Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, namely 2,6-bis­[(1,3-dimethyl­imidazolin-2-yl­idene)amino]pyridinium perchlorate, C15H24N7+·ClO4, (I), and bis­{2,6-bis­[(1,3-dimethyl­imidazolin-2-yl­idene)­amino]­pyridinium} μ-oxido-bis­[trichloridoiron(III)], (C15H24N7)2[Fe2Cl6O], (II), are structurally unusual examples of the organization of mol­ecular units via base pairing. The cations in salts (I) and (II) are derived from the bis­guanidine N2,N6-bis­(1,3-dimethyl­imidazolin-2-yl­idene)pyridine-2,6-diamine, which associates in centrosymmetric pairs via two N—H...N hydrogen-bond inter­actions. N—H...N bridges are formed between the protonated pyridine N atom and one of the nonprotonated guanidine N atoms, with N...H distances of 2.01 (1)–2.10 (1) Å. Compound (I) contains two crystallographically independent cations and anions per asymmetric unit. One of the perchlorate anions is disordered, while the [Fe2Cl6O]2− anion lies on an inversion centre.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108007567/em3010sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108007567/em3010Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108007567/em3010IIsup3.hkl
Contains datablock II

CCDC references: 690172; 690173

Comment top

The development of discrete dimeric, trimeric and other higher-order ensembles is a significant field of research with possible applications in materials chemistry and nanotechnology. Furthermore, base pairs must be considered as playing a salient role in such critical areas as genetic coding, biological information storage and protein synthesis (Sessler et al., 2007). During synthesis of biomimetic complexes using iron and manganese salts, as well as ligands containing two guanidine (gua) N-donor functions and one pyridine N atom [N2,N6-bis(1,3-dimethylimidazolidin-2-ylidene)pyridine-2,6-diamine; Herres-Pawlis et al., 2005; Neuba et al., 2008], we synthesized the title compounds, (I) and (II), with an interesting base-pair arrangement in the crystal structure.

The Cgua–N formal single bonds in (I), with a mean bond length of 1.340 (4) Å, have the same length as the double bonds C5N3 and C11N5 [average 1.327 (4) Å]. In (II), the corresponding Cgua—N and CN bonds have average lengths of 1.343 (3) and 1.323 (3) Å, respectively. Thus, the guanidyl double bonds in (I) and (II) are clearly delocalized over the three C—N bonds.

Similar delocalization of the guanidyl double bonds is known from the protonated form of bis(tetramethylguanidino)biphenyl (Pruszynski et al., 1992), but with a protonated Ngua atom instead. 2-Cyanoguanidine with C–N bonds in the range 1.3327–1.3441 Å (Hirshfeld & Hope, 1980) also shows delocalization, but this is due to the cyano groups attached to the imine N atom. Localized CN bond lengths in nonprotonated bisguanidine ligands range from 1.276 Å in N,N'-bis(dipiperidin-1-ylmethylene)propane-1,3-diamine (Herres et al., 2004) to 1.302 Å in 2',2'-(2,2'-dithiodiphenylene)bis(1,1,3,3-tetramethylguanidine) (Neuba et al., 2007b). Cgua—N single bond lengths vary from 1.362 Å in N,N'-bis(1,3-dimethylimidazolindin-2-ylidene)-2,2'-dithiodianiline (Neuba et al., 2007a) to 1.407 Å in N,N'-bis(dipiperidin-1-ylmethylene)propane-1,3-diamine (Herres et al., 2004).

Furthermore, the Cgua—Ngua bond lengths in (I) and (II) are similar to the Ngua—Cpy and Cpy—Npy distances. The pyridine ring and both guanidine units lie in a plane, showing that the guanidine delocalization is extended over the pyridine ring. In consequence, the protonation occurs at the Npy atom and not the Ngua atom, which indicates that the basicity of the Npy atom is increased compared with that of the Ngua atom. Normally, the Ngua position is found to be more basic. In this special case, the protonation leads to a pyridinium species, which is stabilized by mesomeric effects from both guanidyl units.

The exocyclic N—Cgua—N angles show, for both structures, the same significant differences of 5.5–11.2° within each pair, but the angle sum at the Cgua atom in both (I) and (II) is 360°. Other geometric parameters of CN, Cgua—N, Ngua—Cpy and Cpy—Npy for (I) and (II) are nearly identical (see Tables 1 and 3).

The crystal packing for both compounds (Figs. 1–4) is dominated by pairs of intermolecular hydrogen-bond interactions between the protonated pyridine atom N4 and the nonprotonated guanidine atom N5gua of a centrosymmetrically related neighbouring molecule, stabilizing the structure with Ngua···H interactions of 2.007 (11) and 2.037 (11) Å in (I) and 2.096 (10) Å in (II). Additionally, these dimers form weak C—H···O and C—H···Cl bridges to the respective anions in (I) and (II). Thus the packing pattern of (II) shows infinite –dimer–anion–dimer– chains along [010]. For geometric details see Tables 2 and 4.

Similarly generated dimers incorporating Npy+–H and CN functions are reported for 2-hydroxy(5-{[4- (2-pyridinylamino)sulfonyl]phenyl}azo)benzoic acid–N,N-dimethylformamide–water (1/0.5/n) (van der Sluis & Spek, 1990), 2-(nitroamino)pyridine (Angelova et al., 1998) and ethyl 3-[4,5-dimethoxy-2-(4-methyl-2- pyridylsulphamoyl)phenyl]propionate (Eliopoulos et al., 1983). The hydrogen-bond lengths in these structures range from 1.839 to 1.950 Å.

Similar dimers formed via N—H···N hydrogen bonds are reported for 2-(4-bromophenyl)-1,2-dihydropyrimido[1,2-a]benzimidazol-4(3H)-one and 4-(4-methylphenyl)-3,4-dihydropyrimido[1,2-a]benzimidazol-2(1H)-one (Low, Cobo, Insuasty et al., 2002). Here, the hydrogen bonds are formed between an aliphatic N—H and a CN group with N···H distances from 1.98 to 2.30 Å. Similar geometries are observed in 2,2-dimethyl-1,2,3,4-tetrahydrobenzimidazo[3,2-a]pyrimid-4-one, with a hydrogen-bond length of 2.18 Å (Bird et al., 1991), and 2-phenyl-5-p-tolyl-1,5,6,10b-tetrahydropyrazolo[1,5-c]quinazoline, 5-(4-bromophenyl)-2-phenyl-1,5,6,10b-tetrahydropyrazolo[1,5-c]quinazoline and 2-(4-chlorophenyl)-5-phenyl-1,5,6,10b- tetrahydropyrazolo[1,5-c]quinazoline, with an average N···H distance of 2.23 Å (Low, Cobo, Nogueras et al., 2002).

Related literature top

For related literature, see: Angelova et al. (1998); Bird et al. (1991); Eliopoulos et al. (1983); Herres et al. (2004); Herres-Pawlis, Neuba, Seewald, Seshadri, Egold, Flörke & Henkel (2005); Hirshfeld & Hope (1980); Low, Cobo, Insuasty et al. (2002); Low, Cobo, Nogueras et al. (2002); Neuba et al. (2007a, 2007b, 2008); Pruszynski et al. (1992); Sessler et al. (2007); van der Sluis & Spek (1990).

Experimental top

The synthesis of N2,N6-bis(1,3-dimethylimidazolidin-2-ylidene)pyridine-2,6-diamine is described in the literature (Herres-Pawlis et al., 2005). For the preparation of (I), a solution of Mn(ClO4)2.6H2O (362 mg, 1 mmol) in MeCN (quantity?) was treated at room temperature with N2,N6-bis(1,3-dimethylimidazolidin-2-ylidene)pyridine-2,6-diamine (331 mg, 1.1 mmol). The clear solution was stirred for one hour, and diffusion of Et2O gave colourless crystals suitable for X-ray diffraction after three days. IR (KBr, ν, cm-1): 3486 (s), 2949 (w), 2871 (w), 1617 (m), 1585 (vs, CN), 1536 (vs, C N), 1448 (s), 1417 (m), 1382 (s), 1294 (m), 1240 (w), 1166 (m), 960 (m), 838 (s), 557 (m). For the preparation of (II), a solution of FeCl2 (127 mg, 1 mmol) in CH2Cl2 (quantity?) was treated at room temperature with N2,N6-bis(1,3-dimethylimidazolidin-2-ylidene)pyridine-2,6-diamine (331 mg, 1.1 mmol) to yield a yellow solution. After 30 min at reflux, the solution was filtered and allowed to stand in air. After 2 days, red crystals suitable for X-ray diffraction were obtained. IR (KBr, ν, cm-1): 3423 (m), 2935 (w), 2875 (w), 1629 (m), 1596 (vs, CN), 1562 (s, CN), 1520 (vs), 1479 (s), 1446 (m), 1390 (s), 1361 (s), 1295 (m) 1250 (s), 1165 (s), 1049 (m), 960 (m), 877 (w), 785 (w), 673 (m), 569 (w).

Refinement top

Npy-bound H atoms were refined with N—H distance restraints of 0.88 (1) Å. All other H atoms were refined at idealized positions riding on their parent C atoms with Uiso(H) parameters of 1.2Ueq(C) or 1.5Ueq(CH3). All CH3 H atoms were allowed to rotate but not to tip. The disordered perchlorate anions of (I) were refined with an isotropic split model for O-atom positions O11/O12, O51/O52 and O61/O62, each with a site occupation factor of 0.5.

Computing details top

For both compounds, data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of (II). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. The crystal packing of (I), viewed along [100], with hydrogen bonds indicated as dashed lines. H atoms not involved in hydrogen bonds have been omitted. Only one orientation of each disordered perchlorate anion is shown.
[Figure 4] Fig. 4. The crystal packing of (II), viewed along [100], with hydrogen bonds indicated as dashed lines. H atoms not involved in hydrogen bonds have been omitted.
(I) 2,6-bis(1,3-dimethylimidazolin-2-ylideneamino)pyridinium perchlorate top
Crystal data top
C15H24N7+·ClO4Z = 4
Mr = 401.86F(000) = 848
Triclinic, P1Dx = 1.435 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4399 (11) ÅCell parameters from 1687 reflections
b = 12.0367 (13) Åθ = 2.4–21.8°
c = 16.6200 (18) ŵ = 0.24 mm1
α = 95.979 (2)°T = 120 K
β = 93.739 (2)°Prism, colourless
γ = 115.549 (2)°0.35 × 0.20 × 0.18 mm
V = 1859.9 (3) Å3
Data collection top
Bruker SMART APEX
diffractometer
8994 independent reflections
Radiation source: sealed tube3686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ϕ and ω scansθmax = 28.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1313
Tmin = 0.920, Tmax = 0.960k = 1515
18737 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: difference Fourier map
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 0.83 w = 1/[σ2(Fo2) + (0.0481P)2]
where P = (Fo2 + 2Fc2)/3
8994 reflections(Δ/σ)max < 0.001
499 parametersΔρmax = 0.73 e Å3
9 restraintsΔρmin = 0.45 e Å3
Crystal data top
C15H24N7+·ClO4γ = 115.549 (2)°
Mr = 401.86V = 1859.9 (3) Å3
Triclinic, P1Z = 4
a = 10.4399 (11) ÅMo Kα radiation
b = 12.0367 (13) ŵ = 0.24 mm1
c = 16.6200 (18) ÅT = 120 K
α = 95.979 (2)°0.35 × 0.20 × 0.18 mm
β = 93.739 (2)°
Data collection top
Bruker SMART APEX
diffractometer
8994 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3686 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.960Rint = 0.093
18737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0649 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 0.83Δρmax = 0.73 e Å3
8994 reflectionsΔρmin = 0.45 e Å3
499 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4193 (3)0.7986 (3)0.30531 (18)0.0298 (7)
N20.2195 (3)0.7556 (3)0.22891 (18)0.0361 (8)
N30.1938 (3)0.6525 (3)0.34145 (17)0.0257 (7)
N40.1482 (3)0.5201 (3)0.43559 (17)0.0233 (7)
H40.085 (3)0.547 (3)0.448 (2)0.031 (7)*
N50.0428 (3)0.3750 (3)0.51835 (18)0.0265 (7)
N70.1384 (3)0.2929 (3)0.61883 (18)0.0306 (8)
N60.0726 (3)0.1735 (2)0.55170 (18)0.0279 (7)
C10.5115 (4)0.8253 (3)0.3806 (2)0.0355 (10)
H10D0.45500.78090.42180.053*
H10E0.55630.91500.39970.053*
H10F0.58590.79790.37120.053*
C20.4649 (4)0.8748 (3)0.2406 (2)0.0352 (10)
H10I0.51950.84570.20460.042*
H10J0.52490.96330.26340.042*
C30.3254 (4)0.8573 (3)0.1949 (2)0.0394 (10)
H10G0.31110.93350.20490.047*
H10H0.32230.83500.13550.047*
C40.0690 (4)0.6979 (4)0.1986 (2)0.0385 (10)
H10A0.01610.63500.23230.058*
H10B0.05500.65820.14210.058*
H10C0.03360.76140.20080.058*
C50.2768 (4)0.7299 (3)0.2956 (2)0.0264 (8)
C60.2329 (4)0.5754 (3)0.3792 (2)0.0230 (8)
C70.3394 (4)0.5383 (3)0.3625 (2)0.0257 (8)
H10K0.40500.57660.32540.031*
C80.3470 (4)0.4450 (3)0.4009 (2)0.0298 (9)
H10L0.41930.41970.38970.036*
C90.2543 (4)0.3870 (3)0.4548 (2)0.0295 (9)
H10M0.26090.32150.47930.035*
C100.1504 (4)0.4263 (3)0.4730 (2)0.0240 (8)
C110.0397 (4)0.2857 (3)0.5609 (2)0.0241 (8)
C120.2082 (4)0.1369 (3)0.5029 (2)0.0355 (10)
H11D0.20560.20730.47710.053*
H11E0.28500.11160.53790.053*
H11F0.22580.06690.46080.053*
C130.0588 (4)0.1033 (3)0.6152 (2)0.0304 (9)
H11I0.08640.01550.59280.036*
H11J0.11760.10600.65910.036*
C140.1006 (4)0.1726 (3)0.6458 (2)0.0361 (10)
H11G0.11820.18100.70580.043*
H11H0.15440.13040.62070.043*
C150.2695 (4)0.4028 (3)0.6505 (3)0.0434 (11)
H11A0.35020.39610.62730.065*
H11B0.28450.41000.71000.065*
H11C0.26240.47680.63550.065*
N1B0.8872 (3)0.8037 (2)0.79216 (17)0.0256 (7)
N2B1.0488 (3)0.7664 (3)0.73194 (19)0.0370 (8)
N3B0.9617 (3)0.6540 (3)0.83672 (17)0.0241 (7)
N4B0.8704 (3)0.5182 (2)0.92639 (17)0.0210 (7)
H4B0.9621 (14)0.547 (3)0.9457 (19)0.031 (7)*
N5B0.8266 (3)0.3693 (2)1.00946 (17)0.0247 (7)
N6B0.7360 (3)0.1658 (2)1.04175 (17)0.0248 (7)
N7B0.6413 (3)0.2831 (2)1.09544 (17)0.0252 (7)
C1B0.8148 (4)0.8241 (3)0.8596 (2)0.0302 (9)
H20D0.82690.77980.90350.045*
H20E0.71270.79310.84100.045*
H20F0.85590.91340.87980.045*
C2B0.9248 (4)0.8871 (3)0.7314 (2)0.0326 (9)
H20I0.96360.97500.75710.039*
H20J0.84080.86770.69140.039*
C3B1.0391 (4)0.8621 (3)0.6907 (2)0.0341 (9)
H20G1.00930.83290.63160.041*
H20H1.13170.93770.69880.041*
C4B1.1335 (4)0.7043 (3)0.7069 (2)0.0370 (10)
H20A1.12390.64120.74200.056*
H20B1.23410.76520.71150.056*
H20C1.10030.66410.65020.056*
C5B0.9615 (4)0.7355 (3)0.7895 (2)0.0240 (8)
C6B0.8430 (4)0.5760 (3)0.8656 (2)0.0223 (8)
C7B0.7009 (4)0.5381 (3)0.8373 (2)0.0239 (8)
H20K0.67520.57740.79680.029*
C8B0.5974 (4)0.4427 (3)0.8687 (2)0.0268 (8)
H20L0.49990.41740.84920.032*
C9B0.6288 (4)0.3821 (3)0.9271 (2)0.0242 (8)
H20M0.55490.31480.94640.029*
C10B0.7720 (4)0.4219 (3)0.9572 (2)0.0218 (8)
C11B0.7369 (3)0.2783 (3)1.0469 (2)0.0222 (8)
C12B0.8414 (4)0.1344 (3)1.0064 (2)0.0283 (9)
H21A0.90210.20190.97800.043*
H21B0.79280.05730.96760.043*
H21C0.90070.12261.04970.043*
C13B0.6481 (4)0.0937 (3)1.0995 (2)0.0260 (8)
H21G0.70750.09601.14920.031*
H21H0.58850.00601.07480.031*
C14B0.5561 (4)0.1615 (3)1.1184 (2)0.0284 (9)
H21I0.46100.11921.08530.034*
H21J0.54330.16791.17690.034*
C15B0.6087 (4)0.3876 (3)1.1160 (2)0.0341 (9)
H21D0.68520.46351.10230.051*
H21E0.60130.39841.17450.051*
H21F0.51780.37161.08510.051*
Cl10.52136 (11)0.80821 (9)0.61828 (6)0.0374 (3)
O110.5772 (7)0.8296 (7)0.7004 (4)0.066 (2)*0.50
O120.5313 (6)0.7574 (5)0.6928 (3)0.0422 (15)*0.50
O20.4741 (4)0.9008 (3)0.6159 (3)0.0993 (14)
O30.4058 (3)0.6962 (3)0.5771 (2)0.0839 (11)
O40.6386 (3)0.8309 (3)0.57352 (17)0.0496 (8)
Cl20.21733 (10)0.18930 (9)0.90326 (6)0.0367 (3)
O510.2283 (6)0.3116 (5)0.9423 (3)0.0447 (14)*0.50
O610.2643 (6)0.2127 (6)0.8281 (3)0.0483 (15)*0.50
O520.2469 (8)0.3025 (7)0.8784 (5)0.092 (2)*0.50
O620.2388 (7)0.1222 (6)0.8275 (4)0.0695 (19)*0.50
O70.0740 (3)0.1098 (3)0.90689 (19)0.0625 (9)
O80.3122 (3)0.1735 (3)0.96106 (17)0.0539 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0260 (18)0.0259 (17)0.0300 (18)0.0035 (14)0.0028 (14)0.0084 (14)
N20.0310 (19)0.048 (2)0.0316 (19)0.0152 (16)0.0068 (16)0.0220 (16)
N30.0244 (17)0.0303 (17)0.0242 (17)0.0120 (14)0.0044 (14)0.0111 (14)
N40.0192 (16)0.0247 (17)0.0298 (18)0.0120 (14)0.0034 (14)0.0093 (14)
N50.0186 (16)0.0253 (17)0.0370 (19)0.0076 (13)0.0063 (14)0.0180 (15)
N70.0242 (17)0.0237 (17)0.044 (2)0.0080 (14)0.0000 (15)0.0178 (15)
N60.0234 (17)0.0218 (16)0.0332 (18)0.0041 (14)0.0009 (14)0.0109 (14)
C10.027 (2)0.029 (2)0.043 (2)0.0063 (17)0.0011 (19)0.0036 (19)
C20.038 (2)0.026 (2)0.037 (2)0.0090 (18)0.011 (2)0.0096 (18)
C30.055 (3)0.032 (2)0.034 (2)0.018 (2)0.010 (2)0.0157 (19)
C40.035 (2)0.048 (3)0.037 (2)0.022 (2)0.0036 (19)0.011 (2)
C50.031 (2)0.024 (2)0.027 (2)0.0140 (18)0.0071 (18)0.0049 (17)
C60.0223 (19)0.0204 (19)0.0203 (19)0.0038 (16)0.0026 (16)0.0034 (15)
C70.024 (2)0.0217 (19)0.031 (2)0.0086 (16)0.0091 (17)0.0049 (16)
C80.025 (2)0.026 (2)0.041 (2)0.0134 (17)0.0079 (18)0.0062 (18)
C90.029 (2)0.026 (2)0.040 (2)0.0148 (17)0.0073 (18)0.0118 (18)
C100.024 (2)0.0179 (19)0.029 (2)0.0072 (16)0.0006 (17)0.0071 (16)
C110.024 (2)0.026 (2)0.026 (2)0.0133 (17)0.0032 (16)0.0085 (17)
C120.029 (2)0.034 (2)0.037 (2)0.0078 (18)0.0021 (19)0.0062 (19)
C130.030 (2)0.024 (2)0.036 (2)0.0095 (17)0.0052 (18)0.0137 (17)
C140.032 (2)0.035 (2)0.046 (3)0.0155 (19)0.0022 (19)0.022 (2)
C150.027 (2)0.034 (2)0.061 (3)0.0069 (19)0.010 (2)0.012 (2)
N1B0.0298 (17)0.0235 (16)0.0265 (17)0.0122 (14)0.0070 (14)0.0120 (14)
N2B0.042 (2)0.045 (2)0.042 (2)0.0288 (17)0.0232 (17)0.0309 (17)
N3B0.0242 (17)0.0257 (16)0.0265 (17)0.0127 (14)0.0061 (14)0.0113 (14)
N4B0.0163 (16)0.0226 (16)0.0233 (16)0.0066 (14)0.0035 (14)0.0088 (13)
N5B0.0218 (16)0.0221 (16)0.0316 (18)0.0082 (13)0.0088 (14)0.0134 (14)
N6B0.0253 (17)0.0211 (16)0.0304 (18)0.0105 (13)0.0075 (14)0.0097 (14)
N7B0.0245 (17)0.0221 (16)0.0307 (18)0.0098 (13)0.0111 (14)0.0077 (13)
C1B0.031 (2)0.022 (2)0.038 (2)0.0117 (17)0.0042 (18)0.0028 (17)
C2B0.036 (2)0.030 (2)0.034 (2)0.0123 (18)0.0063 (19)0.0211 (18)
C3B0.038 (2)0.033 (2)0.029 (2)0.0110 (18)0.0073 (19)0.0152 (18)
C4B0.030 (2)0.043 (2)0.040 (2)0.0158 (19)0.0107 (19)0.013 (2)
C5B0.022 (2)0.0221 (19)0.024 (2)0.0068 (16)0.0023 (16)0.0056 (16)
C6B0.027 (2)0.0223 (19)0.0199 (19)0.0124 (16)0.0037 (16)0.0070 (16)
C7B0.029 (2)0.025 (2)0.0222 (19)0.0154 (17)0.0008 (16)0.0094 (16)
C8B0.023 (2)0.025 (2)0.031 (2)0.0103 (17)0.0006 (17)0.0039 (17)
C9B0.0218 (19)0.0180 (18)0.030 (2)0.0053 (15)0.0041 (16)0.0047 (16)
C10B0.0213 (19)0.0197 (19)0.026 (2)0.0088 (16)0.0079 (16)0.0070 (16)
C11B0.0194 (19)0.023 (2)0.0207 (19)0.0061 (16)0.0003 (16)0.0034 (16)
C12B0.032 (2)0.026 (2)0.032 (2)0.0162 (17)0.0061 (18)0.0073 (17)
C13B0.029 (2)0.024 (2)0.026 (2)0.0101 (16)0.0037 (17)0.0114 (16)
C14B0.023 (2)0.027 (2)0.029 (2)0.0035 (16)0.0084 (17)0.0129 (17)
C15B0.036 (2)0.029 (2)0.041 (2)0.0167 (18)0.0125 (19)0.0054 (18)
Cl10.0386 (6)0.0389 (6)0.0413 (6)0.0247 (5)0.0010 (5)0.0031 (5)
O20.102 (3)0.077 (3)0.147 (4)0.077 (2)0.014 (3)0.013 (2)
O30.057 (2)0.043 (2)0.122 (3)0.0012 (16)0.001 (2)0.003 (2)
O40.0403 (17)0.064 (2)0.0505 (19)0.0247 (15)0.0160 (15)0.0192 (16)
Cl20.0254 (5)0.0384 (6)0.0451 (6)0.0108 (4)0.0054 (5)0.0156 (5)
O70.0199 (15)0.062 (2)0.089 (2)0.0001 (14)0.0080 (16)0.0232 (19)
O80.0368 (17)0.065 (2)0.053 (2)0.0153 (15)0.0072 (15)0.0211 (16)
Geometric parameters (Å, º) top
N1—C51.342 (4)N3B—C5B1.319 (4)
N1—C11.445 (4)N3B—C6B1.348 (4)
N1—C21.455 (4)N4B—C10B1.352 (4)
N2—C51.352 (4)N4B—C6B1.366 (4)
N2—C41.445 (4)N4B—H4B0.888 (10)
N2—C31.449 (4)N5B—C11B1.341 (4)
N3—C51.318 (4)N5B—C10B1.357 (4)
N3—C61.355 (4)N6B—C11B1.344 (4)
N4—C101.352 (4)N6B—C12B1.448 (4)
N4—C61.354 (4)N6B—C13B1.455 (4)
N4—H40.881 (10)N7B—C11B1.340 (4)
N5—C111.337 (4)N7B—C15B1.452 (4)
N5—C101.350 (4)N7B—C14B1.455 (4)
N7—C111.331 (4)C1B—H20D0.9800
N7—C151.449 (4)C1B—H20E0.9800
N7—C141.456 (4)C1B—H20F0.9800
N6—C111.338 (4)C2B—C3B1.530 (5)
N6—C121.447 (4)C2B—H20I0.9900
N6—C131.456 (4)C2B—H20J0.9900
C1—H10D0.9800C3B—H20G0.9900
C1—H10E0.9800C3B—H20H0.9900
C1—H10F0.9800C4B—H20A0.9800
C2—C31.517 (5)C4B—H20B0.9800
C2—H10I0.9900C4B—H20C0.9800
C2—H10J0.9900C6B—C7B1.383 (4)
C3—H10G0.9900C7B—C8B1.373 (4)
C3—H10H0.9900C7B—H20K0.9500
C4—H10A0.9800C8B—C9B1.377 (5)
C4—H10B0.9800C8B—H20L0.9500
C4—H10C0.9800C9B—C10B1.397 (4)
C6—C71.398 (4)C9B—H20M0.9500
C7—C81.377 (5)C12B—H21A0.9800
C7—H10K0.9500C12B—H21B0.9800
C8—C91.373 (5)C12B—H21C0.9800
C8—H10L0.9500C13B—C14B1.532 (4)
C9—C101.395 (4)C13B—H21G0.9900
C9—H10M0.9500C13B—H21H0.9900
C12—H11D0.9800C14B—H21I0.9900
C12—H11E0.9800C14B—H21J0.9900
C12—H11F0.9800C15B—H21D0.9800
C13—C141.525 (5)C15B—H21E0.9800
C13—H11I0.9900C15B—H21F0.9800
C13—H11J0.9900Cl1—O111.400 (6)
C14—H11G0.9900Cl1—O21.403 (3)
C14—H11H0.9900Cl1—O41.414 (3)
C15—H11A0.9800Cl1—O31.428 (3)
C15—H11B0.9800Cl1—O121.454 (5)
C15—H11C0.9800Cl2—O521.376 (7)
N1B—C5B1.350 (4)Cl2—O611.384 (5)
N1B—C1B1.449 (4)Cl2—O71.395 (3)
N1B—C2B1.451 (4)Cl2—O81.420 (3)
N2B—C5B1.334 (4)Cl2—O511.499 (5)
N2B—C3B1.436 (4)Cl2—O621.507 (6)
N2B—C4B1.438 (4)
C5—N1—C1124.8 (3)C11B—N6B—C12B124.9 (3)
C5—N1—C2111.4 (3)C11B—N6B—C13B110.5 (3)
C1—N1—C2121.3 (3)C12B—N6B—C13B121.5 (3)
C5—N2—C4124.9 (3)C11B—N7B—C15B127.0 (3)
C5—N2—C3111.9 (3)C11B—N7B—C14B110.9 (3)
C4—N2—C3123.0 (3)C15B—N7B—C14B121.7 (3)
C5—N3—C6122.4 (3)N1B—C1B—H20D109.5
C10—N4—C6126.0 (3)N1B—C1B—H20E109.5
C10—N4—H4118 (2)H20D—C1B—H20E109.5
C6—N4—H4116 (2)N1B—C1B—H20F109.5
C11—N5—C10119.5 (3)H20D—C1B—H20F109.5
C11—N7—C15126.0 (3)H20E—C1B—H20F109.5
C11—N7—C14111.0 (3)N1B—C2B—C3B103.5 (3)
C15—N7—C14123.0 (3)N1B—C2B—H20I111.1
C11—N6—C12125.8 (3)C3B—C2B—H20I111.1
C11—N6—C13110.6 (3)N1B—C2B—H20J111.1
C12—N6—C13121.3 (3)C3B—C2B—H20J111.1
N1—C1—H10D109.5H20I—C2B—H20J109.0
N1—C1—H10E109.5N2B—C3B—C2B103.2 (3)
H10D—C1—H10E109.5N2B—C3B—H20G111.1
N1—C1—H10F109.5C2B—C3B—H20G111.1
H10D—C1—H10F109.5N2B—C3B—H20H111.1
H10E—C1—H10F109.5C2B—C3B—H20H111.1
N1—C2—C3103.6 (3)H20G—C3B—H20H109.1
N1—C2—H10I111.0N2B—C4B—H20A109.5
C3—C2—H10I111.0N2B—C4B—H20B109.5
N1—C2—H10J111.0H20A—C4B—H20B109.5
C3—C2—H10J111.0N2B—C4B—H20C109.5
H10I—C2—H10J109.0H20A—C4B—H20C109.5
N2—C3—C2102.7 (3)H20B—C4B—H20C109.5
N2—C3—H10G111.2N3B—C5B—N2B120.9 (3)
C2—C3—H10G111.2N3B—C5B—N1B129.1 (3)
N2—C3—H10H111.2N2B—C5B—N1B109.9 (3)
C2—C3—H10H111.2N3B—C6B—N4B113.5 (3)
H10G—C3—H10H109.1N3B—C6B—C7B129.4 (3)
N2—C4—H10A109.5N4B—C6B—C7B116.8 (3)
N2—C4—H10B109.5C8B—C7B—C6B119.0 (3)
H10A—C4—H10B109.5C8B—C7B—H20K120.5
N2—C4—H10C109.5C6B—C7B—H20K120.5
H10A—C4—H10C109.5C7B—C8B—C9B122.8 (3)
H10B—C4—H10C109.5C7B—C8B—H20L118.6
N3—C5—N1130.3 (3)C9B—C8B—H20L118.6
N3—C5—N2120.5 (3)C8B—C9B—C10B118.4 (3)
N1—C5—N2109.1 (3)C8B—C9B—H20M120.8
N4—C6—N3114.2 (3)C10B—C9B—H20M120.8
N4—C6—C7116.9 (3)N4B—C10B—N5B115.0 (3)
N3—C6—C7128.6 (3)N4B—C10B—C9B117.0 (3)
C8—C7—C6118.5 (3)N5B—C10B—C9B127.7 (3)
C8—C7—H10K120.8N7B—C11B—N5B127.9 (3)
C6—C7—H10K120.8N7B—C11B—N6B109.9 (3)
C9—C8—C7122.7 (3)N5B—C11B—N6B122.2 (3)
C9—C8—H10L118.7N6B—C12B—H21A109.5
C7—C8—H10L118.7N6B—C12B—H21B109.5
C8—C9—C10118.7 (3)H21A—C12B—H21B109.5
C8—C9—H10M120.6N6B—C12B—H21C109.5
C10—C9—H10M120.6H21A—C12B—H21C109.5
N5—C10—N4115.0 (3)H21B—C12B—H21C109.5
N5—C10—C9127.7 (3)N6B—C13B—C14B102.0 (3)
N4—C10—C9117.0 (3)N6B—C13B—H21G111.4
N7—C11—N5127.7 (3)C14B—C13B—H21G111.4
N7—C11—N6109.9 (3)N6B—C13B—H21H111.4
N5—C11—N6122.3 (3)C14B—C13B—H21H111.4
N6—C12—H11D109.5H21G—C13B—H21H109.2
N6—C12—H11E109.5N7B—C14B—C13B101.8 (3)
H11D—C12—H11E109.5N7B—C14B—H21I111.4
N6—C12—H11F109.5C13B—C14B—H21I111.4
H11D—C12—H11F109.5N7B—C14B—H21J111.4
H11E—C12—H11F109.5C13B—C14B—H21J111.4
N6—C13—C14102.0 (3)H21I—C14B—H21J109.3
N6—C13—H11I111.4N7B—C15B—H21D109.5
C14—C13—H11I111.4N7B—C15B—H21E109.5
N6—C13—H11J111.4H21D—C15B—H21E109.5
C14—C13—H11J111.4N7B—C15B—H21F109.5
H11I—C13—H11J109.2H21D—C15B—H21F109.5
N7—C14—C13101.8 (3)H21E—C15B—H21F109.5
N7—C14—H11G111.4O11—Cl1—O2101.5 (3)
C13—C14—H11G111.4O11—Cl1—O4105.7 (3)
N7—C14—H11H111.4O2—Cl1—O4111.7 (2)
C13—C14—H11H111.4O11—Cl1—O3125.7 (3)
H11G—C14—H11H109.3O2—Cl1—O3105.6 (2)
N7—C15—H11A109.5O4—Cl1—O3106.4 (2)
N7—C15—H11B109.5O2—Cl1—O12121.6 (3)
H11A—C15—H11B109.5O4—Cl1—O12113.7 (2)
N7—C15—H11C109.5O3—Cl1—O1294.8 (3)
H11A—C15—H11C109.5O52—Cl2—O7117.1 (3)
H11B—C15—H11C109.5O61—Cl2—O7119.3 (3)
C5B—N1B—C1B126.0 (3)O52—Cl2—O8122.3 (4)
C5B—N1B—C2B110.9 (3)O61—Cl2—O8115.7 (3)
C1B—N1B—C2B120.4 (3)O7—Cl2—O8112.83 (18)
C5B—N2B—C3B112.4 (3)O61—Cl2—O51104.1 (3)
C5B—N2B—C4B125.0 (3)O7—Cl2—O51101.8 (2)
C3B—N2B—C4B122.3 (3)O8—Cl2—O5199.4 (3)
C5B—N3B—C6B122.7 (3)O52—Cl2—O62100.0 (4)
C10B—N4B—C6B125.9 (3)O7—Cl2—O6298.5 (3)
C10B—N4B—H4B119 (2)O8—Cl2—O6299.3 (3)
C6B—N4B—H4B115 (2)O51—Cl2—O62144.4 (3)
C11B—N5B—C10B119.1 (3)
C5—N1—C2—C38.0 (4)C5B—N1B—C2B—C3B1.3 (4)
C1—N1—C2—C3154.7 (3)C1B—N1B—C2B—C3B161.4 (3)
C5—N2—C3—C211.0 (4)C5B—N2B—C3B—C2B1.2 (4)
C4—N2—C3—C2174.4 (3)C4B—N2B—C3B—C2B173.1 (3)
N1—C2—C3—N210.8 (4)N1B—C2B—C3B—N2B1.4 (4)
C6—N3—C5—N138.5 (5)C6B—N3B—C5B—N2B147.1 (3)
C6—N3—C5—N2145.3 (3)C6B—N3B—C5B—N1B37.0 (5)
C1—N1—C5—N315.9 (6)C3B—N2B—C5B—N3B176.2 (3)
C2—N1—C5—N3177.9 (3)C4B—N2B—C5B—N3B9.7 (5)
C1—N1—C5—N2160.6 (3)C3B—N2B—C5B—N1B0.4 (4)
C2—N1—C5—N21.4 (4)C4B—N2B—C5B—N1B173.7 (3)
C4—N2—C5—N34.1 (5)C1B—N1B—C5B—N3B15.3 (6)
C3—N2—C5—N3170.4 (3)C2B—N1B—C5B—N3B176.9 (3)
C4—N2—C5—N1179.0 (3)C1B—N1B—C5B—N2B160.9 (3)
C3—N2—C5—N16.5 (4)C2B—N1B—C5B—N2B0.6 (4)
C10—N4—C6—N3169.6 (3)C5B—N3B—C6B—N4B166.9 (3)
C10—N4—C6—C75.0 (5)C5B—N3B—C6B—C7B20.3 (5)
C5—N3—C6—N4168.0 (3)C10B—N4B—C6B—N3B168.9 (3)
C5—N3—C6—C718.1 (5)C10B—N4B—C6B—C7B4.8 (5)
N4—C6—C7—C83.1 (5)N3B—C6B—C7B—C8B169.9 (3)
N3—C6—C7—C8170.7 (3)N4B—C6B—C7B—C8B2.7 (5)
C6—C7—C8—C90.0 (5)C6B—C7B—C8B—C9B0.4 (5)
C7—C8—C9—C101.6 (5)C7B—C8B—C9B—C10B1.8 (5)
C11—N5—C10—N4176.7 (3)C6B—N4B—C10B—N5B171.5 (3)
C11—N5—C10—C99.3 (5)C6B—N4B—C10B—C9B3.4 (5)
C6—N4—C10—N5171.1 (3)C11B—N5B—C10B—N4B175.9 (3)
C6—N4—C10—C93.5 (5)C11B—N5B—C10B—C9B9.9 (5)
C8—C9—C10—N5173.8 (3)C8B—C9B—C10B—N4B0.0 (5)
C8—C9—C10—N40.0 (5)C8B—C9B—C10B—N5B174.2 (3)
C15—N7—C11—N52.7 (6)C15B—N7B—C11B—N5B2.7 (6)
C14—N7—C11—N5175.3 (3)C14B—N7B—C11B—N5B175.1 (3)
C15—N7—C11—N6174.8 (3)C15B—N7B—C11B—N6B179.4 (3)
C14—N7—C11—N67.2 (4)C14B—N7B—C11B—N6B7.0 (4)
C10—N5—C11—N759.1 (5)C10B—N5B—C11B—N7B58.2 (5)
C10—N5—C11—N6123.7 (4)C10B—N5B—C11B—N6B124.1 (3)
C12—N6—C11—N7170.9 (3)C12B—N6B—C11B—N7B168.8 (3)
C13—N6—C11—N78.0 (4)C13B—N6B—C11B—N7B8.5 (4)
C12—N6—C11—N56.8 (5)C12B—N6B—C11B—N5B9.2 (5)
C13—N6—C11—N5169.6 (3)C13B—N6B—C11B—N5B169.6 (3)
C11—N6—C13—C1418.6 (4)C11B—N6B—C13B—C14B19.0 (4)
C12—N6—C13—C14177.6 (3)C12B—N6B—C13B—C14B179.8 (3)
C11—N7—C14—C1318.1 (4)C11B—N7B—C14B—C13B18.2 (4)
C15—N7—C14—C13163.8 (3)C15B—N7B—C14B—C13B169.0 (3)
N6—C13—C14—N720.9 (4)N6B—C13B—C14B—N7B21.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N5i0.88 (1)2.01 (1)2.885 (4)175 (3)
N4B—H4B···N5Bii0.89 (1)2.04 (1)2.922 (4)174 (3)
C1—H10E···O2iii0.982.413.229 (5)141
C2—H10J···O2iii0.992.453.219 (5)134
C1B—H20F···O7iv0.982.443.301 (4)146
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y+1, z+2; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z.
(II) bis{2,6-bis[(1,3-dimethylimidazolin-2-ylidene)amino]pyridinium} µ-oxido-bis[trichloridoiron(III)] top
Crystal data top
(C15H24N7)2[Fe2Cl6O]F(000) = 976
Mr = 945.22Dx = 1.503 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1781 reflections
a = 10.5673 (8) Åθ = 2.2–28.3°
b = 10.9286 (8) ŵ = 1.12 mm1
c = 18.3329 (14) ÅT = 120 K
β = 99.438 (2)°Prism, red
V = 2088.5 (3) Å30.43 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
5142 independent reflections
Radiation source: sealed tube3929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 28.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1414
Tmin = 0.644, Tmax = 0.807k = 1414
20962 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0646P)2]
where P = (Fo2 + 2Fc2)/3
5142 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.96 e Å3
1 restraintΔρmin = 0.72 e Å3
Crystal data top
(C15H24N7)2[Fe2Cl6O]V = 2088.5 (3) Å3
Mr = 945.22Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.5673 (8) ŵ = 1.12 mm1
b = 10.9286 (8) ÅT = 120 K
c = 18.3329 (14) Å0.43 × 0.25 × 0.20 mm
β = 99.438 (2)°
Data collection top
Bruker SMART APEX
diffractometer
5142 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3929 reflections with I > 2σ(I)
Tmin = 0.644, Tmax = 0.807Rint = 0.066
20962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.96 e Å3
5142 reflectionsΔρmin = 0.72 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.10796 (3)0.07833 (3)0.456159 (17)0.02885 (11)
Cl10.13940 (7)0.27077 (6)0.49480 (4)0.0526 (2)
Cl20.03929 (7)0.07802 (7)0.33459 (3)0.04969 (19)
Cl30.29055 (6)0.02168 (6)0.48206 (4)0.04693 (18)
O10.00000.00000.50000.0813 (11)
N10.31587 (19)0.70020 (19)0.76065 (11)0.0363 (5)
N20.5183 (2)0.6560 (2)0.80379 (10)0.0383 (5)
N30.44032 (17)0.58018 (17)0.68759 (10)0.0279 (4)
N40.38268 (16)0.49413 (16)0.57400 (9)0.0216 (4)
H40.4539 (16)0.528 (2)0.5661 (15)0.046 (8)*
N50.37760 (16)0.39960 (16)0.46291 (9)0.0248 (4)
N60.38638 (16)0.23645 (16)0.38284 (10)0.0264 (4)
N70.20585 (17)0.33867 (18)0.36675 (10)0.0317 (4)
C10.2135 (2)0.7462 (2)0.70542 (15)0.0410 (6)
H1A0.22290.71330.65690.061*
H1B0.21760.83570.70410.061*
H1C0.13070.72080.71780.061*
C20.3481 (3)0.7679 (3)0.83068 (14)0.0481 (7)
H2A0.27940.75990.86120.058*
H2B0.36290.85570.82180.058*
C30.4701 (3)0.7055 (3)0.86695 (13)0.0465 (7)
H3A0.53110.76480.89430.056*
H3B0.45210.64000.90110.056*
C40.6344 (3)0.5822 (2)0.81291 (14)0.0436 (6)
H4A0.65580.56250.76420.065*
H4B0.62030.50620.83890.065*
H4C0.70520.62800.84180.065*
C50.4204 (2)0.6408 (2)0.74617 (11)0.0291 (5)
C60.34876 (19)0.51945 (19)0.64142 (11)0.0228 (4)
C70.2344 (2)0.4686 (2)0.65571 (11)0.0259 (4)
H7A0.20350.48690.70030.031*
C80.1669 (2)0.3912 (2)0.60412 (12)0.0271 (5)
H8A0.08960.35590.61440.033*
C90.20649 (19)0.36267 (19)0.53832 (11)0.0251 (4)
H9A0.15910.30680.50470.030*
C100.31875 (19)0.41802 (18)0.52187 (11)0.0226 (4)
C110.32300 (18)0.32753 (19)0.40762 (10)0.0225 (4)
C120.5111 (2)0.1920 (2)0.41635 (13)0.0316 (5)
H12A0.54570.24460.45820.047*
H12B0.56910.19340.37970.047*
H12C0.50330.10810.43380.047*
C130.3120 (2)0.1764 (2)0.31942 (11)0.0299 (5)
H13A0.30470.08740.32820.036*
H13B0.35070.18920.27440.036*
C140.1808 (2)0.2396 (2)0.31276 (13)0.0332 (5)
H14A0.15280.27190.26230.040*
H14B0.11460.18290.32540.040*
C150.1156 (2)0.4368 (2)0.37111 (14)0.0352 (5)
H15A0.15780.50230.40260.053*
H15B0.04250.40560.39230.053*
H15C0.08510.46890.32140.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02239 (17)0.0393 (2)0.02508 (18)0.00218 (13)0.00447 (12)0.00348 (13)
Cl10.0575 (4)0.0451 (4)0.0497 (4)0.0166 (3)0.0072 (3)0.0111 (3)
Cl20.0573 (4)0.0568 (4)0.0293 (3)0.0050 (3)0.0098 (3)0.0033 (3)
Cl30.0424 (4)0.0499 (4)0.0435 (4)0.0162 (3)0.0076 (3)0.0106 (3)
O10.0544 (19)0.124 (3)0.072 (2)0.0340 (19)0.0291 (17)0.024 (2)
N10.0397 (11)0.0408 (11)0.0305 (10)0.0076 (9)0.0119 (9)0.0133 (9)
N20.0440 (12)0.0483 (13)0.0215 (9)0.0148 (10)0.0020 (8)0.0084 (9)
N30.0267 (9)0.0375 (11)0.0187 (8)0.0052 (8)0.0011 (7)0.0055 (7)
N40.0185 (8)0.0273 (9)0.0187 (8)0.0021 (7)0.0017 (7)0.0030 (7)
N50.0189 (8)0.0340 (10)0.0209 (9)0.0017 (7)0.0011 (7)0.0071 (7)
N60.0253 (9)0.0272 (9)0.0251 (9)0.0007 (7)0.0003 (7)0.0051 (7)
N70.0246 (9)0.0387 (11)0.0286 (9)0.0040 (8)0.0056 (7)0.0117 (8)
C10.0397 (14)0.0380 (14)0.0490 (15)0.0007 (11)0.0184 (12)0.0062 (11)
C20.0663 (18)0.0471 (16)0.0368 (14)0.0173 (14)0.0257 (13)0.0188 (12)
C30.0649 (18)0.0504 (16)0.0252 (12)0.0228 (14)0.0105 (12)0.0124 (11)
C40.0431 (15)0.0523 (17)0.0308 (13)0.0112 (12)0.0073 (11)0.0044 (11)
C50.0326 (11)0.0339 (12)0.0216 (10)0.0128 (9)0.0070 (9)0.0025 (9)
C60.0242 (10)0.0260 (11)0.0171 (9)0.0016 (8)0.0004 (8)0.0003 (8)
C70.0273 (11)0.0302 (11)0.0205 (10)0.0006 (9)0.0047 (8)0.0011 (8)
C80.0224 (10)0.0316 (12)0.0273 (11)0.0013 (9)0.0036 (8)0.0041 (9)
C90.0224 (10)0.0273 (11)0.0243 (10)0.0042 (8)0.0002 (8)0.0020 (8)
C100.0197 (10)0.0268 (11)0.0200 (9)0.0038 (8)0.0006 (8)0.0014 (8)
C110.0211 (10)0.0262 (11)0.0196 (9)0.0018 (8)0.0014 (8)0.0015 (8)
C120.0270 (11)0.0317 (12)0.0355 (12)0.0053 (9)0.0031 (9)0.0017 (10)
C130.0368 (12)0.0291 (12)0.0229 (10)0.0028 (9)0.0017 (9)0.0053 (9)
C140.0357 (13)0.0319 (12)0.0283 (11)0.0036 (10)0.0056 (9)0.0073 (9)
C150.0293 (12)0.0378 (13)0.0346 (13)0.0081 (10)0.0066 (10)0.0043 (10)
Geometric parameters (Å, º) top
Fe1—O11.7266 (3)C2—C31.512 (4)
Fe1—Cl32.2005 (7)C2—H2A0.9900
Fe1—Cl12.2267 (8)C2—H2B0.9900
Fe1—Cl22.2278 (7)C3—H3A0.9900
O1—Fe1i1.7266 (3)C3—H3B0.9900
N1—C51.345 (3)C4—H4A0.9800
N1—C11.445 (3)C4—H4B0.9800
N1—C21.472 (3)C4—H4C0.9800
N2—C51.362 (3)C6—C71.394 (3)
N2—C31.444 (3)C7—C81.377 (3)
N2—C41.455 (3)C7—H7A0.9500
N3—C51.308 (3)C8—C91.376 (3)
N3—C61.351 (3)C8—H8A0.9500
N4—C101.360 (3)C9—C101.408 (3)
N4—C61.370 (2)C9—H9A0.9500
N4—H40.871 (10)C12—H12A0.9800
N5—C111.337 (2)C12—H12B0.9800
N5—C101.348 (3)C12—H12C0.9800
N6—C111.321 (3)C13—C141.536 (3)
N6—C121.444 (3)C13—H13A0.9900
N6—C131.449 (3)C13—H13B0.9900
N7—C111.343 (3)C14—H14A0.9900
N7—C151.446 (3)C14—H14B0.9900
N7—C141.461 (3)C15—H15A0.9800
C1—H1A0.9800C15—H15B0.9800
C1—H1B0.9800C15—H15C0.9800
C1—H1C0.9800
O1—Fe1—Cl3106.03 (3)H4B—C4—H4C109.5
O1—Fe1—Cl1113.31 (3)N3—C5—N1130.9 (2)
Cl3—Fe1—Cl1108.71 (3)N3—C5—N2119.7 (2)
O1—Fe1—Cl2109.46 (2)N1—C5—N2109.37 (19)
Cl3—Fe1—Cl2110.20 (3)N3—C6—N4113.45 (17)
Cl1—Fe1—Cl2109.08 (3)N3—C6—C7129.23 (18)
Fe1—O1—Fe1i180.0N4—C6—C7116.87 (18)
C5—N1—C1125.05 (19)C8—C7—C6118.90 (19)
C5—N1—C2109.5 (2)C8—C7—H7A120.6
C1—N1—C2118.4 (2)C6—C7—H7A120.6
C5—N2—C3110.2 (2)C9—C8—C7122.93 (19)
C5—N2—C4122.7 (2)C9—C8—H8A118.5
C3—N2—C4121.1 (2)C7—C8—H8A118.5
C5—N3—C6124.65 (19)C8—C9—C10118.59 (19)
C10—N4—C6125.73 (17)C8—C9—H9A120.7
C10—N4—H4119.0 (19)C10—C9—H9A120.7
C6—N4—H4115.2 (19)N5—C10—N4114.43 (17)
C11—N5—C10119.83 (17)N5—C10—C9128.57 (19)
C11—N6—C12125.86 (18)N4—C10—C9116.83 (18)
C11—N6—C13112.24 (17)N6—C11—N5121.62 (18)
C12—N6—C13121.74 (18)N6—C11—N7110.44 (17)
C11—N7—C15126.33 (18)N5—C11—N7127.80 (19)
C11—N7—C14111.01 (17)N6—C12—H12A109.5
C15—N7—C14122.60 (18)N6—C12—H12B109.5
N1—C1—H1A109.5H12A—C12—H12B109.5
N1—C1—H1B109.5N6—C12—H12C109.5
H1A—C1—H1B109.5H12A—C12—H12C109.5
N1—C1—H1C109.5H12B—C12—H12C109.5
H1A—C1—H1C109.5N6—C13—C14102.91 (17)
H1B—C1—H1C109.5N6—C13—H13A111.2
N1—C2—C3102.5 (2)C14—C13—H13A111.2
N1—C2—H2A111.3N6—C13—H13B111.2
C3—C2—H2A111.3C14—C13—H13B111.2
N1—C2—H2B111.3H13A—C13—H13B109.1
C3—C2—H2B111.3N7—C14—C13102.63 (17)
H2A—C2—H2B109.2N7—C14—H14A111.2
N2—C3—C2101.7 (2)C13—C14—H14A111.2
N2—C3—H3A111.4N7—C14—H14B111.2
C2—C3—H3A111.4C13—C14—H14B111.2
N2—C3—H3B111.4H14A—C14—H14B109.2
C2—C3—H3B111.4N7—C15—H15A109.5
H3A—C3—H3B109.3N7—C15—H15B109.5
N2—C4—H4A109.5H15A—C15—H15B109.5
N2—C4—H4B109.5N7—C15—H15C109.5
H4A—C4—H4B109.5H15A—C15—H15C109.5
N2—C4—H4C109.5H15B—C15—H15C109.5
H4A—C4—H4C109.5
C5—N1—C2—C318.7 (3)C7—C8—C9—C102.1 (3)
C1—N1—C2—C3170.9 (2)C11—N5—C10—N4179.22 (18)
C5—N2—C3—C223.9 (3)C11—N5—C10—C95.7 (3)
C4—N2—C3—C2177.3 (2)C6—N4—C10—N5174.28 (19)
N1—C2—C3—N224.5 (2)C6—N4—C10—C91.4 (3)
C6—N3—C5—N130.1 (4)C8—C9—C10—N5176.8 (2)
C6—N3—C5—N2153.4 (2)C8—C9—C10—N41.8 (3)
C1—N1—C5—N322.4 (4)C12—N6—C11—N58.9 (3)
C2—N1—C5—N3172.3 (2)C13—N6—C11—N5175.75 (19)
C1—N1—C5—N2154.4 (2)C12—N6—C11—N7175.1 (2)
C2—N1—C5—N24.4 (3)C13—N6—C11—N70.2 (3)
C3—N2—C5—N3169.8 (2)C10—N5—C11—N6127.9 (2)
C4—N2—C5—N316.8 (3)C10—N5—C11—N756.8 (3)
C3—N2—C5—N113.1 (3)C15—N7—C11—N6171.7 (2)
C4—N2—C5—N1166.0 (2)C14—N7—C11—N65.6 (3)
C5—N3—C6—N4162.0 (2)C15—N7—C11—N54.0 (4)
C5—N3—C6—C726.0 (4)C14—N7—C11—N5178.7 (2)
C10—N4—C6—N3168.84 (19)C11—N6—C13—C145.5 (2)
C10—N4—C6—C74.2 (3)C12—N6—C13—C14170.1 (2)
N3—C6—C7—C8168.0 (2)C11—N7—C14—C138.6 (2)
N4—C6—C7—C83.8 (3)C15—N7—C14—C13168.8 (2)
C6—C7—C8—C90.8 (3)N6—C13—C14—N78.0 (2)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N5ii0.87 (1)2.10 (1)2.964 (2)174 (3)
C1—H1A···Cl1iii0.982.963.816 (3)146
C1—H1C···Cl2iv0.982.943.716 (3)137
C12—H12C···Cl3v0.982.833.469 (2)123
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x+1, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC15H24N7+·ClO4(C15H24N7)2[Fe2Cl6O]
Mr401.86945.22
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)120120
a, b, c (Å)10.4399 (11), 12.0367 (13), 16.6200 (18)10.5673 (8), 10.9286 (8), 18.3329 (14)
α, β, γ (°)95.979 (2), 93.739 (2), 115.549 (2)90, 99.438 (2), 90
V3)1859.9 (3)2088.5 (3)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.241.12
Crystal size (mm)0.35 × 0.20 × 0.180.43 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Bruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Multi-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.920, 0.9600.644, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
18737, 8994, 3686 20962, 5142, 3929
Rint0.0930.066
(sin θ/λ)max1)0.6620.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.147, 0.83 0.045, 0.113, 0.99
No. of reflections89945142
No. of parameters499249
No. of restraints91
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.450.96, 0.72

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
N1—C51.342 (4)N1B—C5B1.350 (4)
N2—C51.352 (4)N2B—C5B1.334 (4)
N3—C51.318 (4)N3B—C5B1.319 (4)
N3—C61.355 (4)N3B—C6B1.348 (4)
N4—C101.352 (4)N4B—C10B1.352 (4)
N4—C61.354 (4)N4B—C6B1.366 (4)
N5—C111.337 (4)N5B—C11B1.341 (4)
N5—C101.350 (4)N5B—C10B1.357 (4)
N7—C111.331 (4)N6B—C11B1.344 (4)
N6—C111.338 (4)N7B—C11B1.340 (4)
N3—C5—N1130.3 (3)N3B—C5B—N2B120.9 (3)
N3—C5—N2120.5 (3)N3B—C5B—N1B129.1 (3)
N1—C5—N2109.1 (3)N2B—C5B—N1B109.9 (3)
N7—C11—N5127.7 (3)N7B—C11B—N5B127.9 (3)
N7—C11—N6109.9 (3)N7B—C11B—N6B109.9 (3)
N5—C11—N6122.3 (3)N5B—C11B—N6B122.2 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N5i0.881 (10)2.007 (11)2.885 (4)175 (3)
N4B—H4B···N5Bii0.888 (10)2.037 (11)2.922 (4)174 (3)
C1—H10E···O2iii0.982.413.229 (5)141.0
C2—H10J···O2iii0.992.453.219 (5)134.3
C1B—H20F···O7iv0.982.443.301 (4)145.7
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y+1, z+2; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z.
Selected geometric parameters (Å, º) for (II) top
N1—C51.345 (3)N4—C61.370 (2)
N2—C51.362 (3)N5—C111.337 (2)
N3—C51.308 (3)N5—C101.348 (3)
N3—C61.351 (3)N6—C111.321 (3)
N4—C101.360 (3)N7—C111.343 (3)
N3—C5—N1130.9 (2)N6—C11—N5121.62 (18)
N3—C5—N2119.7 (2)N6—C11—N7110.44 (17)
N1—C5—N2109.37 (19)N5—C11—N7127.80 (19)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N5i0.871 (10)2.096 (10)2.964 (2)174 (3)
C1—H1A···Cl1ii0.982.963.816 (3)146.3
C1—H1C···Cl2iii0.982.943.716 (3)137.1
C12—H12C···Cl3iv0.982.833.469 (2)123.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds