Download citation
Download citation
link to html
The title compound, C25H22NO2P, was synthesized in high yield by a three-component Kabachnik–Fields reaction of di­phenyl­phosphine oxide, salicyl­aldehyde and aniline in dry toluene at room temperature. It precipitates as racemic crystals, in which strong hydrogen bonds between the hy­droxy group and the P=O group of a neighbouring mol­ecule form one-dimensional heterochiral chains along the crystallographic a axis, with an O...O separation of 2.568 (2) Å. The pseudo-tetra­hedral environment of the P atom is distorted, with O—P—C bond angles significantly larger than the C—P—C angles.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113022087/eg3131sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113022087/eg3131Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113022087/eg3131Isup3.cml
Supplementary material

CCDC reference: 964773

Introduction top

Chiral phospho­rus-containing compounds such as α-amino phospho­nic acids and their derivatives have attracted considerable attention due to their promising biological properties (Romanenko & Kukhar, 2006; Haynes et al., 1989, 1991; Shi et al., 2000; Kafarski & Lejczak, 2001). They have found application as anti­bacterials (Pratt, 1989), anti­viral agents (Huang & Chen, 2000) and enzyme inhibitors (Smith et al., 1989; Kafarski & Lejczak, 1991). The absolute configuration of phospho­nyl compounds strongly influences their biological properties (Patel et al., 1995). Various synthetic methods for α-amino­phospho­nic acids and α-amino­phospho­nates have therefore been reported (Moore et al., 2002; Demmer et al., 2011; Bálint et al., 2013; Wu et al., 2013). However, other α-amino phospho­rus derivatives such as α-amino­phosphine oxides have received much less attention for their biological properties due to the lack of direct synthetic access. We report herein a convenient one-pot three-component method through a Kabachnik–Fields reaction for the synthesis of 2-[anilino(di­phenyl­phospho­ryl)methyl]­phenol, (I), using di­phenyl­phosphine oxide, salicyl­aldehyde and aniline as starting materials (see scheme). The notable advantages of this methodology are operational simplicity, mild reaction conditions, higher yields, a reasonable reaction time and ease of isolation of the pure products. In order to further confirm the stereostructure and structure–activity relationship of α-amino­phosphine oxides potentially helpful for practical applications, we established the crystal structure of (I).

Experimental top

Synthesis and crystallization top

A solution of di­phenyl­phosphine oxide (1.01 g, 5 mmol, 1 equivalent) in dry toluene (10 ml) was added to a 50 ml dry flask equipped with a CaCl2 tube and which contained a solution of aniline (1.8 ml, 20 mmol, 4 equivalents) and salicyl­aldehyde (0.61 g, 5 mmol, 1 equivalent) in dry toluene (20 ml). After stirring for 4 h at room temperature, the reaction was complete; the precipitate was filtered off, washed with cold toluene (10 ml) and then dried under vacuum to afford the pure title product, (I) (yield 1.8 g, 90%), as a colourless solid. Single crystals of (I) suitable for X-ray diffraction were obtained by recrystallization from di­ethyl ether. Spectroscopic analysis: 1H NMR (400 MHz, CDCl3, 298 K, δ, p.p.m.): 9.82 (s, 1H, OH), 7.81–6.62 (m, 19H, Ar-H), 5.46 (d, 2JP—H = 8.5 Hz, 1H, C—H), 3.73 (br s, 1H, NH); 13C NMR (100 MHz, CDCl3, 298 K, δ, p.p.m.): 155.9, 145.8, 132.7, 129.3, 129.7, 129.2, 128.8, 128.6, 128.4, 128.3, 122.4, 120.4, 119.2, 114.4, 56.9 (d, 1JP—C = 39.9 Hz); 31P NMR (162 MHz, CDCl3, 298 K, δ, p.p.m.): 38.4; IR (KBr, ν, cm-1): 3430 (NH), 3228 (OH), 3303 (NH), 3138, 3062, 2969, 2916, 2884, 2827, 1591, 1553, 1485, 1438, 1171 (PO), 1122, 1096 (P—O), 1070, 1037, 855, 743, 726, 693, 561, 542, 525, 439. Analysis, found for C25H22NO2P: C 75.19, H 5.43, N 3.55%; calculated: C 75.18, H 5.55, N 3.51%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms bound to C or N atoms were positioned geometrically and refined using a riding model, with aryl C—H = 0.93 Å, methine C—H = 0.98 Å and N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(C,N). The hy­droxy H atom was located from a difference Fourier map and the O—H distance was constrained to 0.82 Å, with Uiso(H) = 1.5Ueq(O).

Results and discussion top

In compound (I), the formation of P—C bonds between the P atom of di­phenyl­phosphine oxide and the carbonyl C atom of salicyl­aldehyde results in the formation of a stereocentre at atom C7 (Fig. 1). The space group Pbca was identified with the help of the program PLATON (Spek, 2009). Not surprisingly, (I) forms racemic crystals with one molecule in the asymmetric unit. A displacement ellipsoid plot of the S enanti­omer is shown in Fig. 1. The O—P—C bond angles are significantly larger than the C—P—C angles (Table 2), indicating that the P atom adopts a distorted tetra­hedral configuration with sp3-hybridization.

An inter­molecular O1—H1···O2i hydrogen bond (details in Table 3, including symmetry code) between the O1—H1 hy­droxy group and the P-bonded atom O2 links neighbouring molecules into heterochiral chains along the crystallographic a axis. The hydrogen bonds are shown in a packing diagram (Fig. 2).

Related literature top

For related literature, see: Bálint et al. (2013); Demmer et al. (2011); Haynes et al. (1989, 1991); Huang & Chen (2000); Kafarski & Lejczak (1991, 2001); Moore et al. (2002); Patel et al. (1995); Pratt (1989); Romanenko & Kukhar (2006); Shi (2000); Smith (1989); Spek (2009); Wu et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A packing diagram for (I), showing the intermolecular hydrogen-bonding interactions (dashed lines) between atoms H1B and O2i of neighbouring S and R enantiomers. [Symmetry code: (i) x - 1/2, y, -z + 3/2.]
2-[Anilino(diphenylphosphoryl)methyl]phenol top
Crystal data top
C25H22NO2PDx = 1.226 Mg m3
Mr = 399.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3813 reflections
a = 12.5489 (4) Åθ = 2.3–29.7°
b = 16.4560 (5) ŵ = 0.15 mm1
c = 20.9643 (6) ÅT = 293 K
V = 4329.2 (2) Å3Prism, colourless
Z = 80.1 × 0.1 × 0.1 mm
F(000) = 1680
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
4429 independent reflections
Radiation source: fine-focus sealed tube2951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1415
Tmin = 0.774, Tmax = 1.000k = 2016
14390 measured reflectionsl = 2625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.6207P]
where P = (Fo2 + 2Fc2)/3
4429 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C25H22NO2PV = 4329.2 (2) Å3
Mr = 399.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.5489 (4) ŵ = 0.15 mm1
b = 16.4560 (5) ÅT = 293 K
c = 20.9643 (6) Å0.1 × 0.1 × 0.1 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
4429 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2951 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 1.000Rint = 0.039
14390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
4429 reflectionsΔρmin = 0.27 e Å3
263 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.36.21 (release 14-08-2012 CrysAlis171 .NET) (compiled Sep 14 2012,17:21:16) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.68854 (4)0.10727 (3)0.67088 (2)0.03680 (16)
O10.43871 (13)0.17634 (11)0.75461 (7)0.0704 (5)
H1B0.39890.17740.78560.106*
O20.79368 (10)0.14729 (9)0.66206 (6)0.0484 (4)
N10.59018 (14)0.21014 (10)0.59205 (7)0.0476 (4)
H10.64770.20170.57080.057*
C10.65930 (19)0.30369 (13)0.71138 (11)0.0559 (6)
H1A0.70840.30830.67840.067*
C20.6630 (2)0.35799 (15)0.76194 (13)0.0732 (7)
H20.71440.39870.76290.088*
C30.5904 (2)0.35127 (16)0.81021 (12)0.0693 (7)
H30.59310.38760.84420.083*
C40.5139 (2)0.29207 (15)0.80944 (10)0.0603 (6)
H40.46460.28850.84240.072*
C50.51038 (17)0.23744 (13)0.75920 (9)0.0466 (5)
C60.58356 (16)0.24296 (11)0.70957 (9)0.0392 (5)
C70.58122 (15)0.17948 (12)0.65686 (8)0.0384 (5)
H70.51360.15000.66020.046*
C80.41040 (18)0.26471 (13)0.59454 (10)0.0514 (6)
H80.39990.24440.63550.062*
C90.3292 (2)0.30678 (15)0.56417 (12)0.0668 (7)
H90.26460.31460.58500.080*
C100.3430 (3)0.33700 (16)0.50364 (14)0.0758 (8)
H100.28810.36510.48360.091*
C110.4382 (3)0.32536 (16)0.47317 (12)0.0740 (8)
H110.44780.34580.43220.089*
C120.5201 (2)0.28378 (13)0.50237 (10)0.0561 (6)
H120.58430.27630.48100.067*
C130.50706 (18)0.25279 (11)0.56411 (9)0.0433 (5)
C140.5774 (2)0.00203 (15)0.59125 (10)0.0621 (6)
H140.51490.02530.60190.075*
C150.5736 (3)0.06854 (17)0.55043 (12)0.0788 (8)
H150.50860.08610.53420.095*
C160.6647 (3)0.10775 (17)0.53429 (13)0.0860 (10)
H160.66190.15230.50710.103*
C170.7601 (3)0.08252 (17)0.55751 (14)0.0857 (9)
H170.82210.10960.54580.103*
C180.7655 (2)0.01646 (14)0.59873 (11)0.0640 (7)
H180.83100.00060.61450.077*
C190.67364 (17)0.02364 (12)0.61607 (9)0.0428 (5)
C200.7151 (2)0.10357 (17)0.80119 (10)0.0719 (8)
H200.76240.14630.79480.086*
C210.6948 (3)0.0757 (2)0.86265 (12)0.0975 (11)
H210.72800.10030.89730.117*
C220.6265 (3)0.0125 (2)0.87217 (12)0.0874 (9)
H220.61430.00670.91330.105*
C230.5764 (2)0.02250 (17)0.82197 (13)0.0783 (8)
H230.52900.06510.82870.094*
C240.5956 (2)0.00505 (14)0.76081 (10)0.0609 (6)
H240.56090.01930.72660.073*
C250.66542 (16)0.06800 (12)0.74989 (9)0.0426 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0374 (3)0.0433 (3)0.0297 (3)0.0013 (2)0.0015 (2)0.0009 (2)
O10.0646 (11)0.0858 (12)0.0609 (10)0.0245 (10)0.0271 (8)0.0124 (9)
O20.0378 (8)0.0683 (9)0.0391 (7)0.0077 (7)0.0011 (6)0.0007 (7)
N10.0492 (11)0.0603 (11)0.0333 (8)0.0079 (9)0.0064 (8)0.0097 (8)
C10.0629 (15)0.0474 (13)0.0574 (14)0.0102 (12)0.0067 (12)0.0012 (11)
C20.0790 (19)0.0521 (15)0.089 (2)0.0140 (14)0.0039 (16)0.0097 (14)
C30.084 (2)0.0586 (16)0.0657 (16)0.0075 (15)0.0063 (15)0.0203 (13)
C40.0673 (16)0.0659 (16)0.0479 (12)0.0117 (14)0.0073 (12)0.0074 (11)
C50.0465 (12)0.0501 (12)0.0430 (11)0.0012 (11)0.0035 (10)0.0010 (10)
C60.0421 (12)0.0384 (11)0.0370 (10)0.0008 (9)0.0000 (9)0.0045 (9)
C70.0390 (11)0.0429 (11)0.0332 (10)0.0034 (9)0.0006 (8)0.0051 (8)
C80.0570 (14)0.0535 (13)0.0436 (12)0.0074 (11)0.0110 (11)0.0036 (10)
C90.0662 (17)0.0640 (16)0.0702 (16)0.0141 (13)0.0229 (13)0.0157 (13)
C100.093 (2)0.0604 (17)0.0743 (18)0.0103 (15)0.0419 (17)0.0013 (14)
C110.108 (2)0.0609 (16)0.0527 (14)0.0108 (16)0.0350 (16)0.0141 (12)
C120.0759 (16)0.0524 (13)0.0400 (11)0.0113 (12)0.0120 (11)0.0062 (10)
C130.0567 (14)0.0371 (11)0.0362 (10)0.0034 (10)0.0102 (10)0.0019 (9)
C140.0703 (17)0.0622 (15)0.0539 (13)0.0032 (13)0.0079 (13)0.0116 (12)
C150.109 (2)0.0678 (17)0.0595 (16)0.0205 (18)0.0115 (16)0.0111 (14)
C160.148 (3)0.0524 (16)0.0574 (16)0.006 (2)0.0084 (19)0.0091 (13)
C170.116 (3)0.0599 (17)0.081 (2)0.0229 (18)0.0206 (19)0.0111 (15)
C180.0740 (18)0.0570 (15)0.0609 (14)0.0125 (14)0.0016 (13)0.0042 (12)
C190.0567 (14)0.0400 (11)0.0318 (10)0.0011 (10)0.0007 (10)0.0016 (9)
C200.0852 (19)0.0932 (19)0.0372 (12)0.0216 (16)0.0057 (12)0.0073 (13)
C210.129 (3)0.128 (3)0.0357 (14)0.021 (2)0.0097 (15)0.0118 (16)
C220.125 (3)0.092 (2)0.0450 (15)0.011 (2)0.0147 (17)0.0264 (15)
C230.100 (2)0.0636 (17)0.0714 (18)0.0068 (16)0.0200 (17)0.0246 (14)
C240.0745 (17)0.0593 (15)0.0491 (13)0.0074 (13)0.0037 (12)0.0112 (11)
C250.0475 (12)0.0456 (11)0.0347 (10)0.0048 (10)0.0008 (9)0.0043 (9)
Geometric parameters (Å, º) top
P1—O21.4862 (14)C11—H110.9300
P1—C71.820 (2)C12—C111.378 (3)
P1—C191.803 (2)C12—H120.9300
P1—C251.8015 (19)C13—C81.384 (3)
O1—H1B0.8200C13—C121.401 (3)
N1—H10.8600C14—H140.9300
N1—C131.387 (3)C14—C151.390 (3)
C1—H1A0.9300C15—H150.9300
C1—C21.387 (3)C16—C151.356 (4)
C2—H20.9300C16—H160.9300
C2—C31.366 (4)C16—C171.357 (4)
C3—H30.9300C17—H170.9300
C4—C31.368 (3)C18—C171.390 (3)
C4—H40.9300C18—H180.9300
C5—O11.352 (2)C19—C141.382 (3)
C5—C41.385 (3)C19—C181.377 (3)
C6—C11.380 (3)C20—H200.9300
C6—C51.391 (3)C20—C211.391 (3)
C7—N11.454 (2)C21—H210.9300
C7—C61.521 (3)C22—C211.363 (4)
C7—H70.9800C22—H220.9300
C8—H80.9300C23—C221.355 (4)
C8—C91.387 (3)C23—H230.9300
C9—H90.9300C24—C231.381 (3)
C9—C101.374 (4)C24—H240.9300
C10—H100.9300C25—C201.374 (3)
C11—C101.368 (4)C25—C241.376 (3)
O2—P1—C7110.33 (9)C10—C11—C12120.9 (2)
O2—P1—C19110.55 (9)C12—C11—H11119.6
O2—P1—C25114.61 (9)C11—C12—H12119.9
C19—P1—C7108.59 (9)C11—C12—C13120.3 (2)
C25—P1—C7105.28 (9)C13—C12—H12119.9
C25—P1—C19107.19 (9)N1—C13—C12119.1 (2)
C5—O1—H1B109.5C8—C13—N1122.41 (17)
C7—N1—H1119.6C8—C13—C12118.4 (2)
C13—N1—H1119.6C15—C14—H14119.9
C13—N1—C7120.81 (16)C19—C14—H14119.9
C2—C1—H1A119.6C19—C14—C15120.2 (3)
C6—C1—H1A119.6C14—C15—H15120.0
C6—C1—C2120.7 (2)C16—C15—C14120.0 (3)
C1—C2—H2120.3C16—C15—H15120.0
C3—C2—C1119.5 (2)C15—C16—H16119.7
C3—C2—H2120.3C15—C16—C17120.6 (3)
C2—C3—H3119.4C17—C16—H16119.7
C2—C3—C4121.1 (2)C16—C17—H17119.8
C4—C3—H3119.4C16—C17—C18120.3 (3)
C3—C4—H4120.2C18—C17—H17119.8
C3—C4—C5119.6 (2)C17—C18—H18120.1
C5—C4—H4120.2C19—C18—C17119.9 (3)
O1—C5—C4123.9 (2)C19—C18—H18120.1
O1—C5—C6115.74 (18)C14—C19—P1124.35 (17)
C4—C5—C6120.4 (2)C18—C19—P1116.58 (17)
C1—C6—C5118.79 (19)C18—C19—C14119.1 (2)
C1—C6—C7122.05 (18)C21—C20—H20119.9
C5—C6—C7119.09 (18)C25—C20—H20119.9
P1—C7—H7107.8C25—C20—C21120.1 (3)
N1—C7—P1108.69 (13)C20—C21—H21119.9
N1—C7—C6116.05 (16)C22—C21—C20120.2 (3)
N1—C7—H7107.8C22—C21—H21119.9
C6—C7—P1108.47 (13)C21—C22—H22119.9
C6—C7—H7107.8C23—C22—C21120.2 (2)
C9—C8—H8119.9C23—C22—H22119.9
C13—C8—H8119.9C22—C23—H23120.0
C13—C8—C9120.2 (2)C22—C23—C24120.0 (3)
C8—C9—H9119.6C24—C23—H23120.0
C10—C9—C8120.8 (3)C23—C24—H24119.6
C10—C9—H9119.6C25—C24—C23120.8 (2)
C9—C10—H10120.3C25—C24—H24119.6
C11—C10—C9119.4 (2)C20—C25—P1119.59 (17)
C11—C10—H10120.3C20—C25—C24118.65 (19)
C10—C11—H11119.6C24—C25—P1121.71 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O2i0.821.792.5677 (19)159
Symmetry code: (i) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC25H22NO2P
Mr399.41
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.5489 (4), 16.4560 (5), 20.9643 (6)
V3)4329.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.1 × 0.1 × 0.1
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.774, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14390, 4429, 2951
Rint0.039
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.122, 1.02
No. of reflections4429
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.27

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Selected bond angles (º) top
O2—P1—C7110.33 (9)C19—P1—C7108.59 (9)
O2—P1—C19110.55 (9)C25—P1—C7105.28 (9)
O2—P1—C25114.61 (9)C25—P1—C19107.19 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O2i0.821.792.5677 (19)158.6
Symmetry code: (i) x1/2, y, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds