Download citation
Download citation
link to html
The open-chain polyether-bridged flexible ligand 1,2-bis­[2-(1H-1,3-imidazol-1-ylmethyl)phen­oxy]ethane (L) has been used to create two two-dimensional coordination polymers under hydro­thermal reaction of L with CdII or CoII, in the presence of benzene-1,4-dicarb­oxy­lic acid (H2bdc). In poly[[(μ2-benzene-1,4-dicarboxyl­ato){μ-1,2-bis­[2-(1H-1,3-imidazol-1-ylmethyl)phen­oxy]ethane}­cadmium(II)] dihydrate], {[Cd(C8H4O4)(C22H22N4O2)]·2H2O}n, (I), and the cobalt(II) analogue {[Co(C8H4O4)(C22H22N4O2)]·2H2O}n, (II), the CdII and CoII cations are six-coordinated by four carboxyl­ate O atoms from two different bdc2− dianions in a chelating mode and two N atoms from two distinct L ligands. The metal ions, bdc2− dianions and L ligands each sit across crystallographic twofold axes. The bdc2− coordination mode and the coordinating orientation of the L ligand play an important role in con­structing the novel two-dimensional framework. Com­plexes (I) and (II) are threefold inter­penetrated two-dimensional frameworks; their structures are almost isomorphous, while the bond lengths, angles and hydrogen bonds are different in (I) and (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111009383/em3039sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111009383/em3039Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111009383/em3039IIsup3.hkl
Contains datablock II

CCDC references: 824040; 824041

Comment top

The construction of coordination frameworks through crystal engineering has attracted considerable attention, not only because of their fascinating structure topologies (Abrahams et al., 2004), but also due to their potential application as functional materials (Noveron et al., 2002). In principle, some control over the type and topology of the polymer generated from the self-assembly of organic ligands and inorganic metal ions can be achieved by consideration of the functionality of the ligand (Munakata et al., 1997). Flexible N-donor ligands are good candidates for the assembly of versatile structures, owing to their diversity (Qi, Che et al., 2008 or Qi, Luo et al., 2008 ?).

It is well known that flexible ligands with imidazole are very useful organic building blocks for constructing metal–organic frameworks (MOFs) with versatile topologies (Cui et al., 2005). Using these ligands, many intriguing varieties of interpenetrating architectures and topologies have been constructed. Organic aromatic polycarboxylate ligands, especially benzene-1,4-dicarboxylic acid (H2bdc), have been extensively applied in the construction of a rich variety of MOFs because of their diverse coordination modes and high structural stability (Lan et al., 2009).

Recently, we reported several polymers generated from two novel flexible open-chain polyether-bridged organic ligands (Dong et al., 2007; Jiang et al., 2009). To research the coordination chemistry of the flexible open-chain polyether-bridged ligands with imidazole and a rigid aromatic polycarboxylate acid, we synthesized the novel ligand 1,2-bis[2-(1H-1,3-imidazol-1-ylmethyl)phenoxy]ethane (L) and investigated the self-assembly of L with CdII and CoII under hydrothermal conditions in the presence of H2bdc. Two MOFs with the same architectures and topologies were obtained, viz. {[Cd(bdc)(L)].2H2O}n, (I), and {[Co(bdc)(L)].2H2O}n, (II).

Complexes (I) (M = Cd) and (II) (M = Co) crystallize with one unique six-coordinated MII centre. Each MII cation lies in a distorted octahedral environment coordinated by four carboxylic O atoms [O2, O3, O2iii and O3iii; symmetry code: (iii) -x + 1, y, -z + 1/2] from two bdc2- dianions and two N atoms (N1 and N1iii) from two L ligands. This coordination environment is similar to those observed in the structures of [Cd(oba)(1,4-bix)], (III), and [Co(bpea)(bbi)].H2O [oba is 4,4'-oxybis(benzoate), bpea is biphenylethene-4,4'-dicarboxylate, 1,4-bix is 1,4-bis(imidazol-1-ylmethyl)benzene and bbi is 1,1'-(1,4-butanediyl)bis(imidazole); Yang et al., 2009]. The freedom of rotation around the central C—C single bond in L gives rise to cis or trans conformations. In these structures, L adopts the cis conformation (Figs. 1a and 1b). The O1—C11—C11i—O1i torsion angles [symmetry code: (i) -x + 1, y, -z - 1/2] in L are -65.3 (6) and -69.4 (5)° in (I) and (II), respectively. The dihedral angles between the two terminal imidazole rings in L at the metal atom are 49.48 (10) and 55.22 (10)°, while the dihedral angles between the two benzene rings are 63.25 (14) and 65.59 (13)° in (I) and (II), respectively. All the M—O/N bond lengths are consistent with values reported for the M–carboxylate and M–imidazole complexes [Co(1,4-bdc)(L)] and [Cd2(1,3-bdc)2(L)2] (Qi, Che et al., 2008 or Qi, Luo et al., 2008 ?).

In the extended structures of (I) and (II), each bdc2- dianion acts in a bis-bidentate chelating mode to bridge adjacent MII cations to form zigzag one-dimensional chains. These chains are linked by L ligands into a two-dimensional wave-like sheet (Fig. 2) in the ac plane. Although a large four-membered ring formed by four CdII ions, two L ligands and two bdc2- dianions exists in a single net, they are interpenetrated by other nets. These two-dimensional sheets are packed in the ab plane to form a threefold interpenetrated two-dimensional framework in a parallel fashion (Batten, 2001; Figs. 3 and 4). Each sheet is penetrated by two others (one above and one below) which have parallel but not coincident mean planes, leading to an overall three-dimensional entanglement architecture. The interpenetrated structure forms square channels when viewed down the c axis. Each square channel is formed by four MII cations and four bdc2- dianions and filled by L ligands.

The water molecules are linked to the framework via O4—H4C···O3 and O4—H4D···O2 hydrogen bonds. Although the two-dimensional framework topologies and the way they interpenetrate are similar to those in complex (III) (Yang et al., 2009), there are some significant differences in their structures. In (III), there are interpenetrating channels and the nodes of adjacent sheets are parallel. For (I) and (II), however, there are square channels which are not interpenetrated, and the nodes of the adjacent sheets are in a line.

In summary, the most interesting feature in (I) and (II) is the presence of a threefold interpenetrated framework with square channels formed by L ligands and bdc2- dianions. This behaviour may offer a route to new types of two-dimensional framework structures.

Related literature top

For related literature, see: Abrahams et al. (2004); Batten (2001); Cui et al. (2005); Dong et al. (2007); Jiang et al. (2009); Lan et al. (2009); Munakata et al. (1997); Noveron et al. (2002); Qi, Che, Luo, Batten, Liu & Zheng (2008); Qi, Luo, Che & Zheng (2008); Yang et al. (2009).

Experimental top

For the preparation of ligand L, KOH (1.40 g, 25 mmol) was added, with stirring, to a solution of 1,2-bis(2-bromomethylphenoxy)ethane (2.00 g, 5 mmol) and imidazole (0.69 g, 10 mmol) in anhydrous tetrahydrofuran (50 ml) at ambient temperature. The mixture was stirred for 720 min at ambient temperature. After removal of the solvent under vacuum, the residue was purified on a silica-gel column using DCM–MeOH (20:1 v/v) as the eluent to afford L as a white crystalline solid (yield 1.07 g, 2.86 mmol, 57.6%). Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3094 (m), 2948 (w), 2884 (w), 1601 (m), 1589 (m), 1502 (vs), 1473 (s), 1453 (s), 1430 (s), 1388 (w), 1355 (w), 1339 (w), 1286 (m), 1247 (vs), 1223 (s), 1190 (m), 1156 (w), 1112 (s), 1087 (s), 1055 (s), 1039 (m), 908 (w), 840 (w), 814 (s), 774 (s), 751 (vs), 686 (s), 661 (s), 631 (s), 575 (m), 453 (w); 1H NMR (300 MHz, CDCl3, TMS, δ, p.p.m.): 7.50 (s, 2H, –C3H3N2), 7.33 (t, 2H, –C6H4–), 7.07 (d, 2H, –C6H4–), 6.98 (t, 2H, –C3H3N2), 6.97 (t, 2H, –C6H4–), 6.96 (s, 2H, –C3H3N2), 6.90 (s, 2H, –C6H4–), 5.08 (s, 4H, –CH2–), 4.30 (s, 4H, –CH2–). Elemental analysis, calculated for C22H22N4O2: C 70.59, H 5.88, N 14.97%; found: C 70.52, H 5.78, N 15.09%.

For the preparation of (I), L (3.74 mg, 0.01 mmol), Cd(NO3)2.4H2O (3.08 mg, 0.01 mmol), H2bdc (1.66 mg, 0.01 mmol) and water (2 ml) were sealed in a 5 ml glass tube. The mixture was heated at 453 K for 4320 min under autogenous pressure. After the mixture had been allowed to cool to room temperature (over a period of 3000 min), colourless cubic [Yellow bar given in CIF - please check] crystals were isolated in 58.2% yield. Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3135 (w), 3120 (w), 2950 (w), 2930 (w), 2875 (w), 1625 (m), 1602 (s), 1544 (vs), 1495 (s), 1451 (m), 1438 (m), 1387 (vs), 1293 (m), 1252 (s), 1232 (m), 1175 (w), 1111 (m), 1086 (s), 1067 (w), 1052 (w), 1035 (w), 1013 (w), 942 (m), 886 (w), 840 (s), 750 (vs), 711 (w), 657 (m), 643 (w), 531 (w), 435 (w). Elemental analysis, calculated for C30H30CdN4O8: C 52.45, H 4.40, N 8.16%; found: C 52.32, H 4.49, N 8.25%.

For the synthesis of (II), L (3.74 mg, 0.01 mmol), Co(NO3)2.6H2O (3.37 mg, 0.01 mmol), H2bdc (1.66 mg, 0.01 mmol) and water (2 ml) were sealed in a 5 ml glass tube. The mixture was heated at 423 K for 4320 min under autogenous pressure. After the mixture had been allowed to cool to room temperature (over a period of 2160 min), red crystals were isolated in 61.3% yield. Spectroscopic analysis: IR (KBr pellet, cm-1): 3139 (w), 3124 (w), 2953 (w), 2931 (w), 2878 (w), 1627 (m), 1603 (m), 1546 (vs), 1495 (s), 1451 (m), 1438 (m), 1401 (vs), 1293 (m), 1252 (s), 1235 (m), 1179 (w), 1108 (m), 1088 (m), 1069 (s), 1053 (w),1034 (w), 1013 (w), 946 (m), 886 (w), 837 (m), 750 (vs), 711 (w), 659 (m), 647 (w), 532 (w), 435 (w). Elemental analysis, calculated for C30H30CoN4O8: C 56.88, H 4.77, N 8.84%; found: C 56.79, H 4.85, N 8.91%.

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions and included as riding atoms, with C—H = 0.97 (CH2) or 0.93 Å (CH) and Uiso(H) = 1.2Ueq(C), while for water O atoms, O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O).

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) (I) and (b) (II), with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -x + 1, y, -z - 1/2; (ii) -x + 1/2, -y + 5/2, -z; (iii) -x + 1, y, -z + 1/2; (iv) x, -y + 2, z + 3/2.]
[Figure 2] Fig. 2. The two-dimensional wave-like sheet of (I).
[Figure 3] Fig. 3. The two-dimensional parallel interpenetration of sheets in (I).
[Figure 4] Fig. 4. A schematic representation of the two-dimensional parallel interpenetration of sheets in (I).
(I) poly[[(µ2-benzene-1,4-dicarboxylato){µ2-1,2-bis[2-(1H-1,3- imidazol-1-ylmethyl)phenoxy]ethane}cadmium(II)] dihydrate] top
Crystal data top
[Cd(C8H4O4)(C22H22N4O2)]·2H2OF(000) = 1400
Mr = 686.98Dx = 1.522 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2111 reflections
a = 17.450 (10) Åθ = 2.6–21.8°
b = 15.480 (8) ŵ = 0.79 mm1
c = 12.636 (7) ÅT = 298 K
β = 118.545 (7)°Bar, yellow
V = 2998 (3) Å30.26 × 0.16 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2944 independent reflections
Radiation source: fine-focus sealed tube2081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2118
Tmin = 0.822, Tmax = 0.933k = 1913
8061 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0491P)2]
where P = (Fo2 + 2Fc2)/3
2944 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Cd(C8H4O4)(C22H22N4O2)]·2H2OV = 2998 (3) Å3
Mr = 686.98Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.450 (10) ŵ = 0.79 mm1
b = 15.480 (8) ÅT = 298 K
c = 12.636 (7) Å0.26 × 0.16 × 0.09 mm
β = 118.545 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2944 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2081 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.933Rint = 0.034
8061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.00Δρmax = 0.51 e Å3
2944 reflectionsΔρmin = 0.26 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6155 (2)0.8386 (2)0.2543 (3)0.0683 (10)
H10.65110.84590.33670.082*
C20.6153 (3)0.7683 (2)0.1914 (3)0.0680 (10)
H20.64940.71890.22110.082*
C30.5210 (2)0.8621 (2)0.0724 (3)0.0627 (9)
H30.47790.88790.00290.075*
C40.5235 (3)0.7233 (2)0.0252 (3)0.0740 (11)
H4A0.57200.68770.01630.089*
H4B0.50210.75490.10030.089*
C50.4522 (3)0.6661 (2)0.0309 (3)0.0600 (9)
C60.4321 (2)0.5920 (2)0.1015 (3)0.0600 (9)
C70.3654 (3)0.5381 (3)0.1128 (3)0.0735 (11)
H70.35170.48890.16070.088*
C80.3196 (3)0.5578 (3)0.0526 (4)0.0806 (12)
H80.27490.52140.06020.097*
C90.3383 (3)0.6295 (3)0.0179 (3)0.0793 (11)
H90.30730.64200.05880.095*
C100.4048 (3)0.6837 (2)0.0275 (3)0.0719 (10)
H100.41750.73320.07470.086*
C110.4669 (3)0.50619 (19)0.2295 (4)0.0772 (12)
H11A0.40880.50890.29790.093*
H11B0.47160.45400.18430.093*
C120.3686 (2)1.1113 (2)0.1336 (3)0.0588 (8)
C130.3053 (2)1.1823 (2)0.0640 (3)0.0550 (8)
C140.2562 (2)1.1788 (2)0.0604 (3)0.0636 (9)
H140.26021.13080.10160.076*
C150.2983 (2)1.2540 (2)0.1233 (3)0.0643 (9)
H150.33091.25720.20680.077*
Cd10.50000.999407 (19)0.25000.05662 (15)
N10.55581 (19)0.89788 (17)0.1793 (3)0.0610 (7)
N20.55440 (19)0.78475 (18)0.0749 (2)0.0595 (7)
O10.48294 (17)0.57990 (14)0.15526 (19)0.0719 (7)
O20.38346 (15)1.05354 (15)0.07587 (19)0.0663 (6)
O30.40546 (17)1.11282 (15)0.2465 (2)0.0708 (7)
O40.3005 (2)0.9244 (2)0.1301 (3)0.1235 (12)
H4C0.33310.92130.16230.185*
H4D0.32040.95940.06900.185*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (2)0.082 (3)0.066 (2)0.003 (2)0.0270 (19)0.013 (2)
C20.065 (3)0.064 (2)0.080 (3)0.0090 (18)0.039 (2)0.0001 (19)
C30.066 (2)0.062 (2)0.063 (2)0.0012 (18)0.0330 (19)0.0026 (18)
C40.097 (3)0.069 (2)0.075 (2)0.028 (2)0.056 (2)0.021 (2)
C50.071 (3)0.057 (2)0.0578 (19)0.0102 (18)0.0351 (18)0.0015 (16)
C60.077 (3)0.050 (2)0.0516 (18)0.0089 (17)0.0295 (18)0.0062 (15)
C70.091 (3)0.061 (2)0.061 (2)0.014 (2)0.030 (2)0.0000 (19)
C80.067 (3)0.078 (3)0.085 (3)0.019 (2)0.027 (2)0.013 (2)
C90.073 (3)0.089 (3)0.087 (3)0.008 (2)0.047 (2)0.004 (2)
C100.079 (3)0.072 (2)0.079 (2)0.013 (2)0.049 (2)0.0100 (19)
C110.127 (4)0.047 (2)0.064 (2)0.013 (2)0.050 (2)0.0060 (17)
C120.055 (2)0.051 (2)0.080 (2)0.0017 (16)0.040 (2)0.0095 (18)
C130.051 (2)0.0510 (19)0.071 (2)0.0031 (15)0.0349 (18)0.0056 (16)
C140.065 (2)0.053 (2)0.074 (2)0.0012 (17)0.034 (2)0.0035 (17)
C150.063 (2)0.067 (2)0.063 (2)0.0063 (18)0.0295 (18)0.0040 (18)
Cd10.0636 (3)0.0437 (2)0.0695 (2)0.0000.0375 (2)0.000
N10.064 (2)0.0553 (17)0.0684 (18)0.0040 (15)0.0357 (16)0.0091 (15)
N20.071 (2)0.0536 (18)0.0672 (18)0.0131 (14)0.0434 (18)0.0114 (14)
O10.107 (2)0.0567 (15)0.0660 (14)0.0192 (13)0.0531 (15)0.0143 (11)
O20.0702 (17)0.0588 (16)0.0749 (15)0.0097 (12)0.0387 (13)0.0060 (12)
O30.0794 (18)0.0673 (16)0.0662 (15)0.0190 (13)0.0352 (13)0.0126 (12)
O40.110 (3)0.163 (3)0.120 (2)0.005 (2)0.074 (2)0.003 (2)
Geometric parameters (Å, º) top
C1—C21.346 (4)C9—H90.9300
C1—N11.372 (4)C10—H100.9300
C1—H10.9300C11—O11.417 (4)
C2—N21.366 (4)C11—C11i1.476 (9)
C2—H20.9300C11—H11A0.9700
C3—N11.310 (4)C11—H11B0.9700
C3—N21.325 (4)C12—O31.254 (4)
C3—H30.9300C12—O21.257 (4)
C4—N21.464 (4)C12—C131.507 (5)
C4—C51.501 (5)C12—Cd12.683 (4)
C4—H4A0.9700C13—C151.378 (4)
C4—H4B0.9700C13—C141.385 (4)
C5—C101.375 (5)C14—C15ii1.377 (5)
C5—C61.391 (4)C14—H140.9300
C6—O11.363 (4)C15—H150.9300
C6—C71.382 (5)Cd1—N12.247 (3)
C7—C81.376 (5)Cd1—O22.324 (2)
C7—H70.9300Cd1—O32.395 (3)
C8—C91.362 (5)Cd1—C12iii2.683 (4)
C8—H80.9300O4—H4C0.8430
C9—C101.388 (5)O4—H4D0.8686
C2—C1—N1110.3 (3)C14—C13—C12121.1 (3)
C2—C1—H1124.9C15ii—C14—C13120.5 (3)
N1—C1—H1124.9C15ii—C14—H14119.7
C1—C2—N2105.4 (3)C13—C14—H14119.7
C1—C2—H2127.3C14ii—C15—C13120.7 (3)
N2—C2—H2127.3C14ii—C15—H15119.6
N1—C3—N2112.0 (3)C13—C15—H15119.6
N1—C3—H3124.0N1—Cd1—N1iii91.22 (14)
N2—C3—H3124.0N1—Cd1—O2iii106.21 (10)
N2—C4—C5112.3 (3)N1iii—Cd1—O2iii103.02 (10)
N2—C4—H4A109.1N1—Cd1—O2103.02 (10)
C5—C4—H4A109.1N1iii—Cd1—O2106.21 (10)
N2—C4—H4B109.1O2iii—Cd1—O2137.74 (12)
C5—C4—H4B109.1N1—Cd1—O3iii95.42 (10)
H4A—C4—H4B107.9N1iii—Cd1—O3iii158.60 (10)
C10—C5—C6118.5 (3)O2iii—Cd1—O3iii55.59 (9)
C10—C5—C4123.7 (3)O2—Cd1—O3iii92.10 (9)
C6—C5—C4117.8 (3)N1—Cd1—O3158.60 (10)
O1—C6—C7125.6 (3)N1iii—Cd1—O395.42 (10)
O1—C6—C5114.1 (3)O2iii—Cd1—O392.10 (9)
C7—C6—C5120.4 (3)O2—Cd1—O355.59 (8)
C8—C7—C6119.4 (4)O3iii—Cd1—O385.72 (13)
C8—C7—H7120.3N1—Cd1—C12iii104.48 (11)
C6—C7—H7120.3N1iii—Cd1—C12iii130.76 (12)
C9—C8—C7121.5 (4)O2iii—Cd1—C12iii27.91 (9)
C9—C8—H8119.3O2—Cd1—C12iii114.73 (11)
C7—C8—H8119.3O3iii—Cd1—C12iii27.86 (9)
C8—C9—C10118.6 (4)O3—Cd1—C12iii86.44 (10)
C8—C9—H9120.7N1—Cd1—C12130.76 (12)
C10—C9—H9120.7N1iii—Cd1—C12104.48 (11)
C5—C10—C9121.6 (4)O2iii—Cd1—C12114.73 (11)
C5—C10—H10119.2O2—Cd1—C1227.91 (9)
C9—C10—H10119.2O3iii—Cd1—C1286.44 (10)
O1—C11—C11i107.0 (3)O3—Cd1—C1227.86 (9)
O1—C11—H11A110.3C12iii—Cd1—C1299.61 (15)
C11i—C11—H11A110.3C3—N1—C1104.7 (3)
O1—C11—H11B110.3C3—N1—Cd1129.1 (3)
C11i—C11—H11B110.3C1—N1—Cd1121.6 (2)
H11A—C11—H11B108.6C3—N2—C2107.5 (3)
O3—C12—O2122.5 (3)C3—N2—C4126.2 (3)
O3—C12—C13119.0 (3)C2—N2—C4125.8 (3)
O2—C12—C13118.5 (3)C6—O1—C11118.0 (3)
O3—C12—Cd163.19 (18)C12—O2—H4D143.2
O2—C12—Cd159.97 (17)C12—O2—Cd192.1 (2)
C13—C12—Cd1170.5 (2)H4D—O2—Cd1114.6
C15—C13—C14118.8 (3)C12—O3—Cd188.9 (2)
C15—C13—C12120.1 (3)H4C—O4—H4D112.9
N1—C1—C2—N20.4 (4)C12—Cd1—N1—C318.6 (3)
N2—C4—C5—C1016.9 (6)N1iii—Cd1—N1—C160.2 (2)
N2—C4—C5—C6164.5 (3)O2iii—Cd1—N1—C143.7 (3)
C10—C5—C6—O1179.7 (3)O2—Cd1—N1—C1167.2 (3)
C4—C5—C6—O11.6 (5)O3iii—Cd1—N1—C199.4 (3)
C10—C5—C6—C70.4 (5)O3—Cd1—N1—C1168.5 (2)
C4—C5—C6—C7178.2 (3)C12iii—Cd1—N1—C172.6 (3)
O1—C6—C7—C8179.5 (3)C12—Cd1—N1—C1170.6 (2)
C5—C6—C7—C80.7 (5)N1—C3—N2—C20.1 (4)
C6—C7—C8—C90.1 (6)N1—C3—N2—C4172.5 (3)
C7—C8—C9—C100.6 (6)C1—C2—N2—C30.3 (4)
C6—C5—C10—C90.3 (6)C1—C2—N2—C4172.7 (3)
C4—C5—C10—C9178.9 (4)C5—C4—N2—C387.1 (4)
C8—C9—C10—C50.8 (6)C5—C4—N2—C283.8 (4)
O3—C12—C13—C159.7 (5)C7—C6—O1—C110.1 (5)
O2—C12—C13—C15169.0 (3)C5—C6—O1—C11179.7 (3)
O3—C12—C13—C14173.3 (3)C11i—C11—O1—C6177.1 (3)
O2—C12—C13—C148.0 (5)O3—C12—O2—H4D128.7
C15—C13—C14—C15ii0.0 (6)C13—C12—O2—H4D52.6
C12—C13—C14—C15ii177.0 (3)Cd1—C12—O2—H4D138.1
C14—C13—C15—C14ii0.0 (6)O3—C12—O2—Cd19.4 (3)
C12—C13—C15—C14ii177.0 (3)C13—C12—O2—Cd1169.3 (2)
O3—C12—Cd1—N1178.34 (17)N1—Cd1—O2—C12174.41 (19)
O2—C12—Cd1—N17.2 (2)N1iii—Cd1—O2—C1290.4 (2)
O3—C12—Cd1—N1iii73.8 (2)O2iii—Cd1—O2—C1241.53 (17)
O2—C12—Cd1—N1iii97.37 (19)O3iii—Cd1—O2—C1278.35 (19)
O3—C12—Cd1—O2iii38.3 (2)O3—Cd1—O2—C125.01 (18)
O2—C12—Cd1—O2iii150.60 (15)C12iii—Cd1—O2—C1261.5 (2)
O3—C12—Cd1—O2171.1 (3)N1—Cd1—O2—H4D31.7
O3—C12—Cd1—O3iii87.6 (2)N1iii—Cd1—O2—H4D63.4
O2—C12—Cd1—O3iii101.29 (19)O2iii—Cd1—O2—H4D164.6
O2—C12—Cd1—O3171.1 (3)O3iii—Cd1—O2—H4D127.8
O3—C12—Cd1—C12iii62.93 (18)O3—Cd1—O2—H4D148.9
O2—C12—Cd1—C12iii125.9 (2)C12iii—Cd1—O2—H4D144.6
N2—C3—N1—C10.1 (4)C12—Cd1—O2—H4D153.9
N2—C3—N1—Cd1155.6 (2)O2—C12—O3—Cd19.1 (3)
C2—C1—N1—C30.3 (4)C13—C12—O3—Cd1169.6 (3)
C2—C1—N1—Cd1157.6 (2)N1—Cd1—O3—C123.5 (4)
N1iii—Cd1—N1—C391.8 (3)N1iii—Cd1—O3—C12111.0 (2)
O2iii—Cd1—N1—C3164.2 (3)O2iii—Cd1—O3—C12145.7 (2)
O2—Cd1—N1—C315.1 (3)O2—Cd1—O3—C125.02 (18)
O3iii—Cd1—N1—C3108.5 (3)O3iii—Cd1—O3—C1290.48 (19)
O3—Cd1—N1—C316.4 (5)C12iii—Cd1—O3—C12118.4 (2)
C12iii—Cd1—N1—C3135.3 (3)
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1/2, y+5/2, z; (iii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4D···O20.872.183.044 (4)172
O4—H4C···O3iv0.842.142.973 (4)168
Symmetry code: (iv) x, y+2, z1/2.
(II) poly[[(µ2-benzene-1,4-dicarboxylato){µ2-1,2-bis[2-(1H-1,3- imidazol-1-ylmethyl)phenoxy]ethane}cobalt(II)] dihydrate] top
Crystal data top
[Co(C8H4O4)(C22H22N4O2)]·2H2OF(000) = 1316
Mr = 633.51Dx = 1.453 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1214 reflections
a = 17.612 (3) Åθ = 2.7–19.9°
b = 14.896 (3) ŵ = 0.65 mm1
c = 12.711 (3) ÅT = 298 K
β = 119.724 (3)°Block, red
V = 2896.0 (10) Å30.26 × 0.16 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2547 independent reflections
Radiation source: fine-focus sealed tube1861 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2010
Tmin = 0.849, Tmax = 0.944k = 1717
7231 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0651P)2]
where P = (Fo2 + 2Fc2)/3
2547 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Co(C8H4O4)(C22H22N4O2)]·2H2OV = 2896.0 (10) Å3
Mr = 633.51Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.612 (3) ŵ = 0.65 mm1
b = 14.896 (3) ÅT = 298 K
c = 12.711 (3) Å0.26 × 0.16 × 0.09 mm
β = 119.724 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2547 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1861 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.944Rint = 0.049
7231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
2547 reflectionsΔρmin = 0.29 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6175 (2)0.8515 (2)0.2664 (3)0.0526 (9)
H10.65310.85920.34950.063*
C20.6193 (2)0.7806 (2)0.2026 (3)0.0539 (9)
H20.65540.73050.23300.065*
C30.5215 (2)0.8749 (2)0.0821 (3)0.0486 (9)
H30.47730.90110.01190.058*
C40.5289 (3)0.7326 (2)0.0149 (3)0.0539 (9)
H4A0.57800.69610.00360.065*
H4B0.50770.76540.09010.065*
C50.4568 (2)0.6719 (2)0.0238 (3)0.0463 (8)
C60.4356 (2)0.5968 (2)0.0986 (3)0.0470 (8)
C70.3691 (3)0.5401 (2)0.1118 (3)0.0563 (10)
H70.35440.49030.16240.068*
C80.3249 (3)0.5572 (3)0.0504 (4)0.0638 (11)
H80.28090.51840.05890.077*
C90.3447 (3)0.6307 (3)0.0230 (4)0.0634 (10)
H90.31430.64200.06410.076*
C100.4106 (2)0.6881 (2)0.0356 (3)0.0556 (10)
H100.42380.73840.08500.067*
C110.4664 (3)0.5113 (2)0.2308 (3)0.0593 (11)
H11A0.40830.51640.30090.071*
H11B0.46940.45610.18840.071*
C120.3733 (2)1.1107 (2)0.1391 (4)0.0483 (9)
C130.3076 (2)1.1814 (2)0.0665 (3)0.0415 (8)
C140.2577 (2)1.1756 (2)0.0581 (3)0.0524 (9)
H140.26291.12550.09780.063*
C150.2997 (2)1.2567 (2)0.1243 (3)0.0512 (9)
H150.33321.26160.20810.061*
Co10.50001.00653 (4)0.25000.0436 (2)
N10.55500 (18)0.91105 (17)0.1900 (3)0.0469 (7)
N20.55827 (18)0.79594 (17)0.0849 (2)0.0451 (7)
O10.48445 (17)0.58633 (14)0.1531 (2)0.0562 (7)
O20.39016 (16)1.04909 (16)0.0851 (2)0.0557 (6)
O30.41257 (17)1.11396 (15)0.2520 (2)0.0607 (7)
O40.2984 (2)0.9234 (3)0.1337 (3)0.1167 (12)
H4C0.33100.92030.16590.175*
H4D0.31830.95840.07260.175*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (2)0.062 (2)0.045 (2)0.0008 (17)0.0139 (18)0.0090 (18)
C20.054 (2)0.046 (2)0.066 (3)0.0080 (17)0.033 (2)0.0046 (19)
C30.052 (2)0.0411 (19)0.052 (2)0.0009 (16)0.0252 (19)0.0007 (16)
C40.076 (3)0.045 (2)0.054 (2)0.0143 (18)0.042 (2)0.0125 (17)
C50.055 (2)0.0434 (19)0.043 (2)0.0029 (16)0.0268 (18)0.0010 (15)
C60.060 (2)0.0402 (18)0.0391 (19)0.0013 (16)0.0234 (19)0.0067 (15)
C70.067 (3)0.046 (2)0.050 (2)0.0133 (19)0.024 (2)0.0059 (17)
C80.053 (2)0.066 (3)0.067 (3)0.0136 (19)0.025 (2)0.007 (2)
C90.056 (2)0.072 (3)0.070 (3)0.001 (2)0.037 (2)0.002 (2)
C100.062 (3)0.054 (2)0.059 (2)0.0048 (18)0.036 (2)0.0065 (18)
C110.100 (3)0.0373 (19)0.046 (2)0.0054 (18)0.041 (2)0.0037 (15)
C120.050 (2)0.0391 (19)0.064 (3)0.0012 (16)0.034 (2)0.0071 (18)
C130.0379 (18)0.0391 (18)0.052 (2)0.0013 (14)0.0258 (17)0.0061 (15)
C140.058 (2)0.0400 (19)0.063 (2)0.0036 (16)0.034 (2)0.0011 (17)
C150.049 (2)0.051 (2)0.048 (2)0.0027 (16)0.0200 (18)0.0030 (16)
Co10.0478 (4)0.0352 (4)0.0487 (4)0.0000.0246 (3)0.000
N10.0491 (18)0.0397 (15)0.0521 (18)0.0025 (13)0.0253 (15)0.0069 (14)
N20.0571 (19)0.0380 (15)0.0481 (18)0.0046 (13)0.0321 (16)0.0047 (13)
O10.0877 (19)0.0422 (13)0.0516 (15)0.0132 (12)0.0444 (15)0.0112 (11)
O20.0630 (17)0.0493 (15)0.0594 (16)0.0148 (12)0.0338 (14)0.0089 (12)
O30.0677 (17)0.0471 (14)0.0552 (17)0.0134 (12)0.0213 (14)0.0052 (12)
O40.094 (3)0.158 (4)0.106 (3)0.014 (2)0.056 (2)0.010 (2)
Geometric parameters (Å, º) top
C1—C21.342 (4)C9—H90.9300
C1—N11.371 (4)C10—H100.9300
C1—H10.9300C11—O11.419 (4)
C2—N21.361 (4)C11—C11i1.488 (8)
C2—H20.9300C11—H11A0.9700
C3—N11.310 (4)C11—H11B0.9700
C3—N21.335 (4)C12—O31.247 (4)
C3—H30.9300C12—O21.266 (4)
C4—N21.455 (4)C12—C131.497 (5)
C4—C51.516 (5)C12—Co12.501 (3)
C4—H4A0.9700C13—C141.381 (5)
C4—H4B0.9700C13—C151.385 (4)
C5—C101.379 (5)C14—C15ii1.380 (4)
C5—C61.394 (4)C14—H140.9300
C6—O11.354 (4)C15—H150.9300
C6—C71.385 (5)Co1—N12.068 (3)
C7—C81.372 (5)Co1—O22.125 (2)
C7—H70.9300Co1—O32.230 (2)
C8—C91.366 (5)Co1—C12iii2.501 (4)
C8—H80.9300O4—H4C0.8546
C9—C101.385 (5)O4—H4D0.8535
C2—C1—N1109.4 (3)C15—C13—C12119.5 (3)
C2—C1—H1125.3C15ii—C14—C13120.7 (3)
N1—C1—H1125.3C15ii—C14—H14119.7
C1—C2—N2106.8 (3)C13—C14—H14119.7
C1—C2—H2126.6C14ii—C15—C13120.3 (3)
N2—C2—H2126.6C14ii—C15—H15119.8
N1—C3—N2111.9 (3)C13—C15—H15119.8
N1—C3—H3124.1N1iii—Co1—N193.09 (15)
N2—C3—H3124.1N1iii—Co1—O2iii101.85 (10)
N2—C4—C5112.0 (3)N1—Co1—O2iii101.84 (10)
N2—C4—H4A109.2N1iii—Co1—O2101.84 (10)
C5—C4—H4A109.2N1—Co1—O2101.85 (10)
N2—C4—H4B109.2O2iii—Co1—O2145.28 (13)
C5—C4—H4B109.2N1iii—Co1—O3iii161.86 (11)
H4A—C4—H4B107.9N1—Co1—O3iii92.12 (10)
C10—C5—C6118.9 (3)O2iii—Co1—O3iii60.06 (9)
C10—C5—C4123.7 (3)O2—Co1—O3iii94.06 (9)
C6—C5—C4117.4 (3)N1iii—Co1—O392.12 (10)
O1—C6—C7125.6 (3)N1—Co1—O3161.86 (10)
O1—C6—C5114.7 (3)O2iii—Co1—O394.06 (9)
C7—C6—C5119.7 (3)O2—Co1—O360.06 (9)
C8—C7—C6120.1 (3)O3iii—Co1—O388.26 (13)
C8—C7—H7119.9N1iii—Co1—C12iii131.99 (12)
C6—C7—H7119.9N1—Co1—C12iii100.64 (10)
C9—C8—C7120.8 (4)O2iii—Co1—C12iii30.40 (10)
C9—C8—H8119.6O2—Co1—C12iii119.49 (11)
C7—C8—H8119.6O3iii—Co1—C12iii29.88 (9)
C8—C9—C10119.3 (4)O3—Co1—C12iii88.64 (10)
C8—C9—H9120.3N1iii—Co1—C12100.64 (10)
C10—C9—H9120.3N1—Co1—C12131.99 (12)
C5—C10—C9121.1 (3)O2iii—Co1—C12119.49 (11)
C5—C10—H10119.5O2—Co1—C1230.40 (10)
C9—C10—H10119.5O3iii—Co1—C1288.64 (10)
O1—C11—C11i106.7 (3)O3—Co1—C1229.88 (9)
O1—C11—H11A110.4C12iii—Co1—C12103.29 (16)
C11i—C11—H11A110.4C3—N1—C1105.2 (3)
O1—C11—H11B110.4C3—N1—Co1128.2 (2)
C11i—C11—H11B110.4C1—N1—Co1122.8 (2)
H11A—C11—H11B108.6C3—N2—C2106.7 (3)
O3—C12—O2120.4 (3)C3—N2—C4126.2 (3)
O3—C12—C13120.0 (3)C2—N2—C4126.5 (3)
O2—C12—C13119.6 (3)C6—O1—C11117.8 (3)
O3—C12—Co162.93 (18)C12—O2—Co191.5 (2)
O2—C12—Co158.15 (17)C12—O2—H4D138.5
C13—C12—Co1170.1 (2)Co1—O2—H4D122.8
C14—C13—C15119.0 (3)C12—O3—Co187.2 (2)
C14—C13—C12121.4 (3)H4C—O4—H4D113.5
N1—C1—C2—N20.7 (4)C12—Co1—N1—C315.8 (3)
N2—C4—C5—C1014.3 (5)N1iii—Co1—N1—C163.3 (2)
N2—C4—C5—C6167.0 (3)O2iii—Co1—N1—C139.5 (3)
C10—C5—C6—O1180.0 (3)O2—Co1—N1—C1166.1 (2)
C4—C5—C6—O11.3 (4)O3iii—Co1—N1—C199.3 (3)
C10—C5—C6—C70.1 (5)O3—Co1—N1—C1169.8 (3)
C4—C5—C6—C7178.8 (3)C12iii—Co1—N1—C170.4 (3)
O1—C6—C7—C8179.1 (3)C12—Co1—N1—C1170.6 (2)
C5—C6—C7—C80.7 (5)N1—C3—N2—C20.1 (4)
C6—C7—C8—C90.9 (6)N1—C3—N2—C4171.1 (3)
C7—C8—C9—C100.3 (6)C1—C2—N2—C30.5 (4)
C6—C5—C10—C90.7 (5)C1—C2—N2—C4171.4 (3)
C4—C5—C10—C9179.3 (3)C5—C4—N2—C384.2 (4)
C8—C9—C10—C50.6 (6)C5—C4—N2—C285.0 (4)
O3—C12—C13—C14174.4 (3)C7—C6—O1—C110.3 (5)
O2—C12—C13—C147.2 (5)C5—C6—O1—C11179.9 (3)
O3—C12—C13—C159.1 (5)C11i—C11—O1—C6175.0 (3)
O2—C12—C13—C15169.2 (3)O3—C12—O2—Co19.6 (3)
C15—C13—C14—C15ii0.5 (5)C13—C12—O2—Co1168.8 (3)
C12—C13—C14—C15ii176.9 (3)O3—C12—O2—H4D138.2
C14—C13—C15—C14ii0.5 (5)C13—C12—O2—H4D43.5
C12—C13—C15—C14ii177.0 (3)Co1—C12—O2—H4D147.7
O3—C12—Co1—N1iii75.4 (2)N1iii—Co1—O2—C1290.9 (2)
O2—C12—Co1—N1iii95.3 (2)N1—Co1—O2—C12173.36 (19)
O3—C12—Co1—N1179.50 (18)O2iii—Co1—O2—C1241.24 (17)
O2—C12—Co1—N18.8 (2)O3iii—Co1—O2—C1280.3 (2)
O3—C12—Co1—O2iii34.8 (2)O3—Co1—O2—C125.30 (18)
O2—C12—Co1—O2iii154.45 (15)C12iii—Co1—O2—C1263.8 (3)
O3—C12—Co1—O2170.7 (3)N1iii—Co1—O2—H4D64.2
O3—C12—Co1—O3iii88.9 (2)N1—Co1—O2—H4D31.5
O2—C12—Co1—O3iii100.39 (19)O2iii—Co1—O2—H4D163.7
O2—C12—Co1—O3170.7 (3)O3iii—Co1—O2—H4D124.6
O3—C12—Co1—C12iii62.61 (18)O3—Co1—O2—H4D149.8
O2—C12—Co1—C12iii126.6 (2)C12iii—Co1—O2—H4D141.1
N2—C3—N1—C10.4 (4)C12—Co1—O2—H4D155.1
N2—C3—N1—Co1157.9 (2)O2—C12—O3—Co19.1 (3)
C2—C1—N1—C30.7 (4)C13—C12—O3—Co1169.2 (3)
C2—C1—N1—Co1159.0 (2)N1iii—Co1—O3—C12107.8 (2)
N1iii—Co1—N1—C391.5 (3)N1—Co1—O3—C121.2 (4)
O2iii—Co1—N1—C3165.8 (3)O2iii—Co1—O3—C12150.1 (2)
O2—Co1—N1—C311.3 (3)O2—Co1—O3—C125.39 (18)
O3iii—Co1—N1—C3105.9 (3)O3iii—Co1—O3—C1290.3 (2)
O3—Co1—N1—C315.0 (5)C12iii—Co1—O3—C12120.2 (2)
C12iii—Co1—N1—C3134.8 (3)
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1/2, y+5/2, z; (iii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4D···O20.852.223.066 (4)171
O4—H4C···O3iv0.852.213.059 (4)170
Symmetry code: (iv) x, y+2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cd(C8H4O4)(C22H22N4O2)]·2H2O[Co(C8H4O4)(C22H22N4O2)]·2H2O
Mr686.98633.51
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/c
Temperature (K)298298
a, b, c (Å)17.450 (10), 15.480 (8), 12.636 (7)17.612 (3), 14.896 (3), 12.711 (3)
β (°) 118.545 (7) 119.724 (3)
V3)2998 (3)2896.0 (10)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.790.65
Crystal size (mm)0.26 × 0.16 × 0.090.26 × 0.16 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.822, 0.9330.849, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
8061, 2944, 2081 7231, 2547, 1861
Rint0.0340.049
(sin θ/λ)max1)0.6170.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.00 0.052, 0.127, 1.01
No. of reflections29442547
No. of parameters195195
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.260.36, 0.29

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O4—H4D···O20.872.183.044 (4)171.8
O4—H4C···O3i0.842.142.973 (4)168.2
Symmetry code: (i) x, y+2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O4—H4D···O20.852.223.066 (4)170.6
O4—H4C···O3i0.852.213.059 (4)169.7
Symmetry code: (i) x, y+2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds