Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The reaction of amino­phosphinic acid with CdCl2·2.5H2O or CoCl2·6H2O in concentrated hydro­chloric acid yielded the isostructural compounds 1,4-bis­{[hy­droxy­(phenyl)­phosphoryl]methyl}­piperazine-1,4-diium tetra­chlorido­cadmate(II) di­hydrate, (C18H26N2O4P2)[CdCl4]·2H2O, (I), and 1,4-bis{[hy­droxy­(phenyl)­phosphoryl]­methyl}­piperazine-1,4-diium tetra­chlorido­cobaltate(II) dihydrate, (C18H26N2O4P2)[CoCl4]·2H2O, (II). The asymmetric unit of each contains two half dications, both located on crystallographic centres of inversion, a tetra­chloridometallate(II) dianion and two solvent water mol­ecules. The residues are linked into two-dimensional layers in the ab plane by O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113015436/eg3124sup1.cif
Contains datablocks I, II, global

CCDC references: 956994; 956995

Comment top

Organophosphorus compounds have attracted considerable attention because of their unique chemical, biochemical and physical properties (Miller et al., 2008; Moll et al., 2012; Leonova et al., 2010; Sharma & Clearfield, 2000). Special attention has been focused on diphosphonate ligands containing N atoms (sometimes called aminoalkyl/arylorganophosphonic acids), which have been extensively studied for a long time. Recent work on this topic has been devoted to different areas. They comprise pharmaceutically active compounds, such as sodium alendronate, which may act as potent inhibitors of bone resorption and as highly selective bone-targeting agents (Lenin et al., 2013). In coordination chemistry, piperazine-based fragments have been successfully used as building blocks for the design of polydentate ligands which may give rise to a variety of structures with many metal cations, including common transition metals (Arnold et al., 2002; Groves et al., 2005a or Groves et al., 2005b ?; Li et al., 2005; Soghomonian et al., 1995; Taddei et al., 2010), lanthanide metals (Du et al., 2006; Groves, Miller et al., 2006 or Groves, Stephens et al., 2006; Mowat et al., 2009; Wharmby et al., 2010) and main group metals (Du et al., 2009; Ma et al., 2010; Serre et al., 2006; Zhang et al., 2008, 2010). Applications in the realm of agrochemicals (Kong et al., 2008) are also possible. Many organophosphorus compounds represent well known halogen-free flame retardants and thus enable another important application in industry. For safety reasons, such compounds have been used to improve the flame retardancy of polymers in many fields, especially with the rapid development of the construction, aerospace and electronics industries (Lin, 2004; Lin et al., 2010; Lu & Hamerton, 2002). Several studies indicate that a significant improvement in flame-retardant efficiency is observed when the elements phosphorus and nitrogen coexist in the polymer system (Allcock & Harris, 1983; Allcock et al., 2000; Allcock & Laredo, 2001; Chang & Ma, 2004; Parvez et al., 1991; Taylor & Allcock, 2000). We therefore decided to explore new phosphorus–nitrogen containing halogen-free flame retardants, and among them, [piperazine-1,4-diylbis(methylene)]bis(phenylphosphinic acid) (hereinafter abbreviated as PBPA), is an excellent candidate.

Over recent decades, a large number of crystal structures of organoammonium tetrachloridometallates have been reported. In most of them, various organoammonium cations balance the charge of the tetrachloridometallates, in which the metals are common divalent transition metals, such as MnII, CoII, NiII, CuII, ZnII, CdII and HgII, and others (Beleaga et al., 2011; Espallargas et al., 2006; Korupoju et al., 2005; Matthews et al., 2003; Tremelling et al., 2009). However, only a few structures of aminoalkylorganophosphinic acid salts containing organoammonium cations and tetrahalogenometallate anions have been reported to date. To the best of our knowledege, only four structures of protonated bis(dialkylaminomethyl)phosphinic acids acting as cations and tetrachloridocuprate(II), tetrachloridocobaltate(II) or tetrachloridozincate(II) acting as counter-anions have been published (Kasparek et al., 2002; Kubicek et al., 2007). No single-crystal structure of a piperazine-ring based aminophenylphosphinic acid or its derivatives have yet been reported. Here, we describe the first preparation of PBPA, which crystallizes as a hydrochloride with poor solubility in water and most organic solvents due to the high polarity of its doubly charged ionic constituents. Fortunately, the tetrachloridocadmate(II) and tetrachloridocobaltate(II) salts, viz. (H2PBPA)[CdCl4].2H2O, (I), and (H2PBPA)[CoCl4].2H2O, (II), were obtained by reaction of PBPA hydrochloride with CdCl2.2.5H2O and CoCl2.6H2O, respectively, in concentrated hydrochloric acid. Single-crystal X-ray diffraction study of these derivatives confirms the first examples of PBPA salts with complex tetrachloridometallate(II) anions.

The diffraction experiments revealed that both (I) and (II) are isostructural and crystallize in the triclinic space group P1. The asymmetric unit contains one [MCl4]2- anion, two half fully protonated PBPA cations on crystallographic inversion centres and two solvent water molecules. Displacement ellipsoid plots showing the arrangement of the residues are given in Figs. 1 and 2. The metal atoms adopt a distorted tetrahedral geometry with four chloride ligands, with M—Cl bond lengths ranging from 2.2502 (17) to 2.3148 (18) Å in (I), and from 2.4111 (11) to 2.5313 (8) Å in (II). The Cl—M—Cl angles vary between 108 and 110°, very close to the expected value for a regular tetrahedron, consistent with similar compounds (Chen & Beatty, 2007; Daoud, 1976). The PBPA groups are located on crystallographic centres of inversion, with the piperazine rings in chair conformations; all bonds in these rings fall in the normal range [Standard reference?]. The P atoms show distorted tetrahedral geometry. The P—O bond lengths range between 1.482 (2) and 1.553 (4) Å, in agreement with P O and P—OH bonds, respectively. The Ueq values for the C atoms of the peripheral phenyl rings are slightly higher than those for the central heterocycle.

Charge balance requires protonation of all N atoms, and additional evidence comes from the hydrogen bonds. Detailed hydrogen-bond parameters are listed in Tables 1 and 2. Each half PBPA fragment is linked to two adjacent half PBPA fragments by O3i—H3Ai···O2—P1—O1—H1A···O4—P2—O3 hydrogen bonds [symmetry code: (i) x - 1, y, z], thus generating one-dimensional zigzag chains along a. These chains are interconnected by piperazine rings in the b direction, thus forming two-dimensional corrugated layers parallel to the ab plane, as shown in Fig. 3. The solvent water molecules and tetrachloridometallate(II) complex anions are linked to the layers by additonal hydrogen bonds (Tables 1 and 2) and fill the voids. The main difference between these isostructural compounds is the size of the [MCl4]2- tetrahedra, due to the different average M—Cl bond lengths.

Related literature top

For related literature, see: Allcock & Harris (1983); Allcock & Laredo (2001); Allcock et al. (2000); Arnold et al. (2002); Beleaga et al. (2011); Chang & Ma (2004); Chen & Beatty (2007); Choi et al. (1994); Daoud (1976); Du et al. (2006, 2009); Espallargas et al. (2006); Groves et al. (2005a, 2005b); Groves, Miller, Warrender, Mellot-Draznieks, Lightfoot & Wright (2006); Groves, Stephens, Wright & Lightfoot (2006); Kasparek et al. (2002); Kong et al. (2008); Korupoju et al. (2005); Kubicek et al. (2007); Lenin et al. (2013); Leonova et al. (2010); Li et al. (2005); Lin (2004); Lin et al. (2010); Lu & Hamerton (2002); Ma et al. (2010); Matthews et al. (2003); Miller et al. (2008); Moll et al. (2012); Mowat et al. (2009); Parvez et al. (1991); Serre et al. (2006); Sharma & Clearfield (2000); Soghomonian et al. (1995); Taddei et al. (2010); Taylor & Allcock (2000); Tremelling et al. (2009); Wharmby et al. (2010); Zhang et al. (2008, 2010).

Experimental top

PBPA hydrochloride was synthesized according to the method of Choi et al. (1994) using a typical Mannich reaction in which phosphorous acid was replaced by phenylphosphinic acid. Phenylphosphinic acid (1.42 g, 0.01 mol) and piperazine (4.307 g, 0.05 mol) were dissolved in hydrochloric acid (6 M, 50 ml) and refluxed for 1 h under a nitrogen atmosphere. Formaldehyde (50 ml) in hydrochloric acid (37%) was added dropwise with vigorous stirring and the temperature was maintained at 378–383 K for 4 h. This solution was then concentrated under reduced pressure and allowed to cool to room temperature. Acetone (100 ml) was added and the white precipitate was collected by filtration. Colourless crystals of (I) and (II) suitable for single-crystal diffraction studies were obtained by slow evaporation from solutions of the white precipitate and CdCl2.2.5H2O (2.284 g, 0.01 mol) or CoCl2.6H2O (2.379 g, 0.01 mol) in hydrochloric acid (4 M, 40 ml), respectively. The crystalline product was filtered off, washed with water and dried in air.

Refinement top

C-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The positions of N-bound H atoms were constrained to N—H = 0.91 Å, with Uiso(H) = 1.2Ueq(N). The positions of O-bound H atoms were constrained to O—H = 0.82 Å, with Uiso(H) = 1.5Ueq(O). Water H atoms were located in difference Fourier syntheses and constrained to O—H and H···H distances of 0.85 and 1.35 Å, respectively; Uiso(H) values were set at 1.5Ueq(O).

Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. The structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 1.]
[Figure 3] Fig. 3. A projection of the structure of (I) on (001). H atoms have been omitted for clarity. The projection for (II) is similar.
(I) 1,4-Bis{[hydroxy(phenyl)phosphoryl]methyl}piperazine-1,4-diium tetrachloridocadmate(II) dihydrate top
Crystal data top
(C18H26N2O4P2)[CdCl4]·2H2OZ = 2
Mr = 686.58F(000) = 692
Triclinic, P1Dx = 1.693 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6159 (3) ÅCell parameters from 4676 reflections
b = 14.5242 (7) Åθ = 2.8–29.5°
c = 14.5449 (7) ŵ = 1.36 mm1
α = 87.035 (4)°T = 293 K
β = 81.713 (4)°Plate, colourless
γ = 76.947 (4)°0.30 × 0.25 × 0.20 mm
V = 1347.03 (11) Å3
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
4832 independent reflections
Radiation source: fine-focus sealed tube3928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.4170 pixels mm-1θmax = 25.2°, θmin = 2.8°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1617
Tmin = 0.686, Tmax = 0.772l = 1617
10146 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0288P)2]
where P = (Fo2 + 2Fc2)/3
4832 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
(C18H26N2O4P2)[CdCl4]·2H2Oγ = 76.947 (4)°
Mr = 686.58V = 1347.03 (11) Å3
Triclinic, P1Z = 2
a = 6.6159 (3) ÅMo Kα radiation
b = 14.5242 (7) ŵ = 1.36 mm1
c = 14.5449 (7) ÅT = 293 K
α = 87.035 (4)°0.30 × 0.25 × 0.20 mm
β = 81.713 (4)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
4832 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3928 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.772Rint = 0.036
10146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
4832 reflectionsΔρmin = 0.53 e Å3
300 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0564 (5)0.1126 (2)0.84464 (19)0.0332 (7)
C20.2323 (6)0.0943 (3)0.8900 (2)0.0488 (9)
H20.36490.07780.85590.059*
C30.2123 (7)0.1005 (3)0.9844 (3)0.0640 (12)
H30.33090.08881.01430.077*
C40.0179 (8)0.1238 (3)1.0347 (2)0.0642 (12)
H40.00540.12791.09900.077*
C50.1576 (7)0.1411 (3)0.9925 (3)0.0618 (12)
H50.28880.15721.02780.074*
C60.1412 (6)0.1348 (3)0.8958 (2)0.0492 (10)
H60.26060.14520.86660.059*
C70.0797 (5)0.0091 (2)0.69128 (18)0.0273 (7)
H7A0.21240.04980.70200.033*
H7B0.02900.03000.73360.033*
C80.1984 (4)0.0102 (2)0.52114 (18)0.0264 (7)
H8A0.33990.01690.53380.032*
H8B0.17580.07840.52350.032*
C90.1740 (4)0.0174 (2)0.57428 (19)0.0281 (7)
H9A0.20310.08580.57790.034*
H9B0.27300.00570.62040.034*
C100.3315 (5)0.3629 (2)0.8662 (2)0.0344 (8)
C110.4496 (6)0.3744 (3)0.9321 (2)0.0637 (12)
H110.58900.37730.91480.076*
C120.3634 (7)0.3821 (4)1.0255 (3)0.0797 (15)
H120.44530.38981.07010.096*
C130.1602 (7)0.3781 (3)1.0510 (2)0.0628 (12)
H130.10240.38371.11320.075*
C140.0398 (6)0.3660 (3)0.9855 (3)0.0613 (12)
H140.09910.36261.00330.074*
C150.1246 (6)0.3587 (3)0.8929 (2)0.0499 (9)
H150.04230.35090.84840.060*
C160.3829 (4)0.4684 (2)0.69595 (17)0.0262 (7)
H16A0.23960.49870.71910.031*
H16B0.47360.50510.71610.031*
C170.6241 (4)0.4226 (2)0.54754 (18)0.0291 (7)
H17A0.65420.35670.56730.035*
H17B0.72700.45230.56790.035*
C180.3599 (4)0.5708 (2)0.55706 (18)0.0267 (7)
H18A0.45650.60420.57740.032*
H18B0.21930.60120.58390.032*
Cd10.43344 (4)0.253741 (17)0.279474 (15)0.03649 (9)
Cl10.18030 (12)0.40601 (6)0.30776 (5)0.0405 (2)
Cl20.44108 (13)0.19941 (6)0.44738 (5)0.0417 (2)
Cl30.77149 (13)0.28882 (7)0.22373 (6)0.0489 (2)
Cl40.37448 (15)0.11487 (7)0.21324 (6)0.0501 (2)
N10.0450 (3)0.02374 (16)0.59388 (14)0.0228 (5)
H10.06690.08730.58710.027*
N20.4087 (3)0.47040 (16)0.59151 (14)0.0229 (5)
H2A0.31490.44040.57320.028*
O10.3066 (3)0.11996 (15)0.68167 (15)0.0372 (5)
H1A0.31800.17410.68880.056*
O20.0884 (4)0.17847 (16)0.68263 (14)0.0453 (6)
O30.6827 (3)0.32796 (16)0.74527 (15)0.0399 (6)
H3A0.73400.27710.72020.060*
O40.3562 (4)0.28648 (16)0.69451 (14)0.0431 (6)
O1W0.1184 (3)0.38355 (19)0.53961 (17)0.0542 (7)
H2W0.14000.36990.48240.081*
H1W0.14580.33080.56850.081*
O2W0.0491 (3)0.78983 (15)0.58781 (16)0.0464 (6)
H3W0.08150.76350.63880.070*
H4W0.07940.78950.58860.070*
P10.08217 (12)0.11015 (6)0.72146 (5)0.02879 (19)
P20.44266 (12)0.35047 (6)0.74696 (5)0.02890 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0464 (19)0.0285 (18)0.0258 (15)0.0088 (15)0.0063 (14)0.0042 (13)
C20.056 (2)0.055 (2)0.0353 (19)0.0051 (19)0.0142 (17)0.0094 (16)
C30.087 (3)0.063 (3)0.044 (2)0.005 (2)0.030 (2)0.0099 (19)
C40.114 (4)0.047 (3)0.0302 (19)0.011 (3)0.014 (2)0.0033 (17)
C50.080 (3)0.057 (3)0.041 (2)0.014 (2)0.019 (2)0.0072 (18)
C60.055 (2)0.050 (2)0.040 (2)0.0105 (19)0.0017 (17)0.0006 (17)
C70.0372 (17)0.0245 (17)0.0229 (14)0.0108 (13)0.0072 (13)0.0014 (12)
C80.0227 (14)0.0317 (18)0.0268 (15)0.0118 (13)0.0019 (12)0.0005 (12)
C90.0232 (15)0.0325 (18)0.0288 (15)0.0086 (13)0.0001 (12)0.0030 (13)
C100.0424 (19)0.0329 (19)0.0277 (16)0.0090 (15)0.0057 (14)0.0056 (13)
C110.050 (2)0.107 (4)0.036 (2)0.021 (2)0.0055 (18)0.006 (2)
C120.076 (3)0.133 (5)0.034 (2)0.026 (3)0.015 (2)0.005 (2)
C130.076 (3)0.079 (3)0.030 (2)0.018 (2)0.003 (2)0.0043 (19)
C140.055 (2)0.078 (3)0.049 (2)0.025 (2)0.014 (2)0.001 (2)
C150.053 (2)0.061 (3)0.040 (2)0.0235 (19)0.0047 (17)0.0052 (17)
C160.0288 (15)0.0271 (17)0.0222 (14)0.0065 (13)0.0007 (12)0.0035 (12)
C170.0254 (15)0.0268 (17)0.0312 (15)0.0011 (13)0.0019 (12)0.0005 (13)
C180.0278 (15)0.0194 (16)0.0299 (15)0.0006 (12)0.0010 (12)0.0006 (12)
Cd10.03733 (14)0.03385 (15)0.03849 (14)0.00974 (11)0.00116 (10)0.00550 (10)
Cl10.0332 (4)0.0403 (5)0.0473 (5)0.0030 (4)0.0092 (4)0.0070 (4)
Cl20.0446 (5)0.0425 (5)0.0373 (4)0.0109 (4)0.0043 (4)0.0063 (4)
Cl30.0424 (5)0.0586 (6)0.0470 (5)0.0212 (4)0.0087 (4)0.0098 (4)
Cl40.0627 (6)0.0465 (6)0.0475 (5)0.0234 (5)0.0069 (4)0.0110 (4)
N10.0271 (12)0.0177 (13)0.0258 (12)0.0087 (10)0.0044 (10)0.0010 (10)
N20.0215 (12)0.0244 (14)0.0237 (12)0.0060 (10)0.0028 (9)0.0050 (10)
O10.0464 (13)0.0291 (13)0.0394 (12)0.0183 (10)0.0015 (10)0.0062 (10)
O20.0566 (14)0.0349 (14)0.0400 (12)0.0083 (11)0.0181 (11)0.0103 (10)
O30.0390 (12)0.0318 (14)0.0457 (13)0.0005 (10)0.0055 (10)0.0083 (10)
O40.0623 (15)0.0331 (13)0.0396 (12)0.0216 (12)0.0069 (11)0.0049 (10)
O1W0.0409 (14)0.0589 (17)0.0671 (16)0.0104 (12)0.0147 (12)0.0228 (13)
O2W0.0415 (13)0.0308 (13)0.0696 (15)0.0122 (11)0.0112 (11)0.0030 (11)
P10.0378 (4)0.0243 (4)0.0250 (4)0.0059 (4)0.0066 (3)0.0040 (3)
P20.0367 (4)0.0232 (4)0.0279 (4)0.0092 (4)0.0041 (3)0.0006 (3)
Geometric parameters (Å, º) top
C1—C61.386 (4)C13—H130.93
C1—C21.387 (5)C14—C151.382 (5)
C1—P11.776 (3)C14—H140.93
C2—C31.366 (5)C15—H150.93
C2—H20.93C16—N21.503 (3)
C3—C41.364 (6)C16—P21.814 (3)
C3—H30.93C16—H16A0.97
C4—C51.359 (6)C16—H16B0.97
C4—H40.93C17—N21.503 (3)
C5—C61.400 (5)C17—C18ii1.509 (4)
C5—H50.93C17—H17A0.97
C6—H60.93C17—H17B0.97
C7—N11.501 (3)C18—N21.496 (3)
C7—P11.813 (3)C18—C17ii1.509 (4)
C7—H7A0.97C18—H18A0.97
C7—H7B0.97C18—H18B0.97
C8—N11.501 (3)Cd1—Cl42.4110 (9)
C8—C9i1.505 (4)Cd1—Cl32.4224 (8)
C8—H8A0.97Cd1—Cl12.4673 (8)
C8—H8B0.97Cd1—Cl22.5314 (8)
C9—N11.500 (3)N1—H10.91
C9—C8i1.505 (4)N2—H2A0.91
C9—H9A0.97O1—P11.549 (2)
C9—H9B0.97O1—H1A0.82
C10—C111.360 (5)O2—P11.482 (2)
C10—C151.382 (5)O3—P21.544 (2)
C10—P21.785 (3)O3—H3A0.82
C11—C121.395 (5)O4—P21.488 (2)
C11—H110.93O1W—H2W0.85
C12—C131.355 (6)O1W—H1W0.85
C12—H120.93O2W—H3W0.85
C13—C141.369 (6)O2W—H4W0.8499
C6—C1—C2119.6 (3)C14—C15—H15119.9
C6—C1—P1119.7 (3)N2—C16—P2113.89 (19)
C2—C1—P1120.6 (2)N2—C16—H16A108.8
C3—C2—C1120.5 (3)P2—C16—H16A108.8
C3—C2—H2119.8N2—C16—H16B108.8
C1—C2—H2119.8P2—C16—H16B108.8
C4—C3—C2119.9 (4)H16A—C16—H16B107.7
C4—C3—H3120.1N2—C17—C18ii110.7 (2)
C2—C3—H3120.1N2—C17—H17A109.5
C5—C4—C3121.1 (3)C18ii—C17—H17A109.5
C5—C4—H4119.5N2—C17—H17B109.5
C3—C4—H4119.5C18ii—C17—H17B109.5
C4—C5—C6120.1 (3)H17A—C17—H17B108.1
C4—C5—H5119.9N2—C18—C17ii111.9 (2)
C6—C5—H5119.9N2—C18—H18A109.2
C1—C6—C5118.8 (4)C17ii—C18—H18A109.2
C1—C6—H6120.6N2—C18—H18B109.2
C5—C6—H6120.6C17ii—C18—H18B109.2
N1—C7—P1117.00 (19)H18A—C18—H18B107.9
N1—C7—H7A108.0Cl4—Cd1—Cl3114.14 (3)
P1—C7—H7A108.0Cl4—Cd1—Cl1126.99 (3)
N1—C7—H7B108.0Cl3—Cd1—Cl1107.34 (3)
P1—C7—H7B108.0Cl4—Cd1—Cl2100.33 (3)
H7A—C7—H7B107.3Cl3—Cd1—Cl2106.91 (3)
N1—C8—C9i110.9 (2)Cl1—Cd1—Cl297.59 (3)
N1—C8—H8A109.5C9—N1—C7113.9 (2)
C9i—C8—H8A109.5C9—N1—C8109.7 (2)
N1—C8—H8B109.5C7—N1—C8113.3 (2)
C9i—C8—H8B109.5C9—N1—H1106.5
H8A—C8—H8B108.1C7—N1—H1106.5
N1—C9—C8i109.6 (2)C8—N1—H1106.5
N1—C9—H9A109.7C18—N2—C17109.1 (2)
C8i—C9—H9A109.7C18—N2—C16109.3 (2)
N1—C9—H9B109.7C17—N2—C16113.6 (2)
C8i—C9—H9B109.7C18—N2—H2A108.2
H9A—C9—H9B108.2C17—N2—H2A108.2
C11—C10—C15119.2 (3)C16—N2—H2A108.2
C11—C10—P2120.7 (3)P1—O1—H1A109.5
C15—C10—P2120.1 (3)P2—O3—H3A109.5
C10—C11—C12120.5 (4)H2W—O1W—H1W105.2
C10—C11—H11119.7H3W—O2W—H4W105.2
C12—C11—H11119.7O2—P1—O1115.04 (13)
C13—C12—C11120.0 (4)O2—P1—C1112.74 (13)
C13—C12—H12120.0O1—P1—C1108.41 (14)
C11—C12—H12120.0O2—P1—C7109.88 (14)
C12—C13—C14120.1 (3)O1—P1—C7103.21 (13)
C12—C13—H13119.9C1—P1—C7106.85 (13)
C14—C13—H13119.9O4—P2—O3116.81 (13)
C13—C14—C15120.1 (4)O4—P2—C10114.27 (14)
C13—C14—H14120.0O3—P2—C10106.45 (14)
C15—C14—H14120.0O4—P2—C16108.72 (14)
C10—C15—C14120.1 (4)O3—P2—C16104.15 (13)
C10—C15—H15119.9C10—P2—C16105.42 (13)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O40.852.433.038 (3)129
O1W—H2W···Cl20.852.823.237 (2)112
O1W—H2W···Cl10.852.553.346 (3)155
O1—H1A···O40.821.722.533 (3)175
N2—H2A···O1W0.911.822.732 (3)178
O2W—H4W···Cl2iii0.852.493.323 (2)167
O2W—H3W···Cl3ii0.852.363.198 (3)167
O3—H3A···O2iv0.821.692.482 (3)161
N1—H1···O2Wv0.911.812.708 (3)167
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z; (v) x, y1, z.
(II) 1,4-Bis{[hydroxy(phenyl)phosphoryl]methyl}piperazine-1,4-diium tetrachloridocobaltate(II) dihydrate top
Crystal data top
(C18H26N2O4P2)[CoCl4]·2H2OZ = 2
Mr = 633.11F(000) = 650
Triclinic, P1Dx = 1.576 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6448 (4) ÅCell parameters from 2119 reflections
b = 14.4213 (14) Åθ = 2.9–29.5°
c = 14.4804 (16) ŵ = 1.20 mm1
α = 87.523 (8)°T = 293 K
β = 80.727 (7)°Plate, purple
γ = 76.990 (7)°0.30 × 0.25 × 0.20 mm
V = 1334.3 (2) Å3
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
4786 independent reflections
Radiation source: fine-focus sealed tube2993 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 10.4170 pixels mm-1θmax = 25.2°, θmin = 2.9°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1417
Tmin = 0.715, Tmax = 0.795l = 1617
10695 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0602P)2]
where P = (Fo2 + 2Fc2)/3
4786 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 1.06 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
(C18H26N2O4P2)[CoCl4]·2H2Oγ = 76.990 (7)°
Mr = 633.11V = 1334.3 (2) Å3
Triclinic, P1Z = 2
a = 6.6448 (4) ÅMo Kα radiation
b = 14.4213 (14) ŵ = 1.20 mm1
c = 14.4804 (16) ÅT = 293 K
α = 87.523 (8)°0.30 × 0.25 × 0.20 mm
β = 80.727 (7)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
4786 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2993 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.795Rint = 0.061
10695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 0.99Δρmax = 1.06 e Å3
4786 reflectionsΔρmin = 0.37 e Å3
300 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0647 (10)0.1116 (4)0.8477 (4)0.0379 (15)
C20.2435 (11)0.0933 (5)0.8902 (5)0.0515 (18)
H20.37500.07620.85410.062*
C30.2246 (14)0.1007 (6)0.9859 (5)0.065 (2)
H30.34360.09011.01440.078*
C40.0325 (15)0.1234 (5)1.0383 (5)0.064 (2)
H40.02120.12671.10300.077*
C50.1461 (13)0.1417 (5)0.9979 (5)0.061 (2)
H50.27670.15771.03500.073*
C60.1302 (11)0.1360 (5)0.9009 (5)0.0505 (18)
H60.24970.14850.87270.061*
C70.0818 (9)0.0093 (4)0.6916 (4)0.0285 (13)
H7A0.21330.05120.70100.034*
H7B0.02800.02950.73480.034*
C80.1979 (8)0.0103 (4)0.5195 (4)0.0282 (13)
H8A0.33920.01660.53120.034*
H8B0.17460.07900.52240.034*
C90.1750 (8)0.0179 (4)0.5757 (4)0.0313 (14)
H9A0.27350.00560.62270.038*
H9B0.20490.08670.58000.038*
C100.3287 (10)0.3637 (4)0.8688 (4)0.0371 (15)
C110.4441 (11)0.3708 (6)0.9371 (5)0.060 (2)
H110.58500.37150.92070.072*
C120.3535 (14)0.3771 (6)1.0310 (5)0.076 (3)
H120.43240.38341.07700.091*
C130.1473 (13)0.3737 (5)1.0551 (5)0.065 (2)
H130.08810.37561.11790.077*
C140.0285 (12)0.3678 (6)0.9892 (5)0.064 (2)
H140.11240.36761.00650.077*
C150.1178 (10)0.3619 (5)0.8952 (5)0.0499 (18)
H150.03680.35670.84980.060*
C160.3799 (9)0.4699 (4)0.6981 (4)0.0303 (13)
H16A0.23550.49900.72200.036*
H16B0.46700.50850.71810.036*
C170.6281 (8)0.4255 (4)0.5483 (4)0.0328 (14)
H17A0.66400.35970.56870.039*
H17B0.72510.45880.56820.039*
C180.3533 (9)0.5702 (4)0.5569 (4)0.0293 (13)
H18A0.44510.60650.57650.035*
H18B0.21100.59920.58410.035*
Co10.43731 (12)0.25133 (6)0.28903 (6)0.0370 (3)
Cl10.1941 (2)0.39248 (11)0.30934 (11)0.0430 (4)
Cl20.4480 (2)0.19886 (11)0.44188 (11)0.0448 (4)
Cl30.7480 (2)0.28356 (12)0.22824 (12)0.0493 (5)
Cl40.3704 (3)0.12799 (12)0.21842 (12)0.0549 (5)
N10.0462 (7)0.0236 (3)0.5931 (3)0.0262 (11)
H10.06820.08760.58540.031*
N20.4086 (7)0.4704 (3)0.5925 (3)0.0263 (11)
H2A0.32020.43730.57430.032*
O10.3144 (6)0.1183 (3)0.6809 (3)0.0415 (11)
H1A0.32580.17340.68500.062*
O20.0824 (7)0.1810 (3)0.6858 (3)0.0501 (12)
O30.6850 (6)0.3327 (3)0.7478 (3)0.0390 (10)
H3A0.74280.28570.71600.059*
O40.3662 (7)0.2855 (3)0.6954 (3)0.0462 (12)
O1W0.1196 (6)0.3810 (3)0.5436 (3)0.0547 (13)
H1W0.14710.32820.57250.082*
H2W0.14150.36730.48580.082*
O2W0.0528 (7)0.7890 (3)0.5862 (3)0.0495 (12)
H3W0.08510.76270.63700.074*
H4W0.07530.78870.58700.074*
P10.0885 (2)0.11056 (11)0.72246 (11)0.0326 (4)
P20.4450 (2)0.35160 (10)0.74902 (11)0.0314 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (4)0.027 (3)0.034 (4)0.003 (3)0.000 (3)0.008 (3)
C20.061 (5)0.055 (5)0.038 (4)0.009 (4)0.010 (4)0.012 (3)
C30.084 (6)0.071 (6)0.041 (5)0.010 (5)0.022 (5)0.000 (4)
C40.101 (7)0.058 (5)0.032 (4)0.013 (5)0.009 (5)0.005 (4)
C50.072 (5)0.066 (5)0.036 (5)0.007 (4)0.010 (4)0.007 (4)
C60.054 (4)0.050 (4)0.043 (5)0.007 (4)0.001 (4)0.000 (3)
C70.040 (3)0.030 (3)0.017 (3)0.011 (3)0.005 (3)0.004 (2)
C80.024 (3)0.032 (3)0.030 (3)0.006 (3)0.007 (3)0.004 (3)
C90.022 (3)0.040 (4)0.032 (4)0.007 (3)0.004 (3)0.003 (3)
C100.050 (4)0.034 (4)0.027 (4)0.009 (3)0.007 (3)0.003 (3)
C110.047 (4)0.090 (6)0.041 (5)0.011 (4)0.003 (4)0.008 (4)
C120.085 (6)0.115 (8)0.030 (5)0.027 (6)0.014 (4)0.004 (5)
C130.082 (6)0.077 (6)0.033 (5)0.023 (5)0.004 (4)0.007 (4)
C140.060 (5)0.079 (6)0.049 (5)0.019 (5)0.011 (4)0.009 (4)
C150.042 (4)0.064 (5)0.043 (4)0.012 (4)0.001 (3)0.004 (4)
C160.032 (3)0.035 (3)0.022 (3)0.004 (3)0.001 (3)0.002 (3)
C170.032 (3)0.029 (3)0.031 (4)0.002 (3)0.001 (3)0.001 (3)
C180.030 (3)0.023 (3)0.031 (4)0.001 (3)0.001 (3)0.003 (3)
Co10.0358 (5)0.0374 (5)0.0367 (5)0.0074 (4)0.0023 (4)0.0047 (4)
Cl10.0377 (9)0.0444 (9)0.0440 (10)0.0008 (8)0.0085 (8)0.0048 (8)
Cl20.0475 (10)0.0466 (10)0.0382 (10)0.0084 (8)0.0053 (8)0.0072 (8)
Cl30.0408 (9)0.0566 (11)0.0487 (11)0.0156 (8)0.0076 (8)0.0109 (8)
Cl40.0683 (12)0.0558 (11)0.0477 (11)0.0259 (10)0.0084 (9)0.0138 (8)
N10.031 (3)0.021 (2)0.027 (3)0.004 (2)0.006 (2)0.006 (2)
N20.023 (2)0.028 (3)0.028 (3)0.005 (2)0.002 (2)0.005 (2)
O10.049 (3)0.030 (2)0.046 (3)0.017 (2)0.003 (2)0.007 (2)
O20.064 (3)0.034 (2)0.046 (3)0.016 (2)0.022 (2)0.013 (2)
O30.039 (2)0.035 (3)0.037 (3)0.005 (2)0.005 (2)0.008 (2)
O40.067 (3)0.036 (2)0.040 (3)0.020 (2)0.010 (2)0.000 (2)
O1W0.046 (3)0.062 (3)0.059 (3)0.010 (3)0.016 (2)0.016 (2)
O2W0.050 (3)0.030 (2)0.069 (3)0.008 (2)0.012 (2)0.002 (2)
P10.0409 (9)0.0271 (9)0.0281 (9)0.0029 (8)0.0048 (7)0.0074 (7)
P20.0401 (9)0.0235 (8)0.0308 (9)0.0070 (7)0.0054 (7)0.0017 (7)
Geometric parameters (Å, º) top
C1—C61.375 (9)C13—H130.93
C1—C21.393 (9)C14—C151.392 (10)
C1—P11.795 (6)C14—H140.93
C2—C31.378 (10)C15—H150.93
C2—H20.93C16—N21.511 (7)
C3—C41.354 (11)C16—P21.817 (6)
C3—H30.93C16—H16A0.97
C4—C51.374 (10)C16—H16B0.97
C4—H40.93C17—N21.505 (7)
C5—C61.396 (9)C17—C18ii1.508 (8)
C5—H50.93C17—H17A0.97
C6—H60.93C17—H17B0.97
C7—N11.512 (7)C18—N21.494 (6)
C7—P11.817 (5)C18—C17ii1.508 (8)
C7—H7A0.97C18—H18A0.97
C7—H7B0.97C18—H18B0.97
C8—N11.491 (6)Co1—Cl32.2502 (16)
C8—C9i1.495 (7)Co1—Cl42.2509 (17)
C8—H8A0.97Co1—Cl12.2935 (18)
C8—H8B0.97Co1—Cl22.3148 (18)
C9—C8i1.495 (7)N1—H10.91
C9—N11.514 (7)N2—H2A0.91
C9—H9A0.97O1—P11.551 (4)
C9—H9B0.97O1—H1A0.82
C10—C111.365 (9)O2—P11.494 (4)
C10—C151.398 (8)O3—P21.553 (4)
C10—P21.781 (6)O3—H3A0.82
C11—C121.394 (10)O4—P21.486 (4)
C11—H110.93O1W—H1W0.85
C12—C131.370 (10)O1W—H2W0.85
C12—H120.93O2W—H3W0.85
C13—C141.349 (10)O2W—H4W0.85
C6—C1—C2120.3 (6)C10—C15—H15119.8
C6—C1—P1119.7 (5)N2—C16—P2113.7 (4)
C2—C1—P1119.9 (5)N2—C16—H16A108.8
C3—C2—C1119.7 (7)P2—C16—H16A108.8
C3—C2—H2120.1N2—C16—H16B108.8
C1—C2—H2120.1P2—C16—H16B108.8
C4—C3—C2119.9 (8)H16A—C16—H16B107.7
C4—C3—H3120.1N2—C17—C18ii110.3 (5)
C2—C3—H3120.1N2—C17—H17A109.6
C3—C4—C5121.4 (7)C18ii—C17—H17A109.6
C3—C4—H4119.3N2—C17—H17B109.6
C5—C4—H4119.3C18ii—C17—H17B109.6
C4—C5—C6119.6 (7)H17A—C17—H17B108.1
C4—C5—H5120.2N2—C18—C17ii112.1 (4)
C6—C5—H5120.2N2—C18—H18A109.2
C1—C6—C5119.1 (7)C17ii—C18—H18A109.2
C1—C6—H6120.4N2—C18—H18B109.2
C5—C6—H6120.4C17ii—C18—H18B109.2
N1—C7—P1116.8 (3)H18A—C18—H18B107.9
N1—C7—H7A108.1Cl3—Co1—Cl4112.62 (7)
P1—C7—H7A108.1Cl3—Co1—Cl1108.26 (7)
N1—C7—H7B108.1Cl4—Co1—Cl1120.58 (7)
P1—C7—H7B108.1Cl3—Co1—Cl2109.02 (7)
H7A—C7—H7B107.3Cl4—Co1—Cl2103.41 (7)
N1—C8—C9i111.0 (4)Cl1—Co1—Cl2101.79 (7)
N1—C8—H8A109.4C8—N1—C7113.4 (4)
C9i—C8—H8A109.4C8—N1—C9109.9 (4)
N1—C8—H8B109.4C7—N1—C9114.0 (4)
C9i—C8—H8B109.4C8—N1—H1106.3
H8A—C8—H8B108.0C7—N1—H1106.3
C8i—C9—N1109.2 (5)C9—N1—H1106.3
C8i—C9—H9A109.8C18—N2—C17108.6 (4)
N1—C9—H9A109.8C18—N2—C16110.0 (4)
C8i—C9—H9B109.8C17—N2—C16113.0 (4)
N1—C9—H9B109.8C18—N2—H2A108.4
H9A—C9—H9B108.3C17—N2—H2A108.4
C11—C10—C15118.6 (6)C16—N2—H2A108.4
C11—C10—P2121.2 (5)P1—O1—H1A109.5
C15—C10—P2120.2 (5)P2—O3—H3A109.5
C10—C11—C12120.8 (7)H1W—O1W—H2W105.7
C10—C11—H11119.6H3W—O2W—H4W106.1
C12—C11—H11119.6O2—P1—O1115.7 (2)
C13—C12—C11119.4 (7)O2—P1—C1112.9 (3)
C13—C12—H12120.3O1—P1—C1108.1 (3)
C11—C12—H12120.3O2—P1—C7110.1 (3)
C14—C13—C12121.2 (7)O1—P1—C7103.1 (2)
C14—C13—H13119.4C1—P1—C7106.2 (2)
C12—C13—H13119.4O4—P2—O3117.4 (3)
C13—C14—C15119.7 (7)O4—P2—C10114.3 (3)
C13—C14—H14120.2O3—P2—C10106.2 (3)
C15—C14—H14120.2O4—P2—C16108.3 (2)
C14—C15—C10120.3 (7)O3—P2—C16104.0 (2)
C14—C15—H15119.8C10—P2—C16105.6 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O40.852.453.049 (6)128
O1W—H2W···Cl20.852.823.248 (5)113
O1W—H2W···Cl10.852.543.351 (5)159
O1—H1A···O40.821.712.532 (5)176
N2—H2A···O1W0.911.832.734 (6)174
O2W—H4W···Cl2iii0.852.543.382 (4)169
O2W—H3W···Cl3ii0.852.393.217 (5)163
O3—H3A···O2iv0.821.712.486 (6)157
N1—H1···O2Wv0.911.802.698 (6)167
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z; (v) x, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula(C18H26N2O4P2)[CdCl4]·2H2O(C18H26N2O4P2)[CoCl4]·2H2O
Mr686.58633.11
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)6.6159 (3), 14.5242 (7), 14.5449 (7)6.6448 (4), 14.4213 (14), 14.4804 (16)
α, β, γ (°)87.035 (4), 81.713 (4), 76.947 (4)87.523 (8), 80.727 (7), 76.990 (7)
V3)1347.03 (11)1334.3 (2)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.361.20
Crystal size (mm)0.30 × 0.25 × 0.200.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
diffractometer
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Multi-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.686, 0.7720.715, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
10146, 4832, 3928 10695, 4786, 2993
Rint0.0360.061
(sin θ/λ)max1)0.5990.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.069, 1.01 0.069, 0.157, 0.99
No. of reflections48324786
No. of parameters300300
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.531.06, 0.37

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O40.852.433.038 (3)128.7
O1W—H2W···Cl20.852.823.237 (2)111.8
O1W—H2W···Cl10.852.553.346 (3)155.3
O1—H1A···O40.821.722.533 (3)175.0
N2—H2A···O1W0.911.822.732 (3)177.6
O2W—H4W···Cl2i0.852.493.323 (2)166.6
O2W—H3W···Cl3ii0.852.363.198 (3)167.1
O3—H3A···O2iii0.821.692.482 (3)160.6
N1—H1···O2Wiv0.911.812.708 (3)166.6
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O40.852.453.049 (6)128.1
O1W—H2W···Cl20.852.823.248 (5)113.2
O1W—H2W···Cl10.852.543.351 (5)158.7
O1—H1A···O40.821.712.532 (5)176.1
N2—H2A···O1W0.911.832.734 (6)173.8
O2W—H4W···Cl2i0.852.543.382 (4)169.0
O2W—H3W···Cl3ii0.852.393.217 (5)163.1
O3—H3A···O2iii0.821.712.486 (6)157.3
N1—H1···O2Wiv0.911.802.698 (6)166.7
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds