Download citation
Download citation
link to html
Schiff base condensation of 2,6-di­formyl­pyridine and 1,3-di­amino­propan-2-ol in the presence of a BaII template ion yields a complex containing a [2+2] macrocycle, [Ba21,2-ClO4)2(H2L1)2], where H2L1 is 3,7,15,19,25,26-hexaaza­tri­cyclo­[19.3.1.19,13]hexa­cosa-1(25),2,7,9(26),10,12,14,19,21,23-deca­ene-5,17-diol. On transmetallation with CuII cations, the macrocycle undergoes three successive ring contractions, yielding crystals of (acetato-κO)[26,28-dioxa-3,7,15,19,25,27-hexaazahexacyclo[19.3.1.12,5.19,13.117,10.03,8]octacosa-1(25),9(27),10,12,14,21,23-heptaene-κ5N]copper(II) perchlorate, [Cu(CH3COO)(C20H22N6O2)]ClO4 or [Cu(CH3COO)(L2)]ClO4, in which the macrocycle ring size has been reduced from 20 members in H2L1 to 16 in L2.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011301768X/eg3130sup1.cif
Contains datablocks 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011301768X/eg31302sup2.hkl
Contains datablock 2

CCDC reference: 958930

Introduction top

The ease and versatility of Schiff base condensation has led to its extensive use over many years in coordination chemistry (Tamburini et al., 2004; Vigato et al., 2012). Recently, the reversibility of Schiff base condensation has led to its exploitation in studies of dynamic covalent chemistry (Hafezi & Lehn, 2012; Nitschke, 2007) and to renewed inter­est in the mechanisms of self-assembly in Schiff base reactions, with a view to improving control and manipulation of the product assembly (Akine & Nabeshima, 2009).

Experimental top

Synthesis and crystallization top

[Ba21,2-ClO4)2(H2L1)2](ClO4)2, (1), was prepared as described previously (James et al., 2011). In the transmetallation reaction, the barium complex (0.194 g, 0.271 mmol) was dissolved in aceto­nitrile (15 ml) and heated to reflux. Copper acetate monohydrate (0.109 g, 0.545 mmol) dissolved in aceto­nitrile (10 ml) was added to the refluxing solution with stirring. The resulting dark-blue solution was refluxed for 6 h, after which time a brown, as yet unidentified, precipitate (yield 0.160 g) was removed by filtration. Green crystals of [Cu(CH3COO)(L2)]ClO4, (2), grew in the dark-blue filtrate on standing overnight and were collected by filtration (yield 0.028 g, 0.047 mmol, 17%). Elemental analysis, calculated for (2): C 44.0, H 4.2, N 14.0%; found: C 43.5, H 4.1, N 13.9%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. C-bound H atoms were inserted at calculated positions riding on their carrier atoms, with C—H = 0.95, 0.98, 0.99 and 1.00 Å for aryl, methyl, methyl­ene and tertiary H atoms, respectively. N-bound H atoms were located from difference maps and their coordinates refined. The H atoms of the aryl, methyl­ene and tertiary C—H groups had Uiso(H) = 1.2Ueq(C), and those of the methyl or N—H groups had Uiso(H) = 1.5Ueq(C,N).

Results and discussion top

The [2+2] Schiff base macrocycle L1 (Scheme 1) is conveniently obtained as the BaII complex, [Ba21,2-ClO4)2(H2L1)2](ClO4)2, (1), by condensation of 2,6-di­formyl­pyridine and 1,3-di­amino­propan-2-ol in the presence of a BaII template ion (James et al., 2011). Complexes of this type are often considered as synthetic equivalents of the free [2+2] macrocycles, as the BaII cation can be readily transmetallated by transition metal ions with hard–soft acid–base (HSAB) properties better matched to those of the ligand. Since the transition metal ions are generally smaller than the BaII cation, dinuclear complexes often result (Brooker & McKee, 1989; Bailey et al., 1987). In other cases, where the radius of the metal ion and the size of the macrocyclic cavity are poorly compatable, the macrocycle may undergo ring-contraction (Adams et al. 1987; Bailey et al., 1983) or ring-expansion (Brooker et al. 1987) reactions. In this paper, we report a new derivative of L1 obtained via three successive ring-contraction reactions on a CuII template ion to give the title complex, (2), of the new macrocycle L2 [systematic name: 26,28-dioxa-3,7,15,19,25,27-hexa­aza­hexa­cyclo­[19.3.1.12,5.19,13.117,20.03,8]o­cta­cosa-1(25),9(27),10,12,14,21,23-hepta­ene­; see Schemes 1 and 2].

Transmetallation of BaII complex (1) using copper(II) acetate in aceto­nitrile yielded well formed green crystals of [Cu(L2)(CH3COO)]ClO4, (2); the formula unit is shown Scheme 2 and the structure of the cation is shown in Fig. 1. The CuII cation is six-coordinate, bonded to five N atoms of the macrocycle and to one O atom of the acetate anion. A long inter­action with the second O atom of the acetate ligand might suggest it has some bidentate character [Cu—O22 = 2.946 (2) Å]. The angular geometry at the metal ion is irregular (Table 2), and the bond lengths cover a range including three normal Cu—N bonds, two somewhat longer bonds and one very long bond to the imine N atom [Cu1—N6 = 2.532 (2) Å].

The macrocycle has undergone three distinct ring-contraction processes (shown in Scheme 1). First, both pendant alcohol groups have attacked the imine carbon centres at the same pyridine group, forming two perhydro­pyrimidine groups. One of the newly formed secondary amine groups then attacks one of the remaining imine C atoms, forming an oxazolidine ring and resulting in an overall ring contraction from a 20-membered ring to a 16-membered macrocycle. The ligand has a distinct fold [N1—Cu1—N4 = 103.57 (7)°], imposed primarily by the geometry of the fused perhydro­pyrimidine and oxazolidine rings at atom N2. The monodentate acetate anions link pairs of cations via hydrogen bonding [N5···O22i = 2.843 (3) Å; symmetry code: (i) -x, -y, -z + 2; Table 3 and Fig. 2]. The perchlorate anions are also linked to the cations via hydrogen bonds involving the uncoordinated N atom of the perhydro­pyrimidine ring [N3···O12 = 3.111 (3) Å]. There are no other particularly striking inter­molecular inter­actions. The hydrogen-bonded dimers lie with the Cu···Cu vector parallel to the c axis (Fig. 3).

The behaviour of (2) contrasts with the analogous system derived from 2,6-di­acetyl­pyridine, where a very similar barium complex of the [2+2] complex (H2L3) can be prepared (Adams et al., 1987). This ketone-derived system is less susceptible to ring-contraction reactions than the aldehyde-derived equivalent L1, due to the increased steric hindrance and decreased polarity of the CN bond, and transmetallation with CuII in methanol yields a dicopper(II) complex of the same [2+2] macrocycle, (3) (Fig. 4; Bailey et al., 1987). In the absence of ring-contraction reactions, transmetallation of (1) with copper(II) acetate would be expected to yield a structurally similar analogue of complex (3).

The driving force for macrocyclic ring-contraction reactions is usually ascribed to an improved fit between the radius of the metal ion and the macrocycle cavity (Drew et al., 1981). It is not immediately obvious from the structures of (2) and (3) (Figs. 1 and 4) that the ring contraction has resulted in an improved fit in this case, since (3) shows a reasonably conventional tetra­gonal-based geometry at the CuII cation, with unexceptional bond lengths. Instead, the situation should be viewed as a dynamic chemical system (Lehn, 2007), in which the solvent, counter-ions, ligation available to those CuII cations not coordinated to the macrocyclic ligand, covalent bond formation etc. all influence the structure of the macrocyclic product isolated.

Related literature top

For related literature, see: Adams et al. (1987); Akine & Nabeshima (2009); Bailey et al. (1983, 1987); Brooker & McKee (1989); Brooker et al. (1987); Drew et al. (1981); Hafezi & Lehn (2012); James et al. (2011); Lehn (2007); Nitschke (2007); Tamburini et al. (2004); Vigato et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2012); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of (2), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The long bond to the imine N atom is shown unfilled. H atoms and the (well behaved) perchlorate anion have been omitted for clarity.
[Figure 2] Fig. 2. A perspective view of (2), showing the hydrogen bonding as dashed lines. Primed atoms are generated by the symmetry operator (?, ?, ?) [Please complete].
[Figure 3] Fig. 3. A packing diagram for (2), viewed down the a axis. Hydrogen bonds are shown as dashed lines and H atoms have been omitted for clarity.
[Figure 4] Fig. 4. A perspective view of the [Cu2(HL3)(CH3CN)(H2O]3+ cation (Bailey et al., 1987). H atoms have been omitted for clarity. Bonds to the Cu atom are in the range 1.967 (11)–2.116 (11) Å, except for Cu1—N7 and Cu2—O3 [2.276 (7) and 2.346 (11) Å, respectively]. The cis bond angles in the Cu basal planes are in the range 77.4 (4)–112.1 (9)°.
(Acetato-κO)[26,28-dioxa-3,7,15,19,25,27-hexaazahexacyclo[19.3.1.12,5.19,13.117,20.03,8]octacosa-1(25),9(27),10,12,14,21,23-heptaene-κ5N]copper(II) perchlorate top
Crystal data top
[Cu(C2H3O2)(C20H22N6O2)]ClO4F(000) = 1236
Mr = 600.47Dx = 1.637 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.9252 (8) ÅCell parameters from 7293 reflections
b = 16.9606 (15) Åθ = 2.4–28.0°
c = 16.5461 (14) ŵ = 1.07 mm1
β = 103.350 (1)°T = 150 K
V = 2437.0 (4) Å3Block, green
Z = 40.37 × 0.33 × 0.27 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5050 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
ω rotation with narrow frames scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
h = 1111
Tmin = 0.639, Tmax = 0.746k = 2222
24778 measured reflectionsl = 2222
6075 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.058P)2 + 2.621P]
where P = (Fo2 + 2Fc2)/3
6075 reflections(Δ/σ)max = 0.001
350 parametersΔρmax = 1.53 e Å3
0 restraintsΔρmin = 1.10 e Å3
Crystal data top
[Cu(C2H3O2)(C20H22N6O2)]ClO4V = 2437.0 (4) Å3
Mr = 600.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9252 (8) ŵ = 1.07 mm1
b = 16.9606 (15) ÅT = 150 K
c = 16.5461 (14) Å0.37 × 0.33 × 0.27 mm
β = 103.350 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6075 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
5050 reflections with I > 2σ(I)
Tmin = 0.639, Tmax = 0.746Rint = 0.033
24778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.53 e Å3
6075 reflectionsΔρmin = 1.10 e Å3
350 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00676 (3)0.01697 (2)0.81242 (2)0.01841 (9)
N10.0850 (2)0.04068 (11)0.67681 (12)0.0200 (4)
C10.0001 (3)0.07678 (15)0.63030 (15)0.0256 (5)
C20.0615 (3)0.09853 (18)0.54831 (16)0.0356 (6)
H20.00160.12120.51540.043*
C30.2176 (3)0.08638 (17)0.51575 (17)0.0358 (6)
H30.26320.10180.46030.043*
C40.3060 (3)0.05184 (15)0.56404 (16)0.0283 (5)
H40.41350.04440.54310.034*
C50.2345 (3)0.02793 (13)0.64434 (15)0.0211 (5)
C60.3209 (3)0.01375 (14)0.70116 (15)0.0209 (4)
H60.36800.02770.73050.025*
N20.2054 (2)0.05758 (11)0.76516 (11)0.0177 (4)
N30.4449 (2)0.06170 (13)0.65356 (14)0.0262 (4)
H3A0.416 (4)0.086 (2)0.616 (2)0.039*
C70.5055 (3)0.11883 (16)0.70521 (17)0.0288 (5)
H7A0.56350.16040.66900.035*
H7B0.57790.09160.73300.035*
C80.3775 (3)0.15712 (15)0.77105 (16)0.0267 (5)
H80.41870.19740.80430.032*
C90.2858 (3)0.09337 (15)0.82580 (15)0.0235 (5)
H9A0.35370.05500.84490.028*
H9B0.21230.11600.87440.028*
O10.2626 (2)0.19016 (10)0.73131 (11)0.0256 (4)
C100.1551 (3)0.12867 (13)0.72681 (14)0.0196 (4)
H100.15470.11780.66750.023*
C110.0045 (3)0.15142 (13)0.77419 (14)0.0204 (4)
C120.0607 (3)0.22789 (14)0.77751 (16)0.0264 (5)
H120.00080.26910.74710.032*
C130.2073 (3)0.24281 (15)0.82651 (18)0.0306 (6)
H130.25080.29410.82810.037*
C140.2892 (3)0.18215 (14)0.87298 (16)0.0264 (5)
H140.38660.19190.90930.032*
C150.2265 (3)0.10703 (13)0.86550 (14)0.0205 (4)
N40.0887 (2)0.09210 (11)0.81478 (11)0.0180 (4)
C160.3014 (3)0.03686 (14)0.91445 (15)0.0207 (4)
H160.35510.05320.97190.025*
O20.40728 (19)0.00096 (10)0.87330 (11)0.0247 (4)
C170.3967 (3)0.08382 (14)0.87928 (15)0.0221 (5)
H170.49820.10560.90970.026*
C180.2766 (3)0.09766 (14)0.93034 (15)0.0233 (5)
H18A0.32610.10560.98980.028*
H18B0.21140.14390.90960.028*
N50.1857 (2)0.02381 (11)0.91742 (13)0.0191 (4)
H50.147 (4)0.0143 (18)0.959 (2)0.029*
C190.3540 (3)0.11819 (14)0.79237 (15)0.0240 (5)
H19A0.35660.17650.79530.029*
H19B0.42910.10080.76040.029*
N60.1993 (2)0.09167 (12)0.75073 (12)0.0217 (4)
C200.1598 (3)0.09575 (16)0.67273 (16)0.0293 (5)
H200.23220.11090.64160.035*
O210.0892 (2)0.11513 (10)0.83097 (10)0.0243 (4)
O220.1335 (3)0.06843 (13)0.94826 (14)0.0459 (6)
C210.1343 (3)0.12219 (14)0.89891 (16)0.0238 (5)
C220.1870 (4)0.20378 (17)0.9163 (2)0.0422 (7)
H22A0.25330.20020.95580.063*
H22B0.24470.22750.86440.063*
H22C0.09710.23650.93990.063*
Cl10.34875 (7)0.19938 (4)0.48008 (4)0.03087 (15)
O110.2261 (3)0.24779 (15)0.46888 (19)0.0631 (8)
O120.2962 (3)0.12426 (13)0.51353 (14)0.0457 (6)
O130.4472 (3)0.18456 (15)0.39730 (14)0.0481 (6)
O140.4383 (2)0.23729 (13)0.53157 (13)0.0381 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02038 (15)0.01567 (14)0.01789 (15)0.00440 (10)0.00181 (10)0.00089 (10)
N10.0195 (9)0.0201 (9)0.0195 (9)0.0015 (7)0.0026 (7)0.0022 (7)
C10.0251 (12)0.0284 (12)0.0218 (11)0.0020 (10)0.0028 (9)0.0068 (9)
C20.0370 (15)0.0447 (16)0.0226 (13)0.0115 (12)0.0019 (11)0.0114 (11)
C30.0401 (15)0.0382 (15)0.0227 (12)0.0077 (12)0.0060 (11)0.0113 (11)
C40.0283 (13)0.0233 (12)0.0275 (12)0.0018 (10)0.0056 (10)0.0041 (10)
C50.0218 (11)0.0176 (10)0.0220 (11)0.0007 (8)0.0012 (9)0.0010 (8)
C60.0161 (10)0.0224 (11)0.0229 (11)0.0018 (8)0.0019 (9)0.0003 (9)
N20.0179 (9)0.0180 (9)0.0177 (9)0.0012 (7)0.0047 (7)0.0004 (7)
N30.0216 (10)0.0299 (11)0.0250 (11)0.0058 (8)0.0012 (8)0.0009 (9)
C70.0201 (11)0.0345 (14)0.0315 (13)0.0082 (10)0.0052 (10)0.0006 (11)
C80.0266 (12)0.0269 (12)0.0279 (12)0.0050 (10)0.0091 (10)0.0019 (10)
C90.0245 (12)0.0275 (12)0.0200 (11)0.0016 (9)0.0081 (9)0.0025 (9)
O10.0265 (9)0.0193 (8)0.0312 (9)0.0061 (7)0.0070 (7)0.0023 (7)
C100.0227 (11)0.0158 (10)0.0201 (10)0.0015 (8)0.0047 (9)0.0022 (8)
C110.0247 (11)0.0173 (10)0.0208 (11)0.0009 (8)0.0081 (9)0.0005 (8)
C120.0323 (13)0.0167 (10)0.0317 (13)0.0008 (9)0.0103 (10)0.0025 (9)
C130.0340 (14)0.0179 (11)0.0416 (15)0.0085 (10)0.0118 (12)0.0022 (10)
C140.0251 (12)0.0227 (11)0.0323 (13)0.0067 (9)0.0082 (10)0.0055 (10)
C150.0204 (11)0.0206 (11)0.0218 (11)0.0035 (8)0.0075 (9)0.0041 (9)
N40.0207 (9)0.0151 (8)0.0185 (9)0.0026 (7)0.0050 (7)0.0019 (7)
C160.0181 (10)0.0213 (10)0.0218 (11)0.0028 (8)0.0029 (9)0.0050 (9)
O20.0195 (8)0.0218 (8)0.0345 (10)0.0027 (6)0.0095 (7)0.0042 (7)
C170.0179 (10)0.0204 (10)0.0257 (11)0.0011 (8)0.0005 (9)0.0019 (9)
C180.0231 (11)0.0216 (11)0.0238 (11)0.0036 (9)0.0030 (9)0.0033 (9)
N50.0197 (9)0.0191 (9)0.0189 (9)0.0001 (7)0.0055 (7)0.0004 (7)
C190.0180 (11)0.0250 (11)0.0280 (12)0.0003 (9)0.0037 (9)0.0066 (9)
N60.0179 (9)0.0243 (10)0.0225 (10)0.0008 (7)0.0041 (7)0.0036 (8)
C200.0248 (12)0.0381 (14)0.0249 (12)0.0045 (10)0.0056 (10)0.0108 (11)
O210.0313 (9)0.0191 (8)0.0240 (8)0.0075 (7)0.0094 (7)0.0030 (6)
O220.0664 (15)0.0365 (11)0.0461 (13)0.0160 (10)0.0363 (11)0.0180 (9)
C210.0238 (11)0.0216 (11)0.0280 (12)0.0023 (9)0.0104 (10)0.0016 (9)
C220.059 (2)0.0289 (14)0.0479 (18)0.0102 (13)0.0310 (15)0.0012 (13)
Cl10.0327 (3)0.0236 (3)0.0407 (4)0.0064 (2)0.0174 (3)0.0033 (2)
O110.0666 (17)0.0455 (14)0.091 (2)0.0156 (12)0.0464 (16)0.0182 (14)
O120.0669 (15)0.0354 (11)0.0379 (11)0.0225 (10)0.0188 (11)0.0131 (9)
O130.0501 (13)0.0599 (15)0.0333 (11)0.0184 (11)0.0075 (10)0.0022 (10)
O140.0365 (11)0.0436 (12)0.0369 (11)0.0104 (9)0.0139 (9)0.0040 (9)
Geometric parameters (Å, º) top
Cu1—O211.9290 (16)C11—N41.339 (3)
Cu1—N41.9861 (18)C11—C121.387 (3)
Cu1—N52.074 (2)C12—C131.394 (4)
Cu1—N12.2402 (19)C12—H120.9500
Cu1—N22.2611 (19)C13—C141.387 (4)
Cu1—N62.532 (2)C13—H130.9500
Cu1—O222.946 (2)C14—C151.386 (3)
N1—C51.336 (3)C14—H140.9500
N1—C11.347 (3)C15—N41.343 (3)
C1—C21.391 (3)C15—C161.507 (3)
C1—C201.471 (3)C16—O21.423 (3)
C2—C31.388 (4)C16—N51.467 (3)
C2—H20.9500C16—H161.0000
C3—C41.377 (4)O2—C171.446 (3)
C3—H30.9500C17—C191.517 (3)
C4—C51.395 (3)C17—C181.528 (3)
C4—H40.9500C17—H171.0000
C5—C61.521 (3)C18—N51.481 (3)
C6—N31.451 (3)C18—H18A0.9900
C6—N21.494 (3)C18—H18B0.9900
C6—H61.0000N5—H50.85 (3)
N2—C101.480 (3)C19—N61.464 (3)
N2—C91.491 (3)C19—H19A0.9900
N3—C71.475 (3)C19—H19B0.9900
N3—H3A0.84 (3)N6—C201.259 (3)
C7—C81.530 (4)C20—H200.9500
C7—H7A0.9900O21—C211.284 (3)
C7—H7B0.9900O22—C211.223 (3)
C8—O11.452 (3)C21—C221.510 (3)
C8—C91.522 (3)C22—H22A0.9800
C8—H81.0000C22—H22B0.9800
C9—H9A0.9900C22—H22C0.9800
C9—H9B0.9900Cl1—O111.415 (2)
O1—C101.431 (3)Cl1—O121.425 (2)
C10—C111.509 (3)Cl1—O141.446 (2)
C10—H101.0000Cl1—O131.468 (2)
O21—Cu1—N4167.34 (7)N2—C10—C11109.22 (18)
O21—Cu1—N595.90 (7)O1—C10—H10109.9
N4—Cu1—N580.03 (8)N2—C10—H10109.9
O21—Cu1—N186.06 (7)C11—C10—H10109.9
N4—Cu1—N1103.57 (7)N4—C11—C12121.8 (2)
N5—Cu1—N1149.52 (8)N4—C11—C10114.90 (19)
O21—Cu1—N299.81 (7)C12—C11—C10123.3 (2)
N4—Cu1—N276.17 (7)C11—C12—C13118.4 (2)
N5—Cu1—N2137.94 (7)C11—C12—H12120.8
N1—Cu1—N270.77 (7)C13—C12—H12120.8
O21—Cu1—N689.99 (7)C14—C13—C12119.4 (2)
N4—Cu1—N6101.13 (7)C14—C13—H13120.3
N5—Cu1—N681.18 (7)C12—C13—H13120.3
N1—Cu1—N668.39 (7)C15—C14—C13118.8 (2)
N2—Cu1—N6137.11 (7)C15—C14—H14120.6
O21—Cu1—O2248.74 (6)C13—C14—H14120.6
N4—Cu1—O22118.70 (7)N4—C15—C14121.5 (2)
N5—Cu1—O2274.04 (7)N4—C15—C16114.56 (19)
N1—Cu1—O22126.12 (7)C14—C15—C16123.9 (2)
N2—Cu1—O2287.72 (7)C11—N4—C15119.9 (2)
N6—Cu1—O22127.36 (7)C11—N4—Cu1121.91 (15)
C5—N1—C1119.1 (2)C15—N4—Cu1117.88 (15)
C5—N1—Cu1118.31 (15)O2—C16—N5105.45 (18)
C1—N1—Cu1121.98 (16)O2—C16—C15110.01 (19)
N1—C1—C2122.0 (2)N5—C16—C15110.10 (18)
N1—C1—C20116.0 (2)O2—C16—H16110.4
C2—C1—C20121.9 (2)N5—C16—H16110.4
C3—C2—C1118.3 (2)C15—C16—H16110.4
C3—C2—H2120.8C16—O2—C17109.36 (17)
C1—C2—H2120.8O2—C17—C19108.9 (2)
C4—C3—C2119.8 (2)O2—C17—C18104.83 (18)
C4—C3—H3120.1C19—C17—C18114.24 (19)
C2—C3—H3120.1O2—C17—H17109.6
C3—C4—C5118.6 (2)C19—C17—H17109.6
C3—C4—H4120.7C18—C17—H17109.6
C5—C4—H4120.7N5—C18—C17102.77 (18)
N1—C5—C4122.1 (2)N5—C18—H18A111.2
N1—C5—C6115.4 (2)C17—C18—H18A111.2
C4—C5—C6122.6 (2)N5—C18—H18B111.2
N3—C6—N2114.89 (19)C17—C18—H18B111.2
N3—C6—C5110.92 (19)H18A—C18—H18B109.1
N2—C6—C5107.72 (18)C16—N5—C18103.40 (18)
N3—C6—H6107.7C16—N5—Cu1110.17 (14)
N2—C6—H6107.7C18—N5—Cu1117.29 (15)
C5—C6—H6107.7C16—N5—H5108 (2)
C10—N2—C9101.40 (17)C18—N5—H5111 (2)
C10—N2—C6109.23 (17)Cu1—N5—H5106 (2)
C9—N2—C6108.63 (17)N6—C19—C17109.34 (19)
C10—N2—Cu1106.92 (13)N6—C19—H19A109.8
C9—N2—Cu1119.32 (14)C17—C19—H19A109.8
C6—N2—Cu1110.63 (13)N6—C19—H19B109.8
C6—N3—C7112.9 (2)C17—C19—H19B109.8
C6—N3—H3A110 (2)H19A—C19—H19B108.3
C7—N3—H3A109 (2)C20—N6—C19118.4 (2)
N3—C7—C8112.21 (19)C20—N6—Cu1112.66 (16)
N3—C7—H7A109.2C19—N6—Cu1128.17 (14)
C8—C7—H7A109.2N6—C20—C1119.2 (2)
N3—C7—H7B109.2N6—C20—H20120.4
C8—C7—H7B109.2C1—C20—H20120.4
H7A—C7—H7B107.9C21—O21—Cu1117.40 (15)
O1—C8—C9101.82 (19)O22—C21—O21124.1 (2)
O1—C8—C7109.3 (2)O22—C21—C22120.7 (2)
C9—C8—C7109.4 (2)O21—C21—C22115.2 (2)
O1—C8—H8111.9C21—C22—H22A109.5
C9—C8—H8111.9C21—C22—H22B109.5
C7—C8—H8111.9H22A—C22—H22B109.5
N2—C9—C899.49 (18)C21—C22—H22C109.5
N2—C9—H9A111.9H22A—C22—H22C109.5
C8—C9—H9A111.9H22B—C22—H22C109.5
N2—C9—H9B111.9O11—Cl1—O12111.98 (17)
C8—C9—H9B111.9O11—Cl1—O14111.64 (14)
H9A—C9—H9B109.6O12—Cl1—O14110.25 (13)
C10—O1—C8107.12 (17)O11—Cl1—O13106.96 (17)
O1—C10—N2107.34 (17)O12—Cl1—O13106.37 (14)
O1—C10—C11110.53 (18)O14—Cl1—O13109.42 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O120.84 (3)2.29 (4)3.111 (3)165 (3)
N5—H5···O220.85 (3)2.63 (3)3.102 (3)116 (2)
N5—H5···O22i0.85 (3)2.11 (3)2.843 (3)145 (3)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C2H3O2)(C20H22N6O2)]ClO4
Mr600.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.9252 (8), 16.9606 (15), 16.5461 (14)
β (°) 103.350 (1)
V3)2437.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.37 × 0.33 × 0.27
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2009)
Tmin, Tmax0.639, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
24778, 6075, 5050
Rint0.033
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.06
No. of reflections6075
No. of parameters350
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.53, 1.10

Computer programs: APEX2 (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2012), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O211.9290 (16)Cu1—N22.2611 (19)
Cu1—N41.9861 (18)Cu1—N62.532 (2)
Cu1—N52.074 (2)Cu1—O222.946 (2)
Cu1—N12.2402 (19)
O21—Cu1—N4167.34 (7)N5—Cu1—N2137.94 (7)
O21—Cu1—N595.90 (7)N1—Cu1—N270.77 (7)
N4—Cu1—N580.03 (8)O21—Cu1—N689.99 (7)
O21—Cu1—N186.06 (7)N4—Cu1—N6101.13 (7)
N4—Cu1—N1103.57 (7)N5—Cu1—N681.18 (7)
N5—Cu1—N1149.52 (8)N1—Cu1—N668.39 (7)
O21—Cu1—N299.81 (7)N2—Cu1—N6137.11 (7)
N4—Cu1—N276.17 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O120.84 (3)2.29 (4)3.111 (3)165 (3)
N5—H5···O220.85 (3)2.63 (3)3.102 (3)116 (2)
N5—H5···O22i0.85 (3)2.11 (3)2.843 (3)145 (3)
Symmetry code: (i) x, y, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds