)1.0007 (8)0.3627 (2)0.0412 (13)
H4A0.20311.06810.37640.049*
C5A0.2834 (2)1.1024 (7)0.3714 (2)0.0390 (13)
H5A0.29221.23970.39070.047*
C6A0.32375 (19)1.0021 (7)0.35155 (19)0.0296 (11)
H6A0.36031.07130.35770.036*
C7A0.35595 (19)0.6947 (7)0.30585 (19)0.0269 (11)
H7A0.39120.77380.31260.032*
C8A0.35287 (19)0.5011 (7)0.28216 (19)0.0265 (11)
H8A0.31690.42270.27230.032*
C9A0.4020 (2)0.3945 (7)0.26949 (19)0.0261 (11)
O10.39404 (13)0.2077 (5)0.25205 (14)0.0347 (8)
O20.44773 (13)0.5089 (5)0.27742 (13)0.0312 (8)
C1B1.18626 (19)0.5641 (7)0.5099 (2)0.0293 (11)
C2B1.2028 (2)0.6694 (8)0.5697 (2)0.0434 (13)
H2E1.18810.80850.57090.052*
C3B1.2407 (2)0.5701 (11)0.6268 (2)0.0616 (18)
H3B1.25130.64050.66730.074*
C4B1.2630 (2)0.3691 (12)0.6254 (3)0.077 (2)
H4B1.28960.30320.66480.092*
C5B1.2471 (2)0.2648 (10)0.5675 (4)0.070 (2)
H5B1.26180.12540.56650.084*
C6B1.2089 (2)0.3654 (8)0.5099 (2)0.0426 (13)
H6B1.19850.29380.46960.051*
C7B1.14555 (18)0.6649 (7)0.44808 (19)0.0243 (10)
H7B1.13470.57980.41010.029*
C8B1.12274 (18)0.8542 (7)0.43898 (19)0.0263 (11)
H8B1.13240.94170.47630.032*
C9B1.08230 (19)0.9466 (7)0.3742 (2)0.0242 (10)
O31.06785 (15)1.1351 (5)0.37274 (14)0.0462 (10)
O41.06528 (13)0.8234 (5)0.32511 (13)0.0326 (8)
C10A0.60169 (19)0.3362 (6)0.36366 (19)0.0260 (11)
H10A0.64340.32760.36620.031*
C11A0.5996 (2)0.5331 (7)0.4015 (2)0.0361 (12)
H11A0.5570.5650.39140.043*
H11B0.61580.65490.3860.043*
C12A0.6350 (2)0.5160 (9)0.4762 (2)0.0511 (15)
H12A0.66560.40230.4860.061*
H12B0.65670.65170.49270.061*
C13A0.5965 (2)0.4683 (9)0.5130 (2)0.0564 (16)
H13A0.62320.47680.56010.068*
H13B0.56680.58520.50330.068*
C14A0.5626 (2)0.2638 (8)0.5019 (2)0.0498 (14)
H14A0.54480.25510.53380.06*
H14B0.59180.14560.51150.06*
C15A0.5120 (2)0.2265 (8)0.4337 (2)0.0444 (14)
H15A0.47760.15960.43880.053*
H15B0.49820.36670.41270.053*
C16A0.5281 (2)0.0889 (7)0.3882 (2)0.0366 (12)
H16A0.49640.10880.34360.044*
H16B0.52630.06180.40020.044*
C17A0.5887 (2)0.1243 (7)0.3860 (2)0.0376 (12)
H17A0.62040.09830.43040.045*
H17B0.59340.01370.35730.045*
N10.56005 (17)0.3735 (7)0.29309 (18)0.0250 (10)
H1A0.529 (2)0.396 (7)0.293 (2)0.038*
H1B0.5565 (18)0.235 (7)0.2673 (19)0.038*
H1C0.5805 (19)0.508 (6)0.2806 (19)0.038*
C10B0.94705 (19)0.5136 (6)0.32230 (18)0.0227 (10)
H10B0.91840.39070.31060.027*
C11B0.97645 (18)0.5310 (7)0.39612 (18)0.0238 (10)
H11C1.00380.65540.40850.029*
H11D1.00130.40240.41420.029*
C12B0.93154 (19)0.5548 (6)0.42769 (19)0.0273 (11)
H12C0.89140.50590.39610.033*
H12D0.94450.460.46610.033*
C13B0.9256 (2)0.7800 (6)0.4490 (2)0.0304 (11)
H13C0.89120.78270.46120.037*
H13D0.96230.81290.48870.037*
C14B0.91641 (19)0.9564 (7)0.3999 (2)0.0314 (11)
H14C0.95170.95750.38920.038*
H14D0.91621.09390.42120.038*
C15B0.8598 (2)0.9464 (7)0.3362 (2)0.0337 (12)
H15C0.82450.94160.34690.04*
H15D0.85711.08050.31210.04*
C16B0.85456 (19)0.7615 (7)0.2906 (2)0.0333 (12)
H16C0.82260.79580.24710.04*
H16D0.84130.63390.30670.04*
C17B0.91276 (19)0.7044 (7)0.28281 (19)0.0294 (11)
H17C0.9020.67590.23620.035*
H17D0.93990.82960.29560.035*
N20.99557 (16)0.4593 (6)0.30078 (17)0.0225 (9)
H2A1.0258 (19)0.588 (6)0.3114 (18)0.034*
H2B0.9822 (19)0.429 (6)0.259 (2)0.034*
H2C1.0217 (18)0.317 (6)0.3255 (18)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.022 (3)0.028 (3)0.022 (2)0.003 (2)0.009 (2)0.001 (2)
C2A0.028 (3)0.035 (3)0.047 (3)0.003 (2)0.020 (2)0.010 (2)
C3A0.029 (3)0.056 (4)0.052 (3)0.001 (3)0.026 (3)0.004 (3)
C4A0.039 (3)0.054 (4)0.036 (3)0.006 (3)0.022 (2)0.008 (3)
C5A0.040 (3)0.043 (3)0.033 (3)0.004 (3)0.014 (2)0.012 (2)
C6A0.021 (3)0.035 (3)0.030 (3)0.002 (2)0.008 (2)0.004 (2)
C7A0.022 (3)0.035 (3)0.029 (3)0.003 (2)0.016 (2)0.001 (2)
C8A0.023 (3)0.033 (3)0.029 (3)0.005 (2)0.017 (2)0.000 (2)
C9A0.023 (3)0.035 (3)0.021 (3)0.005 (2)0.010 (2)0.002 (2)
O10.0301 (19)0.039 (2)0.0389 (19)0.0005 (16)0.0180 (15)0.0121 (16)
O20.0260 (19)0.0368 (19)0.0387 (19)0.0053 (17)0.0214 (15)0.0085 (15)
C1B0.018 (3)0.037 (3)0.034 (3)0.003 (2)0.012 (2)0.013 (2)
C2B0.025 (3)0.067 (4)0.033 (3)0.003 (3)0.007 (2)0.013 (3)
C3B0.028 (3)0.115 (5)0.032 (3)0.015 (4)0.003 (3)0.026 (3)
C4B0.019 (3)0.117 (6)0.079 (5)0.005 (4)0.005 (3)0.070 (5)
C5B0.027 (3)0.066 (4)0.112 (6)0.012 (3)0.023 (4)0.056 (4)
C6B0.025 (3)0.042 (3)0.059 (4)0.000 (3)0.016 (3)0.022 (3)
C7B0.018 (2)0.034 (3)0.020 (2)0.000 (2)0.0076 (19)0.002 (2)
C8B0.019 (3)0.036 (3)0.021 (2)0.003 (2)0.006 (2)0.001 (2)
C9B0.016 (2)0.032 (3)0.028 (3)0.001 (2)0.012 (2)0.005 (2)
O30.058 (3)0.039 (2)0.037 (2)0.0253 (19)0.0158 (18)0.0113 (16)
O40.033 (2)0.042 (2)0.0186 (17)0.0059 (16)0.0066 (14)0.0060 (16)
C10A0.024 (3)0.030 (3)0.026 (3)0.001 (2)0.012 (2)0.006 (2)
C11A0.033 (3)0.042 (3)0.032 (3)0.006 (2)0.013 (2)0.002 (2)
C12A0.037 (3)0.074 (4)0.036 (3)0.016 (3)0.009 (3)0.007 (3)
C13A0.057 (4)0.091 (4)0.021 (3)0.022 (4)0.016 (3)0.009 (3)
C14A0.041 (3)0.079 (4)0.031 (3)0.009 (3)0.017 (2)0.002 (3)
C15A0.030 (3)0.067 (4)0.037 (3)0.010 (3)0.016 (2)0.001 (3)
C16A0.030 (3)0.042 (3)0.036 (3)0.005 (2)0.013 (2)0.007 (2)
C17A0.038 (3)0.041 (3)0.034 (3)0.005 (3)0.016 (2)0.006 (2)
N10.019 (2)0.032 (2)0.029 (2)0.001 (2)0.0153 (19)0.0000 (18)
C10B0.020 (2)0.027 (3)0.023 (2)0.000 (2)0.012 (2)0.003 (2)
C11B0.019 (2)0.030 (3)0.021 (2)0.000 (2)0.0068 (19)0.003 (2)
C12B0.027 (3)0.036 (3)0.021 (2)0.002 (2)0.013 (2)0.002 (2)
C13B0.035 (3)0.030 (3)0.035 (3)0.000 (2)0.023 (2)0.006 (2)
C14B0.028 (3)0.034 (3)0.037 (3)0.001 (2)0.017 (2)0.007 (2)
C15B0.028 (3)0.036 (3)0.042 (3)0.005 (2)0.018 (2)0.001 (2)
C16B0.026 (3)0.037 (3)0.034 (3)0.012 (2)0.009 (2)0.003 (2)
C17B0.028 (3)0.037 (3)0.020 (2)0.011 (2)0.008 (2)0.000 (2)
N20.026 (2)0.031 (2)0.0138 (19)0.0002 (19)0.0120 (17)0.0030 (18)
Geometric parameters (Å, º) top
C1A—C6A1.377 (5)C12A—H12B0.99
C1A—C2A1.400 (6)C13A—C14A1.492 (6)
C1A—C7A1.480 (6)C13A—H13A0.99
C2A—C3A1.386 (6)C13A—H13B0.99
C2A—H2D0.95C14A—C15A1.536 (6)
C3A—C4A1.365 (6)C14A—H14A0.99
C3A—H3A0.95C14A—H14B0.99
C4A—C5A1.380 (6)C15A—C16A1.518 (6)
C4A—H4A0.95C15A—H15A0.99
C5A—C6A1.396 (6)C15A—H15B0.99
C5A—H5A0.95C16A—C17A1.522 (6)
C6A—H6A0.95C16A—H16A0.99
C7A—C8A1.318 (5)C16A—H16B0.99
C7A—H7A0.95C17A—H17A0.99
C8A—C9A1.506 (6)C17A—H17B0.99
C8A—H8A0.95N1—H1A0.78 (5)
C9A—O11.227 (5)N1—H1B1.03 (4)
C9A—O21.277 (5)N1—H1C1.08 (4)
C1B—C6B1.366 (6)C10B—N21.500 (5)
C1B—C2B1.404 (6)C10B—C17B1.519 (5)
C1B—C7B1.476 (6)C10B—C11B1.520 (5)
C2B—C3B1.383 (6)C10B—H10B1
C2B—H2E0.95C11B—C12B1.550 (5)
C3B—C4B1.381 (8)C11B—H11C0.99
C3B—H3B0.95C11B—H11D0.99
C4B—C5B1.367 (8)C12B—C13B1.521 (5)
C4B—H4B0.95C12B—H12C0.99
C5B—C6B1.396 (7)C12B—H12D0.99
C5B—H5B0.95C13B—C14B1.518 (5)
C6B—H6B0.95C13B—H13C0.99
C7B—C8B1.292 (5)C13B—H13D0.99
C7B—H7B0.95C14B—C15B1.523 (6)
C8B—C9B1.498 (6)C14B—H14C0.99
C8B—H8B0.95C14B—H14D0.99
C9B—O31.232 (5)C15B—C16B1.522 (6)
C9B—O41.272 (5)C15B—H15C0.99
C10A—C17A1.504 (5)C15B—H15D0.99
C10A—N11.508 (5)C16B—C17B1.550 (6)
C10A—C11A1.517 (6)C16B—H16C0.99
C10A—H10A1C16B—H16D0.99
C11A—C12A1.545 (6)C17B—H17C0.99
C11A—H11A0.99C17B—H17D0.99
C11A—H11B0.99N2—H2A1.05 (4)
C12A—C13A1.527 (6)N2—H2B0.88 (4)
C12A—H12A0.99N2—H2C1.11 (4)
C6A—C1A—C2A119.1 (4)C13A—C14A—H14B108
C6A—C1A—C7A119.7 (4)C15A—C14A—H14B108
C2A—C1A—C7A121.1 (4)H14A—C14A—H14B107.2
C3A—C2A—C1A119.9 (4)C16A—C15A—C14A116.0 (4)
C3A—C2A—H2D120C16A—C15A—H15A108.3
C1A—C2A—H2D120C14A—C15A—H15A108.3
C4A—C3A—C2A120.4 (5)C16A—C15A—H15B108.3
C4A—C3A—H3A119.8C14A—C15A—H15B108.3
C2A—C3A—H3A119.8H15A—C15A—H15B107.4
C3A—C4A—C5A120.5 (5)C15A—C16A—C17A118.3 (4)
C3A—C4A—H4A119.8C15A—C16A—H16A107.7
C5A—C4A—H4A119.8C17A—C16A—H16A107.7
C4A—C5A—C6A119.5 (4)C15A—C16A—H16B107.7
C4A—C5A—H5A120.2C17A—C16A—H16B107.7
C6A—C5A—H5A120.2H16A—C16A—H16B107.1
C1A—C6A—C5A120.5 (4)C10A—C17A—C16A119.1 (4)
C1A—C6A—H6A119.7C10A—C17A—H17A107.5
C5A—C6A—H6A119.7C16A—C17A—H17A107.5
C8A—C7A—C1A127.7 (4)C10A—C17A—H17B107.5
C8A—C7A—H7A116.1C16A—C17A—H17B107.5
C1A—C7A—H7A116.1H17A—C17A—H17B107
C7A—C8A—C9A125.0 (4)C10A—N1—H1A105 (3)
C7A—C8A—H8A117.5C10A—N1—H1B109 (2)
C9A—C8A—H8A117.5H1A—N1—H1B107 (4)
O1—C9A—O2126.5 (4)C10A—N1—H1C103 (2)
O1—C9A—C8A117.0 (4)H1A—N1—H1C115 (4)
O2—C9A—C8A116.5 (4)H1B—N1—H1C117 (3)
C6B—C1B—C2B118.6 (4)N2—C10B—C17B107.7 (3)
C6B—C1B—C7B120.2 (4)N2—C10B—C11B107.5 (3)
C2B—C1B—C7B121.2 (4)C17B—C10B—C11B118.6 (3)
C3B—C2B—C1B119.8 (5)N2—C10B—H10B107.5
C3B—C2B—H2E120.1C17B—C10B—H10B107.5
C1B—C2B—H2E120.1C11B—C10B—H10B107.5
C4B—C3B—C2B120.4 (6)C10B—C11B—C12B114.5 (3)
C4B—C3B—H3B119.8C10B—C11B—H11C108.6
C2B—C3B—H3B119.8C12B—C11B—H11C108.6
C5B—C4B—C3B120.3 (6)C10B—C11B—H11D108.6
C5B—C4B—H4B119.9C12B—C11B—H11D108.6
C3B—C4B—H4B119.9H11C—C11B—H11D107.6
C4B—C5B—C6B119.2 (6)C13B—C12B—C11B114.7 (3)
C4B—C5B—H5B120.4C13B—C12B—H12C108.6
C6B—C5B—H5B120.4C11B—C12B—H12C108.6
C1B—C6B—C5B121.6 (6)C13B—C12B—H12D108.6
C1B—C6B—H6B119.2C11B—C12B—H12D108.6
C5B—C6B—H6B119.2H12C—C12B—H12D107.6
C8B—C7B—C1B128.3 (4)C14B—C13B—C12B116.8 (3)
C8B—C7B—H7B115.9C14B—C13B—H13C108.1
C1B—C7B—H7B115.9C12B—C13B—H13C108.1
C7B—C8B—C9B125.1 (4)C14B—C13B—H13D108.1
C7B—C8B—H8B117.4C12B—C13B—H13D108.1
C9B—C8B—H8B117.4H13C—C13B—H13D107.3
O3—C9B—O4125.2 (4)C13B—C14B—C15B117.3 (4)
O3—C9B—C8B117.5 (4)C13B—C14B—H14C108
O4—C9B—C8B117.3 (4)C15B—C14B—H14C108
C17A—C10A—N1110.4 (3)C13B—C14B—H14D108
C17A—C10A—C11A118.0 (4)C15B—C14B—H14D108
N1—C10A—C11A107.7 (3)H14C—C14B—H14D107.2
C17A—C10A—H10A106.7C16B—C15B—C14B117.1 (4)
N1—C10A—H10A106.7C16B—C15B—H15C108
C11A—C10A—H10A106.7C14B—C15B—H15C108
C10A—C11A—C12A115.1 (4)C16B—C15B—H15D108
C10A—C11A—H11A108.5C14B—C15B—H15D108
C12A—C11A—H11A108.5H15C—C15B—H15D107.3
C10A—C11A—H11B108.5C15B—C16B—C17B115.8 (4)
C12A—C11A—H11B108.5C15B—C16B—H16C108.3
H11A—C11A—H11B107.5C17B—C16B—H16C108.3
C13A—C12A—C11A114.9 (4)C15B—C16B—H16D108.3
C13A—C12A—H12A108.6C17B—C16B—H16D108.3
C11A—C12A—H12A108.6H16C—C16B—H16D107.4
C13A—C12A—H12B108.6C10B—C17B—C16B115.0 (4)
C11A—C12A—H12B108.6C10B—C17B—H17C108.5
H12A—C12A—H12B107.5C16B—C17B—H17C108.5
C14A—C13A—C12A120.3 (4)C10B—C17B—H17D108.5
C14A—C13A—H13A107.3C16B—C17B—H17D108.5
C12A—C13A—H13A107.3H17C—C17B—H17D107.5
C14A—C13A—H13B107.3C10B—N2—H2A109 (2)
C12A—C13A—H13B107.3C10B—N2—H2B114 (3)
H13A—C13A—H13B106.9H2A—N2—H2B109 (3)
C13A—C14A—C15A117.2 (4)C10B—N2—H2C113 (2)
C13A—C14A—H14A108H2A—N2—H2C108 (3)
C15A—C14A—H14A108H2B—N2—H2C104 (3)
C6A—C1A—C2A—C3A0.5 (6)C1B—C7B—C8B—C9B179.0 (4)
C7A—C1A—C2A—C3A176.3 (4)C7B—C8B—C9B—O3174.5 (4)
C1A—C2A—C3A—C4A0.3 (7)C7B—C8B—C9B—O45.9 (6)
C2A—C3A—C4A—C5A0.2 (7)C17A—C10A—C11A—C12A48.6 (6)
C3A—C4A—C5A—C6A0.5 (7)N1—C10A—C11A—C12A174.4 (4)
C2A—C1A—C6A—C5A0.2 (6)C10A—C11A—C12A—C13A100.1 (5)
C7A—C1A—C6A—C5A176.6 (4)C11A—C12A—C13A—C14A63.3 (7)
C4A—C5A—C6A—C1A0.3 (6)C12A—C13A—C14A—C15A64.8 (7)
C6A—C1A—C7A—C8A175.7 (4)C13A—C14A—C15A—C16A98.6 (5)
C2A—C1A—C7A—C8A1.1 (7)C14A—C15A—C16A—C17A42.6 (6)
C1A—C7A—C8A—C9A175.9 (4)N1—C10A—C17A—C16A64.9 (5)
C7A—C8A—C9A—O1174.5 (4)C11A—C10A—C17A—C16A59.4 (6)
C7A—C8A—C9A—O26.1 (6)C15A—C16A—C17A—C10A62.6 (6)
C6B—C1B—C2B—C3B0.9 (6)N2—C10B—C11B—C12B171.7 (3)
C7B—C1B—C2B—C3B179.5 (4)C17B—C10B—C11B—C12B65.9 (5)
C1B—C2B—C3B—C4B1.0 (7)C10B—C11B—C12B—C13B102.5 (4)
C2B—C3B—C4B—C5B1.2 (8)C11B—C12B—C13B—C14B48.2 (5)
C3B—C4B—C5B—C6B1.3 (9)C12B—C13B—C14B—C15B61.8 (5)
C2B—C1B—C6B—C5B1.0 (7)C13B—C14B—C15B—C16B65.7 (5)
C7B—C1B—C6B—C5B179.4 (4)C14B—C15B—C16B—C17B42.1 (6)
C4B—C5B—C6B—C1B1.2 (8)N2—C10B—C17B—C16B170.8 (3)
C6B—C1B—C7B—C8B176.1 (5)C11B—C10B—C17B—C16B67.0 (5)
C2B—C1B—C7B—C8B3.5 (7)C15B—C16B—C17B—C10B100.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.78 (5)1.99 (5)2.755 (5)166 (5)
N1—H1B···O2i1.03 (4)1.72 (4)2.751 (5)177 (4)
N1—H1C···O1ii1.08 (4)1.70 (4)2.771 (5)171 (3)
N2—H2A···O41.05 (4)1.72 (4)2.766 (5)171 (3)
N2—H2B···O4iii0.88 (4)1.89 (4)2.737 (4)163 (4)
N2—H2C···O3iv1.11 (4)1.64 (4)2.739 (5)170 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x, y1, z.
(V) cyclododecylaminium cinnamate top
Crystal data top
C12H26N+·C9H7O2F(000) = 364
Mr = 331.48Dx = 1.095 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2656 reflections
a = 12.6990 (4) Åθ = 2.7–27.8°
b = 5.8910 (2) ŵ = 0.07 mm1
c = 14.387 (4) ÅT = 173 K
β = 110.855 (2)°Needle, colourless
V = 1005.8 (3) Å30.59 × 0.11 × 0.07 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2137 reflections with I > 2σ(I)
ω scansRint = 0.096
Absorption correction: integration
(XPREP; Bruker, 2004)
θmax = 28°, θmin = 1.5°
Tmin = 0.969, Tmax = 0.996h = 1516
7908 measured reflectionsk = 77
2665 independent reflectionsl = 1913
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0647P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.19 e Å3
2665 reflectionsΔρmin = 0.24 e Å3
226 parameters
Crystal data top
C12H26N+·C9H7O2V = 1005.8 (3) Å3
Mr = 331.48Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.6990 (4) ŵ = 0.07 mm1
b = 5.8910 (2) ÅT = 173 K
c = 14.387 (4) Å0.59 × 0.11 × 0.07 mm
β = 110.855 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2665 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2004)
2137 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.996Rint = 0.096
7908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.19 e Å3
2665 reflectionsΔρmin = 0.24 e Å3
226 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.62139 (18)0.4237 (4)0.12516 (17)0.0292 (5)
C20.6688 (2)0.6340 (5)0.15644 (19)0.0383 (6)
H20.6760.68740.22070.046*
C30.7059 (2)0.7674 (5)0.0953 (2)0.0473 (7)
H30.73930.91090.1180.057*
C40.6943 (2)0.6924 (5)0.0013 (2)0.0499 (8)
H40.71960.78470.04070.06*
C50.6466 (2)0.4855 (5)0.0314 (2)0.0436 (6)
H50.6380.43520.09650.052*
C60.6109 (2)0.3490 (5)0.03008 (18)0.0339 (5)
H60.57920.20420.00750.041*
C70.58025 (18)0.2740 (4)0.18712 (16)0.0294 (5)
H70.57570.11650.17210.035*
C80.5490 (2)0.3379 (4)0.26163 (18)0.0320 (5)
H80.55350.49370.27970.038*
C90.50710 (19)0.1703 (4)0.31749 (16)0.0295 (5)
O10.46560 (15)0.2514 (3)0.37969 (11)0.0330 (4)
O20.51311 (16)0.0360 (3)0.30313 (13)0.0393 (4)
C100.3110 (2)0.7431 (4)0.40472 (17)0.0331 (5)
H100.31060.8770.44730.04*
C110.2438 (2)0.8062 (4)0.29675 (18)0.0387 (6)
H11A0.16440.83160.29010.046*
H11B0.27330.95180.28170.046*
C120.2460 (2)0.6322 (5)0.21905 (18)0.0391 (6)
H12A0.24770.47760.24650.047*
H12B0.31560.6530.20390.047*
C130.1430 (2)0.6545 (6)0.12251 (19)0.0460 (7)
H13A0.13520.81520.10090.055*
H13B0.15620.56330.06990.055*
C140.0334 (2)0.5774 (5)0.13299 (19)0.0462 (7)
H14A0.02380.660.18940.055*
H14B0.030.62090.0720.055*
C150.0260 (2)0.3253 (5)0.1498 (2)0.0493 (7)
H15A0.09870.27440.19920.059*
H15B0.01540.24520.08660.059*
C160.0678 (2)0.2544 (6)0.1859 (2)0.0604 (8)
H16A0.07290.08670.18450.073*
H16B0.14020.31420.13910.073*
C170.0522 (2)0.3361 (6)0.2901 (2)0.0569 (8)
H17A0.12180.30340.30370.068*
H17B0.04160.50280.29280.068*
C180.0472 (2)0.2279 (5)0.3711 (2)0.0483 (7)
H18A0.10870.20480.3450.058*
H18B0.02390.07650.38660.058*
C190.0932 (3)0.3640 (6)0.4673 (2)0.0557 (8)
H19A0.14620.26740.51930.067*
H19B0.02990.40330.48930.067*
C200.1536 (3)0.5818 (5)0.4581 (2)0.0534 (8)
H20A0.16740.67460.51870.064*
H20B0.1040.67030.40070.064*
C210.2657 (2)0.5384 (5)0.44432 (19)0.0394 (6)
H21A0.25620.410.39770.047*
H21B0.32230.49280.50910.047*
N10.43084 (17)0.6962 (3)0.41541 (15)0.0289 (4)
H1A0.439 (2)0.549 (5)0.395 (2)0.043*
H1B0.470 (2)0.697 (5)0.474 (2)0.043*
H1C0.465 (2)0.798 (5)0.382 (2)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0284 (10)0.0317 (12)0.0293 (12)0.0028 (10)0.0125 (9)0.0059 (10)
C20.0373 (12)0.0372 (13)0.0414 (14)0.0022 (11)0.0153 (11)0.0016 (11)
C30.0406 (13)0.0341 (13)0.0669 (19)0.0032 (12)0.0189 (13)0.0095 (14)
C40.0450 (14)0.0543 (18)0.0603 (18)0.0065 (14)0.0308 (14)0.0280 (15)
C50.0450 (14)0.0553 (16)0.0370 (13)0.0126 (14)0.0226 (12)0.0118 (13)
C60.0358 (11)0.0353 (12)0.0327 (12)0.0051 (11)0.0148 (10)0.0069 (10)
C70.0346 (11)0.0251 (11)0.0285 (11)0.0013 (9)0.0111 (10)0.0007 (10)
C80.0425 (12)0.0241 (10)0.0314 (12)0.0044 (10)0.0155 (10)0.0011 (10)
C90.0371 (11)0.0283 (12)0.0239 (11)0.0027 (10)0.0119 (9)0.0019 (9)
O10.0494 (9)0.0282 (8)0.0253 (8)0.0025 (8)0.0180 (7)0.0002 (7)
O20.0653 (11)0.0247 (9)0.0382 (10)0.0033 (8)0.0309 (9)0.0010 (7)
C100.0414 (12)0.0279 (11)0.0313 (12)0.0032 (11)0.0145 (10)0.0041 (10)
C110.0408 (12)0.0366 (15)0.0375 (13)0.0053 (11)0.0123 (11)0.0041 (11)
C120.0372 (12)0.0487 (15)0.0313 (12)0.0067 (11)0.0121 (11)0.0007 (11)
C130.0442 (14)0.0619 (18)0.0299 (12)0.0089 (14)0.0108 (11)0.0059 (13)
C140.0388 (13)0.0593 (17)0.0341 (14)0.0092 (13)0.0050 (11)0.0055 (13)
C150.0448 (14)0.0561 (18)0.0397 (15)0.0014 (14)0.0061 (12)0.0111 (13)
C160.0407 (14)0.062 (2)0.069 (2)0.0059 (15)0.0070 (14)0.0035 (18)
C170.0387 (14)0.0613 (19)0.078 (2)0.0062 (14)0.0293 (15)0.0169 (17)
C180.0493 (15)0.0417 (15)0.0599 (17)0.0030 (13)0.0267 (14)0.0093 (14)
C190.0653 (19)0.0599 (18)0.0616 (19)0.0009 (17)0.0466 (17)0.0055 (16)
C200.0605 (18)0.0539 (17)0.0608 (18)0.0038 (15)0.0401 (16)0.0113 (16)
C210.0456 (14)0.0427 (15)0.0344 (13)0.0017 (12)0.0197 (12)0.0021 (11)
N10.0391 (10)0.0238 (10)0.0236 (9)0.0010 (8)0.0109 (8)0.0001 (8)
Geometric parameters (Å, º) top
C1—C21.381 (3)C13—H13A0.99
C1—C61.397 (3)C13—H13B0.99
C1—C71.475 (3)C14—C151.513 (4)
C2—C31.381 (4)C14—H14A0.99
C2—H20.95C14—H14B0.99
C3—C41.380 (4)C15—C161.517 (4)
C3—H30.95C15—H15A0.99
C4—C51.368 (4)C15—H15B0.99
C4—H40.95C16—C171.519 (5)
C5—C61.386 (3)C16—H16A0.99
C5—H50.95C16—H16B0.99
C6—H60.95C17—C181.520 (4)
C7—C81.323 (3)C17—H17A0.99
C7—H70.95C17—H17B0.99
C8—C91.486 (3)C18—C191.524 (4)
C8—H80.95C18—H18A0.99
C9—O21.240 (3)C18—H18B0.99
C9—O11.282 (3)C19—C201.525 (4)
C10—N11.500 (3)C19—H19A0.99
C10—C111.528 (3)C19—H19B0.99
C10—C211.530 (3)C20—C211.528 (4)
C10—H101C20—H20A0.99
C11—C121.524 (3)C20—H20B0.99
C11—H11A0.99C21—H21A0.99
C11—H11B0.99C21—H21B0.99
C12—C131.537 (4)N1—H1A0.93 (3)
C12—H12A0.99N1—H1B0.81 (3)
C12—H12B0.99N1—H1C0.96 (3)
C13—C141.522 (4)
C2—C1—C6118.7 (2)C13—C14—H14A108.6
C2—C1—C7123.1 (2)C15—C14—H14B108.6
C6—C1—C7118.2 (2)C13—C14—H14B108.6
C1—C2—C3120.7 (2)H14A—C14—H14B107.5
C1—C2—H2119.6C14—C15—C16115.2 (3)
C3—C2—H2119.6C14—C15—H15A108.5
C4—C3—C2120.0 (3)C16—C15—H15A108.5
C4—C3—H3120C14—C15—H15B108.5
C2—C3—H3120C16—C15—H15B108.5
C5—C4—C3120.1 (2)H15A—C15—H15B107.5
C5—C4—H4119.9C15—C16—C17114.1 (3)
C3—C4—H4119.9C15—C16—H16A108.7
C4—C5—C6120.2 (3)C17—C16—H16A108.7
C4—C5—H5119.9C15—C16—H16B108.7
C6—C5—H5119.9C17—C16—H16B108.7
C5—C6—C1120.2 (2)H16A—C16—H16B107.6
C5—C6—H6119.9C16—C17—C18113.9 (3)
C1—C6—H6119.9C16—C17—H17A108.8
C8—C7—C1126.3 (2)C18—C17—H17A108.8
C8—C7—H7116.8C16—C17—H17B108.8
C1—C7—H7116.8C18—C17—H17B108.8
C7—C8—C9121.2 (2)H17A—C17—H17B107.7
C7—C8—H8119.4C17—C18—C19114.9 (3)
C9—C8—H8119.4C17—C18—H18A108.5
O2—C9—O1123.1 (2)C19—C18—H18A108.5
O2—C9—C8120.4 (2)C17—C18—H18B108.5
O1—C9—C8116.5 (2)C19—C18—H18B108.5
N1—C10—C11109.14 (18)H18A—C18—H18B107.5
N1—C10—C21108.57 (19)C18—C19—C20113.9 (2)
C11—C10—C21115.0 (2)C18—C19—H19A108.8
N1—C10—H10108C20—C19—H19A108.8
C11—C10—H10108C18—C19—H19B108.8
C21—C10—H10108C20—C19—H19B108.8
C12—C11—C10115.6 (2)H19A—C19—H19B107.7
C12—C11—H11A108.4C19—C20—C21113.1 (2)
C10—C11—H11A108.4C19—C20—H20A109
C12—C11—H11B108.4C21—C20—H20A109
C10—C11—H11B108.4C19—C20—H20B109
H11A—C11—H11B107.4C21—C20—H20B109
C11—C12—C13111.9 (2)H20A—C20—H20B107.8
C11—C12—H12A109.2C20—C21—C10114.0 (2)
C13—C12—H12A109.2C20—C21—H21A108.7
C11—C12—H12B109.2C10—C21—H21A108.7
C13—C12—H12B109.2C20—C21—H21B108.7
H12A—C12—H12B107.9C10—C21—H21B108.7
C14—C13—C12113.5 (2)H21A—C21—H21B107.6
C14—C13—H13A108.9C10—N1—H1A111.1 (17)
C12—C13—H13A108.9C10—N1—H1B110 (2)
C14—C13—H13B108.9H1A—N1—H1B103 (3)
C12—C13—H13B108.9C10—N1—H1C117.2 (17)
H13A—C13—H13B107.7H1A—N1—H1C108 (2)
C15—C14—C13114.8 (2)H1B—N1—H1C107 (3)
C15—C14—H14A108.6
C6—C1—C2—C30.4 (3)C21—C10—C11—C1266.0 (3)
C7—C1—C2—C3179.9 (2)C10—C11—C12—C13156.2 (2)
C1—C2—C3—C40.9 (4)C11—C12—C13—C1471.0 (3)
C2—C3—C4—C50.3 (4)C12—C13—C14—C1567.8 (3)
C3—C4—C5—C60.8 (4)C13—C14—C15—C16165.3 (2)
C4—C5—C6—C11.2 (4)C14—C15—C16—C1767.2 (4)
C2—C1—C6—C50.6 (3)C15—C16—C17—C1867.0 (4)
C7—C1—C6—C5178.9 (2)C16—C17—C18—C19157.4 (3)
C2—C1—C7—C823.0 (4)C17—C18—C19—C2069.9 (3)
C6—C1—C7—C8156.5 (2)C18—C19—C20—C2169.7 (4)
C1—C7—C8—C9179.0 (2)C19—C20—C21—C10162.9 (2)
C7—C8—C9—O28.6 (4)N1—C10—C21—C20167.9 (2)
C7—C8—C9—O1171.4 (2)C11—C10—C21—C2069.5 (3)
N1—C10—C11—C1256.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.93 (3)1.81 (3)2.736 (3)170 (3)
N1—H1B···O1i0.81 (3)2.00 (3)2.786 (3)165 (3)
N1—H1C···O2ii0.96 (3)1.77 (3)2.719 (2)170 (3)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1, z.

Experimental details

(I)(II)(IIIa)(IIIb)
Crystal data
Chemical formulaC5H12N+·C9H7O2C6H14N+·C9H7O2C7H16N+·C9H7O2C7H16N+·C9H7O2
Mr233.3247.33261.35261.35
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/nOrthorhombic, P212121Monoclinic, P21/c
Temperature (K)173173173173
a, b, c (Å)8.2523 (3), 11.1475 (3), 27.8170 (7)13.4992 (4), 6.4723 (2), 16.7352 (5)5.7790 (4), 11.3400 (11), 22.7510 (15)11.4496 (2), 6.1011 (1), 43.0883 (8)
α, β, γ (°)90, 90, 9090, 108.610 (2), 9090, 90, 9090, 93.659 (1), 90
V3)2558.96 (13)1385.72 (7)1491.0 (2)3003.80 (9)
Z8448
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.080.080.080.08
Crystal size (mm)0.55 × 0.4 × 0.10.5 × 0.26 × 0.060.59 × 0.14 × 0.050.45 × 0.3 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Integration
(XPREP; Bruker, 2004)
Multi-scan
(XPREP; Bruker, 2004)
Tmin, Tmax0.957, 0.9920.962, 0.9950.957, 0.9960.967, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
14051, 3092, 2170 14450, 3348, 1957 5537, 2094, 1513 37019, 7152, 4684
Rint0.0510.1340.0480.047
θmax (°)282828.028
(sin θ/λ)max1)0.6610.6610.6600.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.02 0.058, 0.174, 0.99 0.038, 0.084, 0.95 0.052, 0.149, 1.06
No. of reflections3092334820947152
No. of parameters163172181487
No. of restraints00031
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.200.45, 0.190.14, 0.190.25, 0.29


(IV)(V)
Crystal data
Chemical formulaC8H18N+·C9H7O2C12H26N+·C9H7O2
Mr275.38331.48
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21
Temperature (K)173173
a, b, c (Å)24.4790 (4), 6.2800 (4), 22.6340 (5)12.6990 (4), 5.8910 (2), 14.387 (4)
α, β, γ (°)90, 114.894 (2), 9090, 110.855 (2), 90
V3)3156.2 (2)1005.8 (3)
Z82
Radiation typeMo KαMo Kα
µ (mm1)0.080.07
Crystal size (mm)0.55 × 0.03 × 0.020.59 × 0.11 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionIntegration
(XPREP; Bruker, 2004)
Integration
(XPREP; Bruker, 2004)
Tmin, Tmax0.975, 0.9990.969, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
15558, 4649, 2044 7908, 2665, 2137
Rint0.2080.096
θmax (°)23.528
(sin θ/λ)max1)0.5610.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.160, 0.86 0.050, 0.124, 1.00
No. of reflections46492665
No. of parameters379226
No. of restraints01
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.230.19, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.921 (16)1.866 (16)2.7824 (15)172.4 (14)
N1—H1B···O1i0.949 (17)1.900 (17)2.8471 (15)175.6 (12)
N1—H1C···O2ii0.928 (15)1.830 (15)2.7519 (13)171.6 (13)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O21.00 (2)1.80 (2)2.7878 (19)172.0 (15)
N1—H1B···O2i0.93 (2)1.86 (2)2.7907 (19)175.1 (17)
N1—H1C···O1ii0.96 (2)1.76 (2)2.7123 (18)170.1 (18)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (IIIa) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.99 (2)1.76 (2)2.739 (2)167 (2)
N1—H1B···O1i0.89 (3)1.92 (3)2.805 (2)178 (2)
N1—H1C···O2ii1.01 (2)1.75 (2)2.741 (2)166 (2)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (IIIb) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2A0.98 (2)1.80 (2)2.768 (7)170.7 (17)
N1—H1B···O1Ai0.96 (2)1.62 (2)2.578 (6)175.6 (19)
N1—H1C···O2Aii0.91 (2)1.95 (2)2.854 (6)168.0 (18)
N1—H1A···O1B0.98 (2)1.81 (2)2.775 (9)172.0 (17)
N1—H1B···O2Bi0.96 (2)1.99 (2)2.945 (9)170.0 (18)
N1—H1C···O1Bii0.91 (2)1.73 (2)2.639 (9)174.4 (19)
N2—H2A···O40.953 (18)1.846 (18)2.7783 (16)165.3 (14)
N2—H2B···O4iii0.962 (18)1.867 (18)2.8205 (16)170.8 (15)
N2—H2C···O3i0.986 (17)1.745 (17)2.7277 (16)174.7 (15)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.78 (5)1.99 (5)2.755 (5)166 (5)
N1—H1B···O2i1.03 (4)1.72 (4)2.751 (5)177 (4)
N1—H1C···O1ii1.08 (4)1.70 (4)2.771 (5)171 (3)
N2—H2A···O41.05 (4)1.72 (4)2.766 (5)171 (3)
N2—H2B···O4iii0.88 (4)1.89 (4)2.737 (4)163 (4)
N2—H2C···O3iv1.11 (4)1.64 (4)2.739 (5)170 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.93 (3)1.81 (3)2.736 (3)170 (3)
N1—H1B···O1i0.81 (3)2.00 (3)2.786 (3)165 (3)
N1—H1C···O2ii0.96 (3)1.77 (3)2.719 (2)170 (3)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds