Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A novel Cu–Na heteronuclear three-dimensional coordination polymer, poly[di­aqua­di-μ5-iminodi­acetato-di-μ4-iminodi­acet­ato-tricopper(II)disodium(I)], [Cu3Na2(C4H5NO4)4(H2O)2]n, has been prepared by hydro­thermal synthesis. The asymmetric unit contains one and a half copper(II) cations, a sodium cation, two imino­diacetate (ida) ligands and a coordinated water ligand. One of the two independent CuII centres is in a general position and is five-coordinated in a distorted square-pyramidal geometry. A [Cu(ida)] unit is formed via a bis-chelating ida ligand and the coordination sphere of the CuII atom is completed by two O atoms of two different neigh­bouring [Cu(ida)2] units. These [Cu(ida)2] units are associated with the second CuII cation, which is located on a crystallographic inversion centre and is coordinated in a distorted square-planar geometry by two chelating ida ligands. The carboxyl­ate groups of the ida ligands act as bridges and connect the [Cu(ida)] and [Cu(ida)2] building blocks in a 2:1 ratio, forming two-dimensional arrays. These layers are inter­connected into a three-dimensional structure by the sodium ions. Each NaI cation is coordinated by six O atoms from five ida ligands and a water mol­ecule. When [Cu(ida)], the NaI cations and [Cu(ida)2] are viewed as 5-, 5- and 8-connected nodes, respectively, the three-dimensional net­work exhibits a (32.43.52.63)2(32.43.52.63)2(34.616.78) topology.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113022075/eg3129sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113022075/eg3129Isup2.hkl
Contains datablock I

CCDC reference: 964763

Introduction top

In the last two decades, the design and synthesis of coordination polymers with novel structures have attracted considerable inter­est because of their unusual structures and special functional properties with respect to magnetism, optics and gas storage (Chae et al., 2003; Cui et al., 2002; Pan et al., 2003; Sun et al., 2001; Yan et al., 2004; Zhang et al., 2005). In particular, heteronuclear complexes have proven promising for applications as magnetic and optical materials, due to their structural diversity and physical and chemical properties (Li et al., 2007; Qiu et al., 2007). Suitable organic ligands favouring structure-specific self-assembly are the basis for the construction of heteronuclear complexes. The carboxyl­ate group can bridge metal ions to give rise to a wide variety of polynuclear complexes, ranging from discrete entities to three-dimensional systems (Cheng et al., 2007; Dey et al., 2003; Eddaoudi et al., 2002; Fan et al., 2010; Foreman et al., 2000; Ge et al., 2006; Kato & Muto, 1988; Wang et al., 2005). In these complexes, the carboxyl­ate group may adopt many types of bridging conformation, the most important being triatomic synsyn, antianti and synanti, and monoatomic bridging. Amino­polycarb­oxy­lic acids contain both amino and carb­oxy­lic acid groups and therefore many potential coordination sites. They may easily chelate to and bridge various metal ions and lead to structurally diverse complexes (Li et al., 2010; Manna et al., 2007; Shen et al., 2007; Stavila et al., 2006).

Iminodi­acetic acid (H2ida) has been a useful ligand and polymeric derivatives of many transition metals have already been documented (Bresciani-Pahor et al., 1984; Cui et al., 2008; Ding et al., 2009; Li et al., 2010; Manna et al., 2007; Ren et al., 2003; Song et al., 2011; Zhai et al., 2006; Zhou et al., 2011). We report here the crystal structure of poly[di­aqua­tetra-µ4-iminodi­acetato-copper(II)sodium(I)], (I), a three-dimensional Cu–Na coordination polymer obtained by hydro­thermal synthesis from iminodi­acetic acid, copper(II) chloride and sodium hydroxide.

Experimental top

Synthesis and crystallization top

CuCl2.2H2O (0.0171 g, 0.1 mmol), iminodi­acetic acid (0.0266 g, 0.2 mmol), NaOH (0.0168 g, 0.4 mmol), H2O (0.5 ml) and ethanol (3 ml) were placed in a thick Pyrex tube and heated at 393.15 K for 5 d. After cooling to ambient temperature at a rate of 5 K h-1, blue block-shaped crystals were collected, washed with anhydrous ethanol and dried at room temperature. The yield is 58% based on CuCl2.2H2O. Analysis found: C 24.39, H 3.07, N 7.01%; calculated for C16H24Cu3N4Na2O18: C 24.09, H 3.01, N 7.03%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. C-bound H atoms were included in calculated positions and refined as riding, with C—H = 0.98 Å and with Uiso(H) = 1.2Ueq(C). The H atoms of the aqua ligands and the imino group were located from a difference Fourier map and refined isotropically, with O—H and N—H distances restrained to 0.84 (2) and 0.91 (2) Å, respectively.

Results and discussion top

The title heteronuclear compound, (I), displays a three-dimensional coordination network. The asymmetric unit consists of one and a half copper(II) cations, a sodium cation, two iminodi­acetate ligands and a coordinated water molecule. A displacement ellipsoid plot of a section of (I) is shown in Fig. 1, and selected bond lengths and angles are given in Table 2. Compound (I) features two independent CuII centres. The Cu1 cation is in a general position and adopts a distorted square-pyramidal geometry, being five-coordinated by three donor atoms (O1, N1 and O3) of the same ida ligand. Two more ida ligands are attached via single O atoms, one by O5 and another by O8i [symmetry code: (i) x, -y + 3/2, z + 1/2]. The coordination environment around Cu1 corresponds to a slightly distorted square pyramid, with a distortion parameter τ of 0.0812. This parameter is defined as τ = (β - α)/60°, with β and α being the two largest angles subtended at the central atom (Addison et al., 1984); for a perfectly square pyramid, τ = zero. The Cu2 cation is located on a crystallographic inversion centre. Two O- [O7 and O7ii; symmetry code: (ii) -x + 1, -y + 2, -z + 1] and two N-atom donors (N2 and N2ii) from two chelating ida ligands are arranged in a slightly distorted square-planar geometry, with angles of 84.85 (7) [For which atom sequence?] and 95.16 (7)° [For which atom sequence?]. In line with the above discussion, cation Cu1 and the tris-chelating ida ligand can be described as a [Cu(ida)] unit, while cation Cu2 and its two ida ligands can be seen as a [Cu(ida)2] unit.

The sodium cation is coordinated by six O atoms: O4, O6, O8i, O4iii and O2iv are associated with five ida ligands, and O9 with a coordinated water molecule [symmetry codes: (iii) -x, -y + 1, -z + 1; (iv) x - 1, y, z]. Fig. 2 shows the two different coordination modes which the ligands adopt in (I): in the [Cu(ida)] unit, one carboxyl­ate group links CuII and NaI cations in an anti–anti conformation, whereas the second carboxyl­ate group adopts anti–syn and synsyn conformations with respect to the Cu/Na and Na/Na cations (Fig. 2a). In the [Cu(ida)2] unit, one carboxyl­ate group bridges Cu and Na centres in a synsyn conformation, whereas the second carboxyl­ate group is in anti–anti and anti–syn conformations with respect to Cu/Na and Cu/Cu cations (Fig. 2b). Each [Cu(ida)2] fragment can be seen as a 4-connected node and each [Cu(ida)] fragment as a 2-connected node, with each [Cu(ida)2] fragment binding to four [Cu(ida)] fragments.

The carboxyl­ate groups act as bridges and link the [Cu(ida)] and [Cu(ida)2] units in a 2:1 ratio, thus forming a two-dimensional array (Fig. 3) with Cu1···Cu2 separations of 4.0613 (6) and 5.3519 (11) Å. The two-dimensional layers are crosslinked to form a three-dimensional structure by sodium ions.

To understand clearly the different connectivities of [Cu(ida)], [Cu(ida)2] and the NaI cations, the rather complicated three-dimensional structure of (I) was simplified with the help of the program TOPOS4.0 (Blatov, 2012). Each [Cu(ida)] unit connects two [Cu(ida)2] units and three NaI cations through its carboxyl­ate O atoms, thus representing a 5-connected node. Each [Cu(ida)2] unit binds to four [Cu(ida)] and four NaI cations and is 8-connected. Each NaI cation is linked to three [Cu(ida)] and two [Cu(ida)2] units and can thus be treated as a 5-connected node. Overall, based on coordinative bonds, (I) can be simplified as a 5,5,8-trinodal network with the point symbol (32.43.52.63)2(32.43.52.63)2(34.616.78) (Fig. 4).

Two kinds of inter­layer hydrogen bonds exist, namely O—H···O contacts between the coordinated water molecule and carboxyl­ate groups, and N—H···O hydrogen bonds between amino groups and carboxyl­ate groups. Hydrogen-bonding distances and angles are listed in Table 3.

The optical diffuse refle­cta­nce spectrum of (I) is shown in Fig. 5. Absorption data were calculated from the refle­cta­nce (Wendlandt & Heeht, 1966). Complex (I) exhibits two bands with edges at about 1.09 and 3.34 eV. Two main contributions have to be considered in the spectrum: one is the absorption due to the Cu–Na inter­action, which appears above 3.34 eV, and the second is the coordination field absorption for square-planar CuII (d8), which can be assigned to ca 1.09 eV. The optical band gap of (I) is estimated as 3.34 eV, indicating potential semiconductor properties.

The differential scanning calorimetry–thermogravimetric analysis (DSC–TGA) curve of (I) is illustrated in Fig. 6. The compound is thermally stable up to 425.25 K. The TGA curve displays an initial weight loss of 4.33% between 425.25 and 499.35 K, which corresponds to the loss of the coordinated water molecule (calculated 4.52%). When the temperature is higher than 515.95 K, (I) rapidly decomposes, and the residue at 1073.15 K consists of CuO, Na2O and elemental carbon.

Related literature top

For related literature, see: Addison et al. (1984); Blatov (2012); Bresciani-Pahor, Nardin, Bonomo & Rizzarelli (1984); Chae et al. (2003); Cheng et al. (2007); Cui et al. (2002, 2008); Dey et al. (2003); Ding et al. (2009); Eddaoudi et al. (2002); Fan et al. (2010); Foreman et al. (2000); Ge et al. (2006); Kato & Muto (1988); Li et al. (2007, 2010); Manna et al. (2007); Pan et al. (2003); Qiu et al. (2007); Ren et al. (2003); Shen et al. (2007); Song et al. (2011); Stavila et al. (2006); Sun, D-, Cao, Liang, Shi, Su & Hong (2001); Wang et al. (2005); Wendlandt & Heeht (1966); Yan et al. (2004); Zhai et al. (2006); Zhang et al. (2005); Zhou et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The local coordination of the CuII and NaI cations in (I), with the atom-numbering scheme. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, -y + 3/2, z + 1/2; (ii) -x + 1, -y + 2, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) x - 1, y, z; (v) x + 1, y, z; (vi) x, -y + 3/2, z - 1/2.]

Fig. 2. The two coordination modes of the carboxylate groups in the ida ligands of (I).

Fig. 3. A view of a two-dimensional layer formed by the [Cu(ida)] and [Cu(ida)2] units of (I).

Fig. 4. The three-dimensional equivalent topological network of (I). The dark (blue in the electronic version of the paper), dark-grey (pink) and light-grey nodes represent NaI centres and [Cu(ida)] and [Cu(ida)2] units, respectively.

Fig. 5. The optical diffuse reflectance spectrum for (I).

Fig. 6. The TGA (open squares?) and DSC (solid line?) curves for (I).
Poly[diaquatetra-µ4-iminodiacetato-copper(II)sodium(I)] top
Crystal data top
[Cu3Na2(C4H5NO4)4(H2O)2]F(000) = 802
Mr = 796.99Dx = 2.138 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 5930 reflections
a = 8.9432 (18) Åθ = 3.0–27.5°
b = 9.8441 (18) ŵ = 2.69 mm1
c = 14.470 (3) ÅT = 223 K
β = 103.632 (4)°Block, blue
V = 1238.1 (4) Å30.40 × 0.30 × 0.20 mm
Z = 2
Data collection top
Rigaku Saturn
diffractometer
2830 independent reflections
Radiation source: fine-focus sealed tube2473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 14.63 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 811
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1012
Tmin = 0.413, Tmax = 0.616l = 1815
6895 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.279P]
where P = (Fo2 + 2Fc2)/3
2830 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.40 e Å3
4 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cu3Na2(C4H5NO4)4(H2O)2]V = 1238.1 (4) Å3
Mr = 796.99Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.9432 (18) ŵ = 2.69 mm1
b = 9.8441 (18) ÅT = 223 K
c = 14.470 (3) Å0.40 × 0.30 × 0.20 mm
β = 103.632 (4)°
Data collection top
Rigaku Saturn
diffractometer
2830 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2473 reflections with I > 2σ(I)
Tmin = 0.413, Tmax = 0.616Rint = 0.025
6895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0314 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.40 e Å3
2830 reflectionsΔρmin = 0.38 e Å3
213 parameters
Special details top

Experimental. UV-VIS-NIR diffuse reflectance spectra of (I) were measured at room temperature using BaSO4 as a standard reference on a Shimadzu UV-3150 spectrometer. The absorption (α/S) data were calculated from the reflectance using the Kubelka–Munk function, α/S =(1 - R)2/2R (Wendlandt & Heeht, 1966). The optical band gaps (Eonset) are obtained by extrapolation of the linear portion of the absorption edges. The thermal stability and decomposition behavior of complex (I) were studied by DSC–TGA. Thermoanalytical measurements was performed using a DCS-TGA microanalyzer of SDT 2960 under a flowing atmosphere of N2 in the temperature range 293.15–1073.15 K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.40735 (3)0.66243 (3)0.63796 (2)0.01676 (10)
Cu20.50001.00000.50000.01532 (11)
Na10.02804 (11)0.62325 (10)0.63873 (7)0.0218 (2)
O10.6107 (2)0.73572 (18)0.69804 (13)0.0237 (4)
O20.8569 (2)0.67501 (18)0.74221 (13)0.0247 (4)
O30.2469 (2)0.55865 (17)0.54944 (12)0.0217 (4)
O40.2022 (2)0.35365 (17)0.48315 (13)0.0241 (4)
O50.3487 (2)0.83648 (17)0.57967 (13)0.0232 (4)
O60.1070 (2)0.83560 (18)0.59614 (14)0.0256 (4)
O70.45416 (19)0.91655 (17)0.37452 (11)0.0190 (4)
O80.2646 (2)0.86522 (18)0.25060 (12)0.0217 (4)
O90.0069 (3)0.3863 (2)0.63865 (16)0.0351 (5)
N10.5050 (2)0.4823 (2)0.67410 (15)0.0177 (4)
N20.2811 (2)1.0622 (2)0.46430 (13)0.0142 (4)
C10.7190 (3)0.6474 (2)0.71275 (17)0.0188 (5)
C20.6733 (3)0.5000 (2)0.69110 (18)0.0181 (5)
H2A0.70750.47060.63470.022*
H2B0.72460.44290.74470.022*
C30.4333 (3)0.3833 (3)0.60075 (19)0.0233 (6)
H3A0.41620.29800.63160.028*
H3B0.50380.36460.55970.028*
C40.2813 (3)0.4335 (2)0.54014 (17)0.0186 (5)
C50.2169 (3)0.8904 (3)0.57446 (17)0.0178 (5)
C60.2041 (3)1.0386 (2)0.54247 (17)0.0158 (5)
H6A0.09531.06350.52140.019*
H6B0.25091.09690.59640.019*
C70.2022 (3)0.9939 (3)0.37500 (17)0.0201 (5)
H7A0.14671.06180.33030.024*
H7B0.12670.92940.38850.024*
C80.3142 (3)0.9194 (2)0.32982 (16)0.0157 (5)
H90.036 (4)0.320 (3)0.669 (3)0.066 (13)*
H9A0.045 (5)0.365 (4)0.5850 (16)0.064 (14)*
H200.277 (3)1.1511 (17)0.4548 (19)0.017 (7)*
H100.486 (3)0.459 (3)0.7305 (15)0.026 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01521 (16)0.01300 (15)0.02098 (17)0.00062 (11)0.00208 (12)0.00038 (12)
Cu20.0122 (2)0.0177 (2)0.0151 (2)0.00113 (15)0.00143 (16)0.00322 (16)
Na10.0167 (5)0.0233 (5)0.0243 (5)0.0007 (4)0.0023 (4)0.0043 (4)
O10.0192 (10)0.0184 (9)0.0315 (10)0.0011 (7)0.0020 (8)0.0008 (8)
O20.0175 (9)0.0291 (10)0.0257 (9)0.0025 (8)0.0017 (7)0.0049 (8)
O30.0213 (10)0.0162 (8)0.0235 (9)0.0024 (7)0.0033 (7)0.0017 (7)
O40.0264 (10)0.0179 (9)0.0239 (9)0.0014 (7)0.0020 (8)0.0034 (7)
O50.0175 (9)0.0163 (8)0.0358 (10)0.0028 (7)0.0064 (8)0.0050 (8)
O60.0191 (10)0.0228 (9)0.0361 (10)0.0000 (7)0.0089 (8)0.0109 (8)
O70.0141 (9)0.0234 (9)0.0184 (8)0.0024 (7)0.0013 (7)0.0044 (7)
O80.0174 (9)0.0292 (10)0.0177 (8)0.0023 (7)0.0028 (7)0.0066 (8)
O90.0461 (14)0.0271 (11)0.0310 (12)0.0037 (10)0.0066 (11)0.0041 (10)
N10.0140 (11)0.0192 (10)0.0192 (10)0.0001 (8)0.0025 (8)0.0004 (9)
N20.0160 (10)0.0120 (9)0.0143 (9)0.0011 (8)0.0031 (8)0.0005 (8)
C10.0188 (13)0.0236 (13)0.0137 (11)0.0005 (10)0.0035 (9)0.0003 (10)
C20.0135 (12)0.0190 (12)0.0215 (12)0.0015 (9)0.0032 (10)0.0032 (10)
C30.0217 (14)0.0149 (12)0.0300 (14)0.0013 (10)0.0005 (11)0.0036 (11)
C40.0204 (13)0.0191 (12)0.0166 (11)0.0007 (10)0.0052 (10)0.0025 (10)
C50.0175 (12)0.0203 (12)0.0146 (11)0.0009 (10)0.0014 (9)0.0010 (10)
C60.0138 (12)0.0153 (11)0.0190 (11)0.0009 (9)0.0052 (9)0.0004 (10)
C70.0150 (12)0.0276 (13)0.0159 (11)0.0013 (10)0.0000 (9)0.0034 (11)
C80.0170 (12)0.0150 (11)0.0152 (11)0.0000 (9)0.0043 (9)0.0025 (9)
Geometric parameters (Å, º) top
Cu1—O51.9270 (17)O6—C51.225 (3)
Cu1—O11.9589 (18)O7—C81.267 (3)
Cu1—O31.9690 (17)O8—C81.247 (3)
Cu1—N11.991 (2)O8—Cu1iii2.3109 (18)
Cu1—O8i2.3109 (18)O8—Na1iii2.344 (2)
Cu1—Na13.4168 (12)O9—H90.829 (19)
Cu1—Cu24.0613 (6)O9—H9A0.800 (19)
Cu2—O7ii1.9466 (16)N1—C31.472 (3)
Cu2—O71.9466 (16)N1—C21.477 (3)
Cu2—N2ii2.000 (2)N1—H100.900 (17)
Cu2—N22.000 (2)N2—C61.474 (3)
Cu2—Cu1iii5.3519 (11)N2—C71.480 (3)
Na1—O62.335 (2)N2—H200.885 (17)
Na1—O8i2.344 (2)C1—C21.520 (3)
Na1—O92.354 (2)C2—H2A0.9800
Na1—O4iv2.385 (2)C2—H2B0.9800
Na1—O2v2.434 (2)C3—C41.516 (3)
Na1—O32.664 (2)C3—H3A0.9800
O1—C11.282 (3)C3—H3B0.9800
O2—C11.236 (3)C5—C61.527 (3)
O2—Na1vi2.434 (2)C6—H6A0.9800
O3—C41.284 (3)C6—H6B0.9800
O4—C41.235 (3)C7—C81.509 (3)
O4—Na1iv2.385 (2)C7—H7A0.9800
O5—C51.279 (3)C7—H7B0.9800
O5—Cu1—O189.72 (8)C4—O3—Na1120.09 (16)
O5—Cu1—O395.46 (7)Cu1—O3—Na193.83 (7)
O1—Cu1—O3159.67 (8)C4—O4—Na1iv133.80 (16)
O5—Cu1—N1164.57 (8)C5—O5—Cu1123.13 (16)
O1—Cu1—N184.70 (8)C5—O6—Na1140.55 (17)
O3—Cu1—N185.19 (8)C8—O7—Cu2115.63 (15)
O5—Cu1—O8i105.95 (7)C8—O8—Cu1iii124.26 (16)
O1—Cu1—O8i109.85 (7)C8—O8—Na1iii132.95 (16)
O3—Cu1—O8i87.64 (7)Cu1iii—O8—Na1iii94.44 (7)
N1—Cu1—O8i89.48 (8)Na1—O9—H9137 (3)
O5—Cu1—Na186.21 (6)Na1—O9—H9A107 (3)
O1—Cu1—Na1149.15 (6)H9—O9—H9A110 (4)
O3—Cu1—Na151.07 (6)C3—N1—C2116.9 (2)
N1—Cu1—Na1105.84 (6)C3—N1—Cu1108.09 (15)
O8i—Cu1—Na143.16 (5)C2—N1—Cu1107.77 (14)
O5—Cu1—Cu228.76 (5)C3—N1—H10110.2 (19)
O1—Cu1—Cu268.98 (5)C2—N1—H10106.1 (19)
O3—Cu1—Cu2107.85 (5)Cu1—N1—H10107.4 (19)
N1—Cu1—Cu2136.89 (6)C6—N2—C7112.70 (19)
O8i—Cu1—Cu2130.82 (5)C6—N2—Cu2111.04 (14)
Na1—Cu1—Cu2114.312 (18)C7—N2—Cu2108.81 (15)
O7ii—Cu2—O7180.00 (10)C6—N2—H20105.4 (18)
O7ii—Cu2—N2ii84.85 (7)C7—N2—H20108.7 (18)
O7—Cu2—N2ii95.16 (7)Cu2—N2—H20110.1 (18)
O7ii—Cu2—N295.15 (7)O2—C1—O1124.2 (2)
O7—Cu2—N284.85 (7)O2—C1—C2118.6 (2)
N2ii—Cu2—N2179.999 (1)O1—C1—C2117.2 (2)
O7ii—Cu2—Cu184.80 (5)N1—C2—C1111.18 (19)
O7—Cu2—Cu195.20 (5)N1—C2—H2A109.4
N2ii—Cu2—Cu185.59 (6)C1—C2—H2A109.4
N2—Cu2—Cu194.41 (6)N1—C2—H2B109.4
O7ii—Cu2—Cu1iii171.56 (5)C1—C2—H2B109.4
O7—Cu2—Cu1iii8.44 (5)H2A—C2—H2B108.0
N2ii—Cu2—Cu1iii94.45 (5)N1—C3—C4112.3 (2)
N2—Cu2—Cu1iii85.55 (5)N1—C3—H3A109.1
Cu1—Cu2—Cu1iii103.548 (12)C4—C3—H3A109.1
O6—Na1—O8i81.90 (7)N1—C3—H3B109.1
O6—Na1—O9159.31 (9)C4—C3—H3B109.1
O8i—Na1—O998.42 (8)H3A—C3—H3B107.9
O6—Na1—O4iv88.94 (7)O4—C4—O3124.6 (2)
O8i—Na1—O4iv170.84 (8)O4—C4—C3118.2 (2)
O9—Na1—O4iv90.16 (8)O3—C4—C3117.2 (2)
O6—Na1—O2v104.36 (8)O6—C5—O5125.9 (2)
O8i—Na1—O2v99.28 (7)O6—C5—C6119.4 (2)
O9—Na1—O2v96.04 (8)O5—C5—C6114.6 (2)
O4iv—Na1—O2v82.90 (7)N2—C6—C5111.61 (19)
O6—Na1—O377.49 (7)N2—C6—H6A109.3
O8i—Na1—O372.52 (6)C5—C6—H6A109.3
O9—Na1—O382.86 (7)N2—C6—H6B109.3
O4iv—Na1—O3105.60 (7)C5—C6—H6B109.3
O2v—Na1—O3171.40 (7)H6A—C6—H6B108.0
O6—Na1—Cu162.35 (5)N2—C7—C8111.8 (2)
O8i—Na1—Cu142.40 (5)N2—C7—H7A109.3
O9—Na1—Cu1104.10 (7)C8—C7—H7A109.3
O4iv—Na1—Cu1132.18 (6)N2—C7—H7B109.3
O2v—Na1—Cu1138.35 (6)C8—C7—H7B109.3
O3—Na1—Cu135.10 (4)H7A—C7—H7B107.9
C1—O1—Cu1114.22 (16)O8—C8—O7123.7 (2)
C1—O2—Na1vi117.55 (16)O8—C8—C7118.5 (2)
C4—O3—Cu1114.20 (15)O7—C8—C7117.8 (2)
O5—Cu1—Cu2—O7ii81.51 (13)O4iv—Na1—O3—C494.50 (17)
O1—Cu1—Cu2—O7ii52.08 (8)O2v—Na1—O3—C476.8 (5)
O3—Cu1—Cu2—O7ii149.24 (7)Cu1—Na1—O3—C4120.90 (19)
N1—Cu1—Cu2—O7ii108.34 (10)O6—Na1—O3—Cu159.28 (7)
O8i—Cu1—Cu2—O7ii46.47 (8)O8i—Na1—O3—Cu126.05 (7)
Na1—Cu1—Cu2—O7ii94.61 (5)O9—Na1—O3—Cu1127.24 (8)
O5—Cu1—Cu2—O798.48 (13)O4iv—Na1—O3—Cu1144.59 (7)
O1—Cu1—Cu2—O7127.92 (8)O2v—Na1—O3—Cu144.1 (5)
O3—Cu1—Cu2—O730.76 (7)O1—Cu1—O5—C5138.0 (2)
N1—Cu1—Cu2—O771.66 (10)O3—Cu1—O5—C561.7 (2)
O8i—Cu1—Cu2—O7133.52 (8)N1—Cu1—O5—C5153.4 (3)
Na1—Cu1—Cu2—O785.39 (5)O8i—Cu1—O5—C527.4 (2)
O5—Cu1—Cu2—N2ii166.73 (13)Na1—Cu1—O5—C511.38 (19)
O1—Cu1—Cu2—N2ii33.14 (8)Cu2—Cu1—O5—C5179.4 (3)
O3—Cu1—Cu2—N2ii125.55 (8)O8i—Na1—O6—C552.4 (3)
N1—Cu1—Cu2—N2ii23.13 (10)O9—Na1—O6—C540.0 (4)
O8i—Cu1—Cu2—N2ii131.69 (8)O4iv—Na1—O6—C5127.6 (3)
Na1—Cu1—Cu2—N2ii179.82 (6)O2v—Na1—O6—C5150.0 (3)
O5—Cu1—Cu2—N213.27 (13)O3—Na1—O6—C521.4 (3)
O1—Cu1—Cu2—N2146.86 (8)Cu1—Na1—O6—C512.5 (3)
O3—Cu1—Cu2—N254.45 (8)O7ii—Cu2—O7—C847.7 (18)
N1—Cu1—Cu2—N2156.88 (10)N2ii—Cu2—O7—C8172.09 (16)
O8i—Cu1—Cu2—N248.31 (8)N2—Cu2—O7—C87.91 (16)
Na1—Cu1—Cu2—N20.18 (6)Cu1—Cu2—O7—C886.07 (16)
O5—Cu1—Cu2—Cu1iii99.75 (12)Cu1iii—Cu2—O7—C8102.3 (4)
O1—Cu1—Cu2—Cu1iii126.66 (6)O5—Cu1—N1—C377.7 (4)
O3—Cu1—Cu2—Cu1iii32.02 (6)O1—Cu1—N1—C3146.98 (17)
N1—Cu1—Cu2—Cu1iii70.40 (9)O3—Cu1—N1—C315.36 (16)
O8i—Cu1—Cu2—Cu1iii134.79 (6)O8i—Cu1—N1—C3103.03 (17)
Na1—Cu1—Cu2—Cu1iii86.65 (2)Na1—Cu1—N1—C362.57 (17)
O5—Cu1—Na1—O68.52 (8)Cu2—Cu1—N1—C395.76 (17)
O1—Cu1—Na1—O674.56 (12)O5—Cu1—N1—C249.4 (4)
O3—Cu1—Na1—O6108.66 (9)O1—Cu1—N1—C219.82 (15)
N1—Cu1—Na1—O6178.71 (9)O3—Cu1—N1—C2142.52 (16)
O8i—Cu1—Na1—O6109.74 (9)O8i—Cu1—N1—C2129.81 (15)
Cu2—Cu1—Na1—O614.79 (6)Na1—Cu1—N1—C2170.27 (14)
O5—Cu1—Na1—O8i118.25 (9)Cu2—Cu1—N1—C231.40 (19)
O1—Cu1—Na1—O8i35.18 (13)O7ii—Cu2—N2—C645.84 (16)
O3—Cu1—Na1—O8i141.60 (10)O7—Cu2—N2—C6134.17 (15)
N1—Cu1—Na1—O8i71.55 (9)N2ii—Cu2—N2—C626 (4)
Cu2—Cu1—Na1—O8i124.53 (7)Cu1—Cu2—N2—C639.32 (15)
O5—Cu1—Na1—O9154.68 (9)Cu1iii—Cu2—N2—C6142.60 (15)
O1—Cu1—Na1—O9122.24 (12)O7ii—Cu2—N2—C7170.44 (15)
O3—Cu1—Na1—O954.53 (9)O7—Cu2—N2—C79.56 (15)
N1—Cu1—Na1—O915.51 (9)N2ii—Cu2—N2—C7151 (4)
O8i—Cu1—Na1—O987.07 (9)Cu1—Cu2—N2—C785.28 (15)
Cu2—Cu1—Na1—O9148.41 (6)Cu1iii—Cu2—N2—C718.00 (14)
O5—Cu1—Na1—O4iv51.29 (9)Na1vi—O2—C1—O1117.7 (2)
O1—Cu1—Na1—O4iv134.37 (12)Na1vi—O2—C1—C261.6 (3)
O3—Cu1—Na1—O4iv48.85 (9)Cu1—O1—C1—O2173.50 (19)
N1—Cu1—Na1—O4iv118.90 (10)Cu1—O1—C1—C25.7 (3)
O8i—Cu1—Na1—O4iv169.55 (11)C3—N1—C2—C1143.4 (2)
Cu2—Cu1—Na1—O4iv45.02 (8)Cu1—N1—C2—C121.5 (2)
O5—Cu1—Na1—O2v88.86 (10)O2—C1—C2—N1169.5 (2)
O1—Cu1—Na1—O2v5.78 (15)O1—C1—C2—N111.2 (3)
O3—Cu1—Na1—O2v170.99 (11)C2—N1—C3—C4139.3 (2)
N1—Cu1—Na1—O2v100.95 (11)Cu1—N1—C3—C417.6 (3)
O8i—Cu1—Na1—O2v29.40 (10)Na1iv—O4—C4—O34.2 (4)
Cu2—Cu1—Na1—O2v95.13 (9)Na1iv—O4—C4—C3172.99 (17)
O5—Cu1—Na1—O3100.15 (9)Cu1—O3—C4—O4174.40 (19)
O1—Cu1—Na1—O3176.77 (12)Na1—O3—C4—O475.4 (3)
N1—Cu1—Na1—O370.05 (9)Cu1—O3—C4—C32.8 (3)
O8i—Cu1—Na1—O3141.60 (10)Na1—O3—C4—C3107.3 (2)
Cu2—Cu1—Na1—O393.87 (7)N1—C3—C4—O4172.2 (2)
O5—Cu1—O1—C1150.64 (18)N1—C3—C4—O310.4 (3)
O3—Cu1—O1—C145.5 (3)Na1—O6—C5—O59.0 (4)
N1—Cu1—O1—C114.95 (17)Na1—O6—C5—C6174.21 (18)
O8i—Cu1—O1—C1102.48 (17)Cu1—O5—C5—O67.7 (4)
Na1—Cu1—O1—C1127.25 (16)Cu1—O5—C5—C6169.23 (15)
Cu2—Cu1—O1—C1130.24 (18)C7—N2—C6—C567.7 (2)
O5—Cu1—O3—C4153.84 (17)Cu2—N2—C6—C554.7 (2)
O1—Cu1—O3—C449.7 (3)O6—C5—C6—N2141.4 (2)
N1—Cu1—O3—C410.68 (18)O5—C5—C6—N241.5 (3)
O8i—Cu1—O3—C4100.35 (17)C6—N2—C7—C8133.5 (2)
Na1—Cu1—O3—C4125.52 (19)Cu2—N2—C7—C89.9 (2)
Cu2—Cu1—O3—C4127.27 (16)Cu1iii—O8—C8—O729.6 (3)
O5—Cu1—O3—Na180.64 (7)Na1iii—O8—C8—O7169.25 (16)
O1—Cu1—O3—Na1175.24 (18)Cu1iii—O8—C8—C7149.74 (17)
N1—Cu1—O3—Na1114.84 (8)Na1iii—O8—C8—C710.1 (3)
O8i—Cu1—O3—Na125.17 (6)Cu2—O7—C8—O8176.69 (18)
Cu2—Cu1—O3—Na1107.21 (5)Cu2—O7—C8—C73.9 (3)
O6—Na1—O3—C4179.82 (18)N2—C7—C8—O8175.0 (2)
O8i—Na1—O3—C494.85 (17)N2—C7—C8—O74.4 (3)
O9—Na1—O3—C46.34 (17)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x, y+3/2, z1/2; (iv) x, y+1, z+1; (v) x1, y, z; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O2vii0.83 (2)2.01 (2)2.830 (3)173 (4)
O9—H9A···O3iv0.80 (2)2.44 (3)3.091 (3)139 (4)
N2—H20···O4viii0.89 (2)2.17 (2)2.982 (3)152 (2)
N1—H10···O7i0.90 (2)2.49 (2)3.199 (3)136 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (iv) x, y+1, z+1; (vii) x+1, y1/2, z+3/2; (viii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu3Na2(C4H5NO4)4(H2O)2]
Mr796.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)8.9432 (18), 9.8441 (18), 14.470 (3)
β (°) 103.632 (4)
V3)1238.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.69
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.413, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
6895, 2830, 2473
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.073, 1.08
No. of reflections2830
No. of parameters213
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.38

Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O51.9270 (17)Cu2—Cu1ii5.3519 (11)
Cu1—O11.9589 (18)Na1—O62.335 (2)
Cu1—O31.9690 (17)Na1—O8i2.344 (2)
Cu1—N11.991 (2)Na1—O92.354 (2)
Cu1—O8i2.3109 (18)Na1—O4iii2.385 (2)
Cu2—O71.9466 (16)Na1—O2iv2.434 (2)
Cu2—N22.000 (2)Na1—O32.664 (2)
O5—Cu1—O189.72 (8)O8i—Na1—O998.42 (8)
O5—Cu1—O395.46 (7)O6—Na1—O4iii88.94 (7)
O1—Cu1—O3159.67 (8)O8i—Na1—O4iii170.84 (8)
O5—Cu1—N1164.57 (8)O9—Na1—O4iii90.16 (8)
O1—Cu1—N184.70 (8)O6—Na1—O2iv104.36 (8)
O3—Cu1—N185.19 (8)O8i—Na1—O2iv99.28 (7)
O5—Cu1—O8i105.95 (7)O9—Na1—O2iv96.04 (8)
O1—Cu1—O8i109.85 (7)O4iii—Na1—O2iv82.90 (7)
O3—Cu1—O8i87.64 (7)O6—Na1—O377.49 (7)
N1—Cu1—O8i89.48 (8)O8i—Na1—O372.52 (6)
O7—Cu2—N2v95.16 (7)O9—Na1—O382.86 (7)
O7—Cu2—N284.85 (7)O4iii—Na1—O3105.60 (7)
O6—Na1—O8i81.90 (7)O2iv—Na1—O3171.40 (7)
O6—Na1—O9159.31 (9)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y+1, z+1; (iv) x1, y, z; (v) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O2vi0.829 (19)2.01 (2)2.830 (3)173 (4)
O9—H9A···O3iii0.800 (19)2.44 (3)3.091 (3)139 (4)
N2—H20···O4vii0.885 (17)2.17 (2)2.982 (3)152 (2)
N1—H10···O7i0.900 (17)2.49 (2)3.199 (3)136 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (iii) x, y+1, z+1; (vi) x+1, y1/2, z+3/2; (vii) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds