Download citation
Download citation
link to html
Constrained cyclam derivatives have been found to exhibit anti-HIV effects. The strength of binding to the CXCR4 receptor correlates with anti-HIV activity. The conformation of the macrocyclic compound is very important for co-receptor recognition. Therefore, knowledge of the conformation and crystal packing of macrocycles has become important in developing new highly effective anti-HIV drugs. Structural modifications of N-functionalized polyaza macrocyclic compounds have been achieved using various methods. A new synthesis affording single crystals of the title tetra­aza­penta­cyclo­[16.4.0.12,17.16,13.07,12]tetra­cosa­ne macrocycle, C22H40N4, is reported. Formaldehyde reacts readily at room tem­perature with the tetraazatricyclo[16.4.0.02,17]docosane precursor to yield a macropolycycle containing two five-membered rings. Characterization by elemental, spectroscopic and single-crystal X-ray diffraction analyses shows that the asymmetric unit contains half of a centrosymmetric mol­ecule. The mol­ecular structure shows a trans conformation for the two methyl­ene bridges owing to mol­ecular symmetry. The crystal structure is stabilized by intra­molecular C—H...N hydrogen bonds. NMR and IR spectroscopic properties support the methyl­ene-bridged macrocyclic structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229616013280/eg3206sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616013280/eg3206Isup2.hkl
Contains datablock I

CCDC reference: 977111

Computing details top

Data collection: PAL BL2D-SMDC Program (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

3,14-Dimethyl-2,6,13,17-tetraazapentacyclo[16.4.0.12,17.16,13.07,12]tetracosane top
Crystal data top
C22H40N4Z = 1
Mr = 360.58F(000) = 200
Triclinic, P1Dx = 1.192 Mg m3
a = 5.2990 (11) ÅSynchrotron radiation, λ = 0.63001 Å
b = 9.0720 (18) ÅCell parameters from 13155 reflections
c = 10.604 (2) Åθ = 0.4–33.6°
α = 92.30 (3)°µ = 0.06 mm1
β = 90.10 (3)°T = 101 K
γ = 99.61 (3)°Plate, colourless
V = 502.18 (18) Å30.10 × 0.05 × 0.01 mm
Data collection top
ADSC Q210 CCD area detector
diffractometer
1732 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.039
ω scanθmax = 26.0°, θmin = 2.0°
Absorption correction: empirical (using intensity measurements)
HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 77
Tmin = 0.994, Tmax = 0.999k = 1212
5243 measured reflectionsl = 1414
2661 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.1256P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.189(Δ/σ)max < 0.001
S = 0.97Δρmax = 0.41 e Å3
2661 reflectionsΔρmin = 0.35 e Å3
120 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.17 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4470 (3)0.80439 (15)0.96704 (14)0.0220 (3)
N20.7265 (3)0.90734 (15)0.80978 (13)0.0225 (3)
C10.7074 (3)0.88539 (19)0.94602 (16)0.0225 (4)
H1A0.73520.98300.99360.027*
H1B0.83680.82620.97380.027*
C20.4173 (3)0.70172 (18)0.85647 (17)0.0225 (4)
H20.54190.63080.86350.027*
C30.5047 (3)0.80842 (18)0.75189 (16)0.0230 (4)
H30.36740.86920.73650.028*
C40.5419 (3)0.7176 (2)0.63095 (17)0.0273 (4)
H4A0.67270.65350.64460.033*
H4B0.60030.78550.56220.033*
C50.2841 (3)0.6204 (2)0.59532 (18)0.0285 (4)
H5A0.16110.68610.57250.034*
H5B0.30720.55590.52010.034*
C60.1720 (3)0.52165 (19)0.70209 (19)0.0289 (4)
H6A0.28060.44470.71540.035*
H6B0.00110.46950.67700.035*
C70.1543 (3)0.61207 (19)0.82656 (18)0.0262 (4)
H7A0.02800.68020.81800.031*
H7B0.09860.54380.89540.031*
C80.4259 (3)0.73355 (19)1.08768 (17)0.0256 (4)
H8A0.55840.66891.09300.031*
H8B0.25660.66861.09200.031*
C90.4564 (3)0.84492 (19)1.20105 (17)0.0250 (4)
H9A0.61530.91781.19000.030*
H9B0.47920.78961.27770.030*
C100.7685 (3)1.06609 (19)0.77571 (17)0.0240 (4)
H100.91511.11800.82910.029*
C110.8570 (4)1.0779 (2)0.63924 (17)0.0302 (4)
H11A0.99261.01780.62500.045*
H11B0.92311.18270.62260.045*
H11C0.71231.04070.58240.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0211 (7)0.0207 (7)0.0244 (7)0.0046 (5)0.0011 (5)0.0001 (5)
N20.0218 (7)0.0235 (7)0.0223 (7)0.0050 (6)0.0027 (5)0.0013 (6)
C10.0215 (8)0.0241 (8)0.0230 (8)0.0072 (6)0.0024 (6)0.0000 (6)
C20.0205 (7)0.0202 (8)0.0277 (9)0.0066 (6)0.0030 (6)0.0022 (6)
C30.0204 (7)0.0235 (8)0.0262 (9)0.0073 (6)0.0026 (6)0.0024 (6)
C40.0279 (8)0.0286 (9)0.0260 (9)0.0079 (7)0.0022 (7)0.0036 (7)
C50.0291 (9)0.0284 (9)0.0293 (9)0.0098 (7)0.0049 (7)0.0048 (7)
C60.0276 (8)0.0238 (9)0.0357 (10)0.0065 (7)0.0061 (7)0.0030 (7)
C70.0237 (8)0.0224 (9)0.0319 (10)0.0030 (7)0.0023 (7)0.0017 (7)
C80.0287 (8)0.0222 (8)0.0269 (9)0.0071 (7)0.0002 (7)0.0013 (6)
C90.0266 (8)0.0235 (8)0.0259 (9)0.0073 (7)0.0011 (6)0.0010 (6)
C100.0221 (8)0.0249 (9)0.0253 (9)0.0049 (6)0.0001 (6)0.0004 (6)
C110.0322 (9)0.0322 (10)0.0264 (10)0.0057 (8)0.0026 (7)0.0023 (7)
Geometric parameters (Å, º) top
N1—C81.451 (2)C5—H5B0.9900
N1—C21.459 (2)C6—C71.537 (3)
N1—C11.473 (2)C6—H6A0.9900
N2—C11.468 (2)C6—H6B0.9900
N2—C31.471 (2)C7—H7A0.9900
N2—C101.480 (2)C7—H7B0.9900
C1—H1A0.9900C8—C91.530 (2)
C1—H1B0.9900C8—H8A0.9900
C2—C71.518 (2)C8—H8B0.9900
C2—C31.523 (3)C9—C10i1.562 (2)
C2—H21.0000C9—H9A0.9900
C3—C41.527 (2)C9—H9B0.9900
C3—H31.0000C10—C111.524 (3)
C4—C51.535 (3)C10—C9i1.562 (2)
C4—H4A0.9900C10—H101.0000
C4—H4B0.9900C11—H11A0.9800
C5—C61.531 (3)C11—H11B0.9800
C5—H5A0.9900C11—H11C0.9800
C8—N1—C2115.17 (13)C5—C6—C7112.34 (14)
C8—N1—C1111.88 (13)C5—C6—H6A109.1
C2—N1—C1100.10 (13)C7—C6—H6A109.1
C1—N2—C3105.97 (13)C5—C6—H6B109.1
C1—N2—C10114.09 (13)C7—C6—H6B109.1
C3—N2—C10117.19 (13)H6A—C6—H6B107.9
N2—C1—N1106.03 (13)C2—C7—C6107.97 (15)
N2—C1—H1A110.5C2—C7—H7A110.1
N1—C1—H1A110.5C6—C7—H7A110.1
N2—C1—H1B110.5C2—C7—H7B110.1
N1—C1—H1B110.5C6—C7—H7B110.1
H1A—C1—H1B108.7H7A—C7—H7B108.4
N1—C2—C7118.50 (14)N1—C8—C9113.53 (14)
N1—C2—C3101.10 (13)N1—C8—H8A108.9
C7—C2—C3110.74 (14)C9—C8—H8A108.9
N1—C2—H2108.7N1—C8—H8B108.9
C7—C2—H2108.7C9—C8—H8B108.9
C3—C2—H2108.7H8A—C8—H8B107.7
N2—C3—C2102.64 (13)C8—C9—C10i116.12 (14)
N2—C3—C4119.13 (14)C8—C9—H9A108.3
C2—C3—C4109.13 (14)C10i—C9—H9A108.3
N2—C3—H3108.5C8—C9—H9B108.3
C2—C3—H3108.5C10i—C9—H9B108.3
C4—C3—H3108.5H9A—C9—H9B107.4
C3—C4—C5107.94 (15)N2—C10—C11109.44 (14)
C3—C4—H4A110.1N2—C10—C9i117.33 (14)
C5—C4—H4A110.1C11—C10—C9i110.36 (14)
C3—C4—H4B110.1N2—C10—H10106.3
C5—C4—H4B110.1C11—C10—H10106.3
H4A—C4—H4B108.4C9i—C10—H10106.3
C6—C5—C4112.80 (15)C10—C11—H11A109.5
C6—C5—H5A109.0C10—C11—H11B109.5
C4—C5—H5A109.0H11A—C11—H11B109.5
C6—C5—H5B109.0C10—C11—H11C109.5
C4—C5—H5B109.0H11A—C11—H11C109.5
H5A—C5—H5B107.8H11B—C11—H11C109.5
C3—N2—C1—N113.50 (15)C7—C2—C3—C465.46 (17)
C10—N2—C1—N1116.93 (14)N2—C3—C4—C5177.59 (13)
C8—N1—C1—N2161.60 (13)C2—C3—C4—C560.31 (17)
C2—N1—C1—N239.11 (14)C3—C4—C5—C655.12 (18)
C8—N1—C2—C770.26 (18)C4—C5—C6—C753.19 (19)
C1—N1—C2—C7169.60 (14)N1—C2—C7—C6176.36 (14)
C8—N1—C2—C3168.59 (13)C3—C2—C7—C660.26 (17)
C1—N1—C2—C348.46 (13)C5—C6—C7—C253.77 (18)
C1—N2—C3—C216.48 (15)C2—N1—C8—C9179.64 (13)
C10—N2—C3—C2145.11 (14)C1—N1—C8—C966.93 (17)
C1—N2—C3—C4137.10 (15)N1—C8—C9—C10i70.79 (19)
C10—N2—C3—C494.27 (18)C1—N2—C10—C11164.66 (13)
N1—C2—C3—N240.79 (14)C3—N2—C10—C1170.70 (18)
C7—C2—C3—N2167.25 (12)C1—N2—C10—C9i68.64 (18)
N1—C2—C3—C4168.07 (12)C3—N2—C10—C9i56.0 (2)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N1i0.992.323.163 (2)142
Symmetry code: (i) x+1, y+2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds