Download citation
Download citation
link to html
Coordination polymers are a thriving class of functional solid-state materials and there have been noticeable efforts and progress toward designing periodic functional structures with desired geometrical attributes and chemical properties for targeted applications. Self-assembly of metal ions and organic ligands is one of the most efficient and widely utilized methods for the construction of CPs under hydro­(solvo)thermal conditions. 2-(Pyridin-3-yl)-1H-imidazole-4,5-di­carboxyl­ate (HPIDC2−) has been proven to be an excellent multidentate ligand due to its multiple deprotonation and coordination modes. Crystals of poly[aqua­bis­[μ3-5-carb­oxy-2-(pyridin-3-yl)-1H-imidazole-4-carboxyl­ato-κ5N1,O5:N3,O4:N2]copper(II)dicopper(I)], [CuIICuI2(C10H5N3O4)2(H2O)]n, (I), were obtained from 2-(pyridin-3-yl)-1H-imidazole-4,5-di­carb­oxy­lic acid (H3PIDC) and copper(II) chloride under hydro­thermal conditions. The asymmetric unit consists of one independent CuII ion, two CuI ions, two HPIDC2− ligands and one coordinated water mol­ecule. The CuII centre displays a square-pyramidal geometry (CuN2O3), with two N,O-chelating HPIDC2− ligands occupying the basal plane in a trans geometry and one O atom from a coordinated water mol­ecule in the axial position. The CuI atoms adopt three-coordinated Y-shaped coordinations. In each [CuN2O] unit, deprotonated HPIDC2− acts as an N,O-chelating ligand, and a symmetry-equivalent HPIDC2− ligand acts as an N-atom donor via the pyridine group. The HPIDC2− ligands in the polymer serve as T-shaped 3-connectors and adopt a μ32N,O2N′,O′:κN′′-coordination mode, linking one CuII and two CuI cations. The Cu cations are arranged in one-dimensional –Cu1–Cu2–Cu3– chains along the [001] direction. Further crosslinking of these chains by HPIDC2− ligands along the b axis in a –Cu2–HPIDC2−–Cu3–HPIDC2−–Cu1– sequence results in a two-dimensional polymer in the (100) plane. The resulting (2,3)-connected net has a (123)2(12)3 topology. Powder X-ray diffraction confirmed the phase purity for (I), and susceptibilty measurements indicated a very weak ferromagnetic behaviour. A thermogravimetric analysis shows the loss of the apical aqua ligand before decomposition of the title compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961601161X/eg3205sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961601161X/eg3205Isup2.hkl
Contains datablock I

CCDC reference: 1494068

Computing details top

Data collection: mar165; cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2015) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[aquabis[µ3-5-carboxy-2-(pyridin-3-yl)-1H-imidazole-4-carboxylato-κ5N1,O5:N3,O4:N2]copper(II)dicopper(I)] top
Crystal data top
[Cu3(C10H5N3O4)2(H2O)]Dx = 2.151 Mg m3
Mr = 670.98Synchrotron radiation, λ = 0.7200 Å
Orthorhombic, PbcaCell parameters from 23113 reflections
a = 23.095 (5) Åθ = 2.5–30.9°
b = 6.8430 (14) ŵ = 3.24 mm1
c = 26.222 (5) ÅT = 100 K
V = 4144.1 (14) Å3Block, clear light green
Z = 80.18 × 0.05 × 0.03 mm
F(000) = 2664
Data collection top
Mar165
diffractometer
5684 reflections with I > 2σ(I)
Radiation source: synchrotron, 3W1A at BSRFRint = 0.038
oscillation mode scansθmax = 31.0°, θmin = 3.1°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 3233
Tmin = 0.603, Tmax = 0.912k = 09
21854 measured reflectionsl = 3636
6232 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0677P)2 + 2.5986P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
6232 reflectionsΔρmax = 0.64 e Å3
343 parametersΔρmin = 1.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.56251 (2)0.80133 (3)0.41648 (2)0.01247 (7)
Cu20.64111 (2)0.49080 (3)0.62693 (2)0.01100 (7)
Cu30.74170 (2)0.46961 (4)0.84484 (2)0.01359 (7)
O10.46779 (6)0.8393 (2)0.46012 (6)0.0155 (3)
O20.43454 (6)0.7608 (2)0.53744 (6)0.0160 (3)
H20.44610.73400.56620.024*
O30.47374 (6)0.6219 (2)0.61767 (6)0.0180 (3)
O40.56163 (6)0.5510 (3)0.64889 (6)0.0172 (3)
O50.72071 (6)0.4333 (2)0.60544 (5)0.0126 (2)
O60.81126 (6)0.3916 (2)0.63461 (5)0.0128 (2)
O70.86255 (6)0.4407 (2)0.72245 (6)0.0179 (3)
H70.84660.42140.69500.027*
O80.83360 (7)0.4831 (2)0.80257 (6)0.0188 (3)
O90.61460 (6)0.1856 (2)0.61020 (6)0.0182 (3)
H9A0.59610.17500.58370.027*
H9B0.63950.10020.60990.027*
N10.74627 (7)0.5684 (2)0.41534 (6)0.0122 (3)
N20.57865 (7)0.7101 (2)0.48324 (6)0.0102 (3)
N30.61344 (6)0.6034 (2)0.55839 (6)0.0095 (3)
N40.55793 (7)0.5979 (2)0.84917 (6)0.0124 (3)
N50.71801 (7)0.4776 (2)0.77589 (6)0.0104 (3)
N60.67598 (6)0.4616 (2)0.69873 (6)0.0092 (3)
C10.79262 (8)0.6061 (3)0.44525 (7)0.0133 (3)
H10.83030.59360.43110.016*
C20.78725 (8)0.6623 (3)0.49588 (7)0.0127 (3)
H2A0.82060.68890.51600.015*
C30.73213 (8)0.6788 (3)0.51650 (7)0.0110 (3)
H30.72730.72040.55080.013*
C40.68386 (7)0.6345 (2)0.48683 (7)0.0093 (3)
C50.69261 (8)0.5805 (3)0.43597 (7)0.0106 (3)
H50.66000.55160.41530.013*
C60.62557 (7)0.6476 (2)0.50908 (7)0.0093 (3)
C70.53381 (8)0.7048 (2)0.51753 (7)0.0105 (3)
C80.47555 (8)0.7725 (3)0.50334 (8)0.0122 (3)
C90.55565 (7)0.6387 (3)0.56344 (7)0.0097 (3)
C100.52815 (8)0.6019 (3)0.61306 (7)0.0128 (3)
C110.50917 (8)0.5241 (3)0.82838 (8)0.0139 (3)
H110.47370.53730.84640.017*
C120.50907 (8)0.4294 (3)0.78159 (7)0.0148 (3)
H120.47400.37940.76790.018*
C130.56063 (8)0.4082 (3)0.75485 (7)0.0124 (3)
H130.56160.33990.72330.015*
C140.61122 (8)0.4898 (3)0.77535 (7)0.0100 (3)
C150.60753 (8)0.5834 (3)0.82245 (7)0.0119 (3)
H150.64160.63960.83640.014*
C160.66755 (8)0.4772 (2)0.74958 (7)0.0096 (3)
C170.76096 (7)0.4602 (3)0.74015 (7)0.0099 (3)
C180.82173 (8)0.4626 (3)0.75732 (8)0.0140 (3)
C190.73481 (7)0.4490 (3)0.69280 (7)0.0092 (3)
C200.75777 (7)0.4236 (3)0.64109 (7)0.0104 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01277 (12)0.01642 (12)0.00823 (13)0.00052 (7)0.00025 (7)0.00401 (7)
Cu20.00931 (12)0.01746 (12)0.00623 (13)0.00409 (7)0.00026 (7)0.00039 (7)
Cu30.01492 (13)0.01833 (13)0.00752 (13)0.00102 (8)0.00294 (8)0.00036 (8)
O10.0152 (6)0.0171 (6)0.0143 (7)0.0002 (5)0.0047 (5)0.0035 (5)
O20.0123 (6)0.0177 (6)0.0181 (7)0.0014 (5)0.0011 (5)0.0026 (5)
O30.0106 (6)0.0273 (7)0.0163 (7)0.0042 (5)0.0021 (5)0.0032 (5)
O40.0123 (6)0.0291 (8)0.0101 (7)0.0076 (5)0.0018 (5)0.0032 (5)
O50.0110 (6)0.0177 (6)0.0090 (6)0.0039 (5)0.0020 (5)0.0002 (5)
O60.0094 (5)0.0160 (6)0.0130 (6)0.0001 (5)0.0028 (5)0.0002 (5)
O70.0106 (6)0.0245 (7)0.0185 (7)0.0011 (5)0.0000 (5)0.0013 (6)
O80.0151 (6)0.0250 (7)0.0162 (7)0.0004 (5)0.0035 (5)0.0009 (5)
O90.0138 (6)0.0196 (7)0.0213 (8)0.0024 (5)0.0058 (5)0.0014 (5)
N10.0140 (7)0.0125 (7)0.0101 (7)0.0010 (5)0.0017 (5)0.0000 (5)
N20.0123 (6)0.0101 (6)0.0083 (7)0.0007 (5)0.0011 (5)0.0015 (5)
N30.0106 (6)0.0113 (6)0.0066 (7)0.0013 (5)0.0003 (5)0.0005 (5)
N40.0127 (7)0.0153 (7)0.0092 (7)0.0001 (5)0.0010 (5)0.0021 (5)
N50.0101 (6)0.0137 (6)0.0074 (7)0.0001 (5)0.0005 (5)0.0010 (5)
N60.0094 (6)0.0122 (6)0.0060 (7)0.0015 (5)0.0008 (5)0.0009 (5)
C10.0125 (7)0.0128 (7)0.0144 (9)0.0004 (6)0.0020 (6)0.0012 (6)
C20.0134 (7)0.0124 (7)0.0124 (8)0.0013 (6)0.0019 (6)0.0017 (6)
C30.0149 (7)0.0094 (7)0.0086 (8)0.0013 (6)0.0016 (6)0.0009 (5)
C40.0115 (7)0.0091 (7)0.0074 (8)0.0002 (5)0.0002 (5)0.0008 (5)
C50.0128 (7)0.0118 (7)0.0072 (8)0.0000 (6)0.0007 (6)0.0003 (5)
C60.0112 (7)0.0091 (7)0.0077 (7)0.0007 (5)0.0010 (6)0.0011 (5)
C70.0115 (7)0.0096 (7)0.0105 (8)0.0002 (5)0.0017 (6)0.0011 (5)
C80.0121 (7)0.0106 (7)0.0139 (9)0.0009 (6)0.0033 (6)0.0003 (6)
C90.0098 (7)0.0101 (7)0.0091 (8)0.0012 (5)0.0005 (6)0.0001 (5)
C100.0108 (7)0.0162 (8)0.0113 (8)0.0032 (6)0.0003 (6)0.0002 (6)
C110.0119 (8)0.0189 (8)0.0110 (9)0.0001 (6)0.0021 (6)0.0005 (6)
C120.0114 (7)0.0212 (8)0.0119 (8)0.0024 (6)0.0005 (6)0.0023 (7)
C130.0122 (7)0.0147 (8)0.0101 (8)0.0009 (6)0.0009 (6)0.0007 (6)
C140.0094 (7)0.0132 (7)0.0075 (8)0.0004 (5)0.0009 (6)0.0004 (5)
C150.0116 (7)0.0149 (8)0.0094 (8)0.0001 (6)0.0002 (6)0.0012 (6)
C160.0095 (7)0.0111 (7)0.0082 (8)0.0003 (5)0.0008 (6)0.0000 (5)
C170.0092 (7)0.0115 (7)0.0092 (8)0.0003 (5)0.0005 (6)0.0007 (6)
C180.0105 (7)0.0133 (7)0.0181 (9)0.0002 (6)0.0020 (6)0.0015 (6)
C190.0088 (7)0.0094 (7)0.0095 (8)0.0007 (5)0.0004 (5)0.0007 (6)
C200.0109 (7)0.0081 (7)0.0122 (8)0.0003 (5)0.0010 (6)0.0005 (6)
Geometric parameters (Å, º) top
Cu1—N21.8957 (16)N4—C111.349 (2)
Cu1—N4i1.8981 (16)N4—Cu1iv1.8980 (16)
Cu1—O12.4823 (15)N5—C161.354 (2)
Cu2—O51.9627 (13)N5—C171.370 (2)
Cu2—O41.9674 (14)N6—C161.352 (2)
Cu2—N32.0572 (15)N6—C191.370 (2)
Cu2—N62.0576 (16)C1—C21.388 (3)
Cu2—O92.2200 (16)C1—H10.9500
Cu3—N1ii1.8874 (17)C2—C31.388 (3)
Cu3—N51.8897 (17)C2—H2A0.9500
Cu3—O82.3960 (17)C3—C41.393 (2)
O1—C81.235 (2)C3—H30.9500
O2—C81.305 (2)C4—C51.398 (2)
O2—H20.8200C4—C61.470 (2)
O3—C101.270 (2)C5—H50.9500
O4—C101.266 (2)C7—C91.381 (2)
O5—C201.269 (2)C7—C81.471 (2)
O6—C201.266 (2)C9—C101.470 (3)
O7—C181.322 (2)C11—C121.387 (3)
O7—H70.8201C11—H110.9500
O8—C181.226 (3)C12—C131.389 (3)
O9—H9A0.8201C12—H120.9500
O9—H9B0.8201C13—C141.402 (2)
N1—C11.352 (2)C13—H130.9500
N1—C51.355 (2)C14—C151.394 (2)
N1—Cu3iii1.8874 (16)C14—C161.469 (2)
N2—C61.348 (2)C15—H150.9500
N2—C71.372 (2)C17—C191.383 (3)
N3—C61.357 (2)C17—C181.474 (3)
N3—C91.363 (2)C19—C201.466 (2)
N4—C151.346 (2)
N2—Cu1—N4i171.68 (7)C3—C4—C5118.33 (16)
N2—Cu1—O177.41 (6)C3—C4—C6119.86 (16)
N4i—Cu1—O1109.97 (6)C5—C4—C6121.81 (16)
O5—Cu2—O4179.35 (7)N1—C5—C4121.96 (16)
O5—Cu2—N396.62 (6)N1—C5—H5119.0
O4—Cu2—N383.54 (6)C4—C5—H5119.0
O5—Cu2—N682.91 (6)N2—C6—N3112.56 (15)
O4—Cu2—N696.76 (6)N2—C6—C4123.79 (16)
N3—Cu2—N6163.22 (6)N3—C6—C4123.62 (15)
O5—Cu2—O990.75 (6)N2—C7—C9107.71 (15)
O4—Cu2—O989.86 (7)N2—C7—C8121.10 (16)
N3—Cu2—O995.39 (6)C9—C7—C8131.11 (17)
N6—Cu2—O9101.38 (6)O1—C8—O2123.10 (17)
N1ii—Cu3—N5169.64 (7)O1—C8—C7118.77 (17)
N1ii—Cu3—O8109.15 (6)O2—C8—C7118.13 (17)
N5—Cu3—O879.21 (6)N3—C9—C7109.32 (15)
C8—O1—Cu1104.86 (12)N3—C9—C10118.62 (15)
C8—O2—H2114.0C7—C9—C10132.06 (16)
C10—O4—Cu2114.23 (12)O4—C10—O3124.31 (18)
C20—O5—Cu2115.51 (11)O4—C10—C9116.12 (16)
C18—O7—H7107.9O3—C10—C9119.57 (17)
C18—O8—Cu3104.20 (13)N4—C11—C12122.24 (17)
Cu2—O9—H9A113.2N4—C11—H11118.9
Cu2—O9—H9B118.6C12—C11—H11118.9
H9A—O9—H9B107.3C11—C12—C13119.57 (17)
C1—N1—C5118.74 (16)C11—C12—H12120.2
C1—N1—Cu3iii118.56 (13)C13—C12—H12120.2
C5—N1—Cu3iii122.29 (13)C12—C13—C14118.63 (17)
C6—N2—C7105.61 (15)C12—C13—H13120.7
C6—N2—Cu1136.62 (13)C14—C13—H13120.7
C7—N2—Cu1117.74 (12)C15—C14—C13118.14 (17)
C6—N3—C9104.79 (14)C15—C14—C16119.26 (16)
C6—N3—Cu2148.40 (12)C13—C14—C16122.59 (17)
C9—N3—Cu2106.60 (11)N4—C15—C14123.16 (16)
C15—N4—C11118.17 (16)N4—C15—H15118.4
C15—N4—Cu1iv117.61 (13)C14—C15—H15118.4
C11—N4—Cu1iv123.93 (13)N6—C16—N5112.26 (16)
C16—N5—C17105.93 (15)N6—C16—C14125.87 (16)
C16—N5—Cu3137.44 (13)N5—C16—C14121.86 (17)
C17—N5—Cu3116.25 (12)N5—C17—C19107.63 (15)
C16—N6—C19105.05 (15)N5—C17—C18118.66 (17)
C16—N6—Cu2146.99 (13)C19—C17—C18133.69 (17)
C19—N6—Cu2106.88 (12)O8—C18—O7121.54 (18)
N1—C1—C2122.48 (17)O8—C18—C17120.65 (18)
N1—C1—H1118.8O7—C18—C17117.81 (18)
C2—C1—H1118.8N6—C19—C17109.13 (15)
C1—C2—C3118.52 (17)N6—C19—C20118.10 (15)
C1—C2—H2A120.7C17—C19—C20132.76 (16)
C3—C2—H2A120.7O6—C20—O5124.62 (17)
C2—C3—C4119.92 (17)O6—C20—C19119.83 (16)
C2—C3—H3120.0O5—C20—C19115.54 (15)
C4—C3—H3120.0
O1—Cu1—N2—C6175.86 (19)C7—C9—C10—O4176.18 (19)
O1—Cu1—N2—C72.30 (12)N3—C9—C10—O3175.50 (17)
N1ii—Cu3—N5—C1635.3 (5)C7—C9—C10—O33.9 (3)
O8—Cu3—N5—C16179.93 (19)C15—N4—C11—C122.1 (3)
N1ii—Cu3—N5—C17136.3 (4)Cu1iv—N4—C11—C12171.65 (15)
O8—Cu3—N5—C178.33 (12)N4—C11—C12—C130.2 (3)
C5—N1—C1—C21.9 (3)C11—C12—C13—C142.2 (3)
Cu3iii—N1—C1—C2170.90 (14)C12—C13—C14—C151.9 (3)
N1—C1—C2—C30.5 (3)C12—C13—C14—C16179.20 (17)
C1—C2—C3—C41.6 (3)C11—N4—C15—C142.4 (3)
C2—C3—C4—C52.2 (3)Cu1iv—N4—C15—C14171.72 (14)
C2—C3—C4—C6178.56 (15)C13—C14—C15—N40.4 (3)
C1—N1—C5—C41.3 (3)C16—C14—C15—N4178.55 (17)
Cu3iii—N1—C5—C4171.27 (13)C19—N6—C16—N50.8 (2)
C3—C4—C5—N10.8 (3)Cu2—N6—C16—N5164.20 (17)
C6—C4—C5—N1179.99 (16)C19—N6—C16—C14178.35 (16)
C7—N2—C6—N30.40 (19)Cu2—N6—C16—C1416.6 (3)
Cu1—N2—C6—N3177.91 (13)C17—N5—C16—N60.4 (2)
C7—N2—C6—C4178.60 (15)Cu3—N5—C16—N6172.55 (14)
Cu1—N2—C6—C40.3 (3)C17—N5—C16—C14178.82 (16)
C9—N3—C6—N20.52 (19)Cu3—N5—C16—C146.7 (3)
Cu2—N3—C6—N2173.74 (17)C15—C14—C16—N6153.51 (18)
C9—N3—C6—C4178.73 (16)C13—C14—C16—N627.6 (3)
Cu2—N3—C6—C48.1 (3)C15—C14—C16—N527.4 (2)
C3—C4—C6—N2143.35 (18)C13—C14—C16—N5151.52 (18)
C5—C4—C6—N235.8 (3)C16—N5—C17—C190.21 (19)
C3—C4—C6—N334.7 (2)Cu3—N5—C17—C19173.89 (12)
C5—C4—C6—N3146.15 (17)C16—N5—C17—C18178.10 (16)
C6—N2—C7—C90.11 (19)Cu3—N5—C17—C187.8 (2)
Cu1—N2—C7—C9178.58 (12)Cu3—O8—C18—O7172.39 (15)
C6—N2—C7—C8177.13 (16)Cu3—O8—C18—C177.1 (2)
Cu1—N2—C7—C81.6 (2)N5—C17—C18—O81.2 (3)
Cu1—O1—C8—O2177.61 (15)C19—C17—C18—O8176.5 (2)
Cu1—O1—C8—C73.18 (19)N5—C17—C18—O7178.32 (16)
N2—C7—C8—O11.8 (3)C19—C17—C18—O73.9 (3)
C9—C7—C8—O1174.44 (18)C16—N6—C19—C170.92 (19)
N2—C7—C8—O2178.96 (16)Cu2—N6—C19—C17170.62 (12)
C9—C7—C8—O24.8 (3)C16—N6—C19—C20177.95 (15)
C6—N3—C9—C70.43 (19)Cu2—N6—C19—C2010.51 (19)
Cu2—N3—C9—C7176.72 (12)N5—C17—C19—N60.7 (2)
C6—N3—C9—C10179.11 (16)C18—C17—C19—N6177.23 (19)
Cu2—N3—C9—C102.81 (19)N5—C17—C19—C20177.93 (18)
N2—C7—C9—N30.2 (2)C18—C17—C19—C204.1 (4)
C8—C7—C9—N3176.41 (17)Cu2—O5—C20—O6178.67 (14)
N2—C7—C9—C10179.25 (18)Cu2—O5—C20—C192.4 (2)
C8—C7—C9—C104.1 (3)N6—C19—C20—O6172.84 (16)
Cu2—O4—C10—O3170.26 (16)C17—C19—C20—O65.7 (3)
Cu2—O4—C10—C99.7 (2)N6—C19—C20—O56.1 (2)
N3—C9—C10—O44.4 (3)C17—C19—C20—O5175.32 (19)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+3/2, y+1, z+1/2; (iii) x+3/2, y+1, z1/2; (iv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9B···O6v0.821.942.718 (2)159
O9—H9A···O1vi0.821.872.655 (2)160
O7—H7···O60.821.792.612 (2)177
O2—H2···O30.821.682.480 (2)165
Symmetry codes: (v) x+3/2, y1/2, z; (vi) x+1, y+1, z+1.
Bond-valence values for the Cu cations in complex (I) top
Bond length (Å)Bond valence (based on CuII)Bond valence (based on CuI)
Bond type for Cu1
Cu1—N21.8957 (16)0.6410.416
Cu1—N4i1.8981 (16)0.6370.413
Cu1—O12.4823 (15)0.1060.084
Bond valance sum1.3840.913
Bond type for Cu2
Cu2—O51.9627 (13)0.4350.343
Cu2—O41.9674 (14)0.4300.339
Cu2—N32.0572 (15)0.4140.269
Cu2—N62.0576 (16)0.4140.268
Cu2—O92.2200 (16)0.2170.171
Bond valance sum1.9101.390
Bond type for Cu3
Cu3—N1ii1.8874 (17)0.6550.425
Cu3—N51.8897 (17)0.6510.423
Cu3—O82.3960 (17)0.1350.106
Bond valance sum1.4410.954
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds