Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Crystal structures are reported for three substituted 1H-imid­azole-4,5-dicarbo­nitrile compounds used as catalysts for the coupling reaction of nucleoside methyl phosphon­amidites, namely 2-(3′,5′-di­methyl­biphenyl-2-yl)-1H-imid­azole-4,5-di­carbo­nitrile, C19H14N4, (I), 2-(2′,4′,6′-tri­methyl­biphenyl-2-yl)-1H-imid­azole-4,5-dicarbo­nitrile, C20H16N4, (II), and 2-[8-(3,5-dimethyl­phen­yl)naphthalen-1-yl]-1H-imid­azole-4,5-dicarbonitrile, C23H16N4, (III). The asymmetric unit of (I) contains two independent mol­ecules with similar conformations. There is steric repulsion between the imid­azole group and the terminal phenyl group in all three compounds, resulting in the nonplanarity of the mol­ecules. The naphthalene group of (III) shows significant deviation from planarity. The C—N bond lengths in the imidazole rings range from 1.325 (2) to 1.377 (2) Å. The mol­ecules are connected into zigzag chains by inter­molecular N—H...Nimidazole [for (I)] or N—H...·Ncyano [for (II) and (III)] hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113009293/eg3118sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113009293/eg3118Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113009293/eg3118IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113009293/eg3118IIIsup4.hkl
Contains datablock III

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113009293/eg3118Isup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113009293/eg3118IIsup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113009293/eg3118IIIsup7.cml
Supplementary material

CCDC references: 950366; 950367; 950368

Comment top

Methylphosphonate oligonucleotides differ from conventional oligonucleotides by the replacement of a negatively charged O atom at the phosphonate linkage by a methyl group. They are more stable to degradation by cellular nucleases than conventional oligonucleotides and can be applied in the antisense concept to control gene expression in mammalian cells (Uhlmann & Peyman, 1990). The P atoms in methylphosphonate oligonucleotides are chiral. RP-configured molecules bind better to their target strand than SP-configured ones (Lebedev & Wickstrom, 1996). The phosphoramidite approach can be used for the synthesis of methylphosphonate oligonucleotides (Jäger & Engels, 1984). The reaction is activated by the use of tetrazole but no stereocontrol occurs at the P atom. Also, the use of tetrazoles with a chiral substituent shows only weak selectivity (Schell & Engels, 1997). Therefore, substituted 1H-imidazole-4,5-dicarbonitriles were tested as activators for stereoselection during the synthesis of dinucleoside methylphosphonates. Selectivities up to 84/16 (RP/SP) have been reported by Schell & Engels (1998). Single crystals were obtained for three different substituted 1H-imidazole-4,5-dicarbonitriles used for these experiments and the crystal structures of these three compounds, (I), (II) and (III), are reported here.

The crystal structure of (I) contains two crystallographically independent molecules, A and B (Fig. 1), which have very similar conformations. The angle between the planes of the six-membered rings of the biphenyl group is 44.91 (6)° for molecule A and 42.09 (6)° for molecule B. The angle between the plane of the imidazole group and the plane of the central phenyl group is 46.02 (7)° for molecule A and 39.57 (7)° for molecule B. There is significant steric repulsion between the dimethylphenyl group and the imidazole group [shortest contacts: C5···C13 = 3.115 (3) Å, N5···C20 = 3.094 (3) Å, N5···C25 = 3.144 (2) Å and C20···C32 = 3.115 (3) Å]. These steric contacts are not only responsible for the non-planar conformation of the biphenyl group, but also result in an out-of-plane distortion of the dimethylphenyl and imidazole groups with respect to the plane of the central phenyl ring. Consequently, the C6—C7—C12—C13 and C25—C26—C31—C32 torsion angles are -6.6 (3) and -9.6 (3)°, respectively. The amino N atoms are planar, the sums of the three valence angles about atoms N2 and N5 being 359.4 (8) and 360.0 (9)°, respectively. The molecules are connected by N—H···N hydrogen bonds (Fig. 2, Table 1) between the imidazole groups to form zigzag chains parallel to the b axis direction. These chains are connected by weak intermolecular C—H···N contacts (Table 1) to give a three-dimensional structure.

The molecular structure of (II) is shown in Fig. 3. The angle between the planes of the six-membered rings of the biphenyl group is 71.20 (4)°, almost 30° larger than the corresponding values in (I), and it results from steric repulsions between the ortho methyl groups and the imidazole group and C10—H10A bond [shortest contacts: C10···C18 = 3.261 (2) Å and C1···H20C = 2.75 Å]. The angle between the planes of the imidazole ring and the central phenyl ring is 29.39 (6)°, slightly smaller than the corresponding value observed in (I), despite the short intramolecular contact distance of 2.879 (2) Å between atoms N1 and C12. The C1—C6—C11—C12 torsion angle of 2.7 (2)° again shows a small out-of-plane distortion of the trimethylphenyl and imidazole groups from the plane of the central phenyl ring, but this distortion is smaller than the corresponding distortion observed in (I). The amino N atom is planar, the sum of the three valence angles about atom N1 being 359.6 (7)°. The crystal packing of (II) is shown in Fig. 4. The molecules are connected by rather weak intermolecular hydrogen bonds between the N—H bond and a cyano N atom of a neighbouring molecule (Table 2) to form zigzag chains along the c axis direction. The long H···N distance of 2.351 (15) Å and the small N—H—N angle of 127.7 (12)° show this hydrogen bond to be rather weak. The crystal packing also shows two weak intermolecular C—H···Ncyano contacts (Table 2). One of these results in an additional stabilization of the hydrogen-bonded chain and the other connects the chains along the b axis direction. Along the a axis direction the molecules are only connected by intermolecular C—H···πimidazole contacts (final three entries of Table 2) These contacts are very weak. Consequently, the crystal habit is a (100) plate.

The molecular structure of (III) is shown in Fig. 5. The naphthalene group shows considerable deviation from planarity (mean deviation from best plane = 0.041 Å). Ring atoms C2 and C10 deviate by 0.0567 (14) and 0.0788 (14) Å, respectively, in opposite directions from the best plane of the naphthalene group. The out-of-plane deviation from the naphthalene plane is even more pronounced for substituent atoms C11 and C19 [deviations of 0.221 (2) and 0.299 (2) Å, respectively] as a result of steric interactions between the dimethylphenyl group and the imidazole group. The shortest contact distances are: C11···N2 = 2.908 (2) Å, C11···C19 = 2.988 (2) Å and C12···C19 = 2.937 (2) Å. Steric repulsion between the dimethylphenyl and imidazole groups also results in rather large values of the C1—C2—C11, C2—C1—C10 and C1—C10—C19 bond angles [124.59 (15), 126.37 (14) and 123.98 (14)°, respectively]. The angle between the naphthalene plane and the dimethylphenyl plane is 55.20 (4)°. The angle between the naphthalene plane and the imidazole plane is 54.11 (6)°. The angle between the dimethylphenyl plane and the imidazole plane is 22.71 (5)°. The amino N atom again is planar, the sum of the three valence angles about atom N2 being 359.9 (10)°. The crystal packing of (III) is shown in Fig. 6. The molecules are connected by intermolecular N—H···Ncyano hydrogen bonds (Table 3) to form zigzag chains parallel to the c axis direction. There are no other short intermolecular contact distances. The shortest intermolecular C—H···N contact has an H···N distance of 2.74 Å.

The bond lengths and angles in the dicyanoimidazole groups of (I), (II) and (III) are in excellent agreement. They are also very similar to the corresponding bond lengths and angles observed in the crystal structure of 1H-imidazole-4,5-dicarbonitrile (Barni et al., 1997). The C—N bond lengths in the imidazole rings range from 1.325 (2) to 1.377 (2) Å, thus showing a considerable degree of delocalization of the double bonds in the ring. The N—H···Nimidazole hydrogen bond in (I) is considerably shorter than the N—H···Ncyano hydrogen bonds in (II) and (III).

The three title compounds have been tested as activators in the coupling reaction to produce a protected thymine dinucleoside methylphosphonate TpT (Schell & Engels, 1998). The RP/SP stereoselectivities were 65/35 for (I) and 77/23 for (II), while no reaction occurred for (III). Thus, the stereoselectivity of these compounds depends very much on the substituent of the imidazole group.

Related literature top

For related literature, see: Barni et al. (1997); Begland et al. (1974); Jäger & Engels (1984); Lebedev & Wickstrom (1996); Moriya et al. (1984); Schell & Engels (1997, 1998); Uhlmann & Peyman (1990).

Experimental top

The starting materials for the preparation of the compounds were 2-cyano-3',5'-dimethylbiphenyl for (I), 2-cyano-2',4',6'-trimethylbiphenyl for (II) and 1-cyano-8-(3,5-dimethylphenyl)-naphthalene for (III). The starting material [How much?] was reacted for 2 h with diisobutylaluminiumhydride [How much?] in ether [How much?], and then for 5 min with 2,3-diaminomaleonitrile [How much?] and concentrated H2SO4 [How much?] in tetrahydrofuran [How much?]. Thus, the cyano group of the starting compound was replaced by a 2-amino-3-methylideneamino-but-2-enedinitrile chain (Begland et al., 1974). The products were purified by recrystallization from dichloromethane–n-hexane [Solvent ratio?]. Subsequently, they were further reacted with nicotinamide [How much?] and N-chlorosuccinimide [How much?], resulting in the cyclization of the 2-amino-3-methylideneamino-but-2-enedinitrile chain to form the desired 1H-imidazole-4,5-dicarbonitrile group (Moriya et al., 1984). The final products were recrystallized from dichloromethane/n-hexane [Solvent ratio?], resulting in colourless crystals of (I), (II) or (III). The yields of the three products were 74, 77 and 63%, respectively. [Please give quantities of all reagents, or at least mole ratios]

Refinement top

Friedel opposites were merged for data set (III) and no attempt was made to determine the direction of the c axis for the polar space group. C-bound H atoms were positioned geometrically and treated as riding, with Cplanar—H = 0.95 Å for (I) and (II) and 0.93 Å for (III), and Cmethyl—H = 0.98 Å for (I) and (II) and 0.96 Å for (III), with Uiso(H) = 1.2Ueq(planar parent C atom) or 1.5Ueq(methyl parent C atom). N-bound H atoms were located from difference Fourier syntheses and their coordinates and isotropic displacement parameters were refined.

Computing details top

Data collection: SMART (Siemens, 1995) for (I), (II); CAD-4 Software (Enraf–Nonius, 1989) for (III). Cell refinement: SMART (Siemens, 1995) for (I), (II); CAD-4 Software (Enraf–Nonius, 1989) for (III). Data reduction: SAINT (Siemens, 1995) for (I), (II); MolEN (Fair, 1990) for (III). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structures of the two molecules of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. (a) Molecule A and (b) molecule B.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down [100]. Displacement ellipsoids are drawn at the 50% probabilty level. C-bound H atoms have been omitted for clarity. Intermolecular hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) -x + 3/2, y + 1/2, -z + 1/2; (iii) -x + 3/2, y - 1/2, -z + 1/2.]
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. The crystal packing of (II), viewed down [010]. Displacement ellipsoids are drawn at the 50% probabilty level. C-bound H atoms have been omitted for clarity. Intermolecular hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x, -y + 1/2, z + 1/2; (iv) x, -y + 1/2, z - 1/2.]
[Figure 5] Fig. 5. The molecular structure of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 6] Fig. 6. The crystal packing of (III), viewed down [010]. Displacement ellipsoids are drawn at the 50% probabilty level. C-bound H atoms have been omitted for clarity. Intermolecular hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) -x + 1, -y, z + 1/2; (ii) -x + 1, -y, z - 1/2.]
(I) 2-(3',5'-Dimethylbiphenyl-2-yl)-1H-imidazole-4,5-dicarbonitrile top
Crystal data top
C19H14N4F(000) = 1248
Mr = 298.34Dx = 1.229 Mg m3
Monoclinic, P21/nMelting point: 425(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.771 (2) ÅCell parameters from 244 reflections
b = 16.807 (2) Åθ = 3–23°
c = 19.692 (2) ŵ = 0.08 mm1
β = 93.976 (7)°T = 134 K
V = 3226.1 (8) Å3Block, colourless
Z = 80.36 × 0.30 × 0.15 mm
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
7317 independent reflections
Radiation source: normal-focus sealed tube3808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 1212
Tmin = 0.867, Tmax = 0.989k = 2121
47542 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.03P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.002
7317 reflectionsΔρmax = 0.22 e Å3
428 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (2)
Crystal data top
C19H14N4V = 3226.1 (8) Å3
Mr = 298.34Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.771 (2) ŵ = 0.08 mm1
b = 16.807 (2) ÅT = 134 K
c = 19.692 (2) Å0.36 × 0.30 × 0.15 mm
β = 93.976 (7)°
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
7317 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
3808 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.989Rint = 0.067
47542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.22 e Å3
7317 reflectionsΔρmin = 0.17 e Å3
428 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.65061 (16)0.31498 (8)0.18696 (7)0.0262 (4)
N20.66519 (16)0.42836 (9)0.13001 (8)0.0240 (4)
N30.32788 (19)0.22942 (10)0.14701 (9)0.0458 (5)
N40.35949 (17)0.46877 (10)0.03112 (9)0.0386 (5)
N50.83027 (16)0.68623 (9)0.21618 (8)0.0244 (4)
N60.78633 (15)0.58594 (8)0.14454 (7)0.0246 (4)
N71.14192 (19)0.77904 (11)0.18084 (9)0.0463 (5)
N81.05867 (19)0.57761 (10)0.03535 (9)0.0473 (5)
C10.8832 (2)0.30175 (11)0.36994 (10)0.0394 (6)
H1A0.96540.27290.36480.047*
C20.8079 (3)0.28650 (12)0.42548 (11)0.0461 (6)
C30.6906 (3)0.33087 (13)0.43355 (11)0.0524 (7)
H3A0.63980.32170.47220.063*
C40.6451 (2)0.38853 (12)0.38642 (11)0.0436 (6)
C50.7203 (2)0.40035 (11)0.33000 (10)0.0331 (5)
H5A0.68860.43800.29650.040*
C60.8407 (2)0.35880 (11)0.32105 (10)0.0306 (5)
C70.9277 (2)0.37580 (10)0.26369 (10)0.0291 (5)
C81.0694 (2)0.38304 (12)0.27705 (12)0.0412 (6)
H8A1.10800.37380.32200.049*
C91.1549 (2)0.40316 (13)0.22702 (13)0.0490 (6)
H9A1.25070.40800.23800.059*
C101.1024 (2)0.41641 (12)0.16112 (12)0.0448 (6)
H10A1.16130.43110.12680.054*
C110.9627 (2)0.40803 (11)0.14577 (11)0.0349 (5)
H11A0.92570.41630.10040.042*
C120.87566 (19)0.38757 (10)0.19627 (10)0.0267 (5)
C130.73079 (19)0.37624 (10)0.17362 (9)0.0239 (4)
C140.52892 (19)0.32911 (10)0.14981 (9)0.0248 (4)
C150.53520 (18)0.39910 (10)0.11427 (9)0.0237 (4)
C160.8508 (3)0.22143 (13)0.47562 (11)0.0680 (9)
H16A0.95000.22450.48680.102*
H16B0.82790.16940.45530.102*
H16C0.80240.22820.51720.102*
C170.5192 (3)0.43783 (13)0.39721 (12)0.0625 (8)
H17A0.54720.48930.41700.094*
H17B0.46140.40980.42820.094*
H17C0.46740.44640.35340.094*
C180.4169 (2)0.27400 (11)0.14893 (9)0.0301 (5)
C190.4373 (2)0.43810 (11)0.06859 (10)0.0276 (5)
C200.8040 (2)0.59259 (10)0.34993 (10)0.0291 (5)
H20A0.82220.55870.31300.035*
C210.8987 (2)0.59682 (11)0.40554 (10)0.0332 (5)
C220.8713 (2)0.64726 (12)0.45888 (10)0.0389 (5)
H22A0.93440.64990.49780.047*
C230.7535 (2)0.69400 (12)0.45661 (10)0.0390 (5)
C240.6598 (2)0.68791 (11)0.40072 (10)0.0341 (5)
H24A0.57850.71910.39910.041*
C250.6828 (2)0.63663 (11)0.34664 (9)0.0274 (5)
C260.5753 (2)0.62615 (10)0.28950 (10)0.0291 (5)
C270.4381 (2)0.62121 (12)0.30480 (11)0.0400 (6)
H27A0.41550.62900.35050.048*
C280.3347 (2)0.60536 (12)0.25553 (12)0.0466 (6)
H28A0.24230.60270.26760.056*
C290.3642 (2)0.59334 (12)0.18868 (12)0.0428 (6)
H29A0.29330.58070.15490.051*
C300.4988 (2)0.59996 (11)0.17173 (11)0.0342 (5)
H30A0.51970.59300.12570.041*
C310.60429 (19)0.61677 (10)0.22107 (10)0.0262 (4)
C320.74044 (19)0.62799 (10)0.19571 (9)0.0236 (4)
C330.93823 (19)0.68201 (10)0.17594 (9)0.0252 (4)
C340.9100 (2)0.61976 (11)0.13207 (9)0.0260 (4)
C351.0268 (2)0.54699 (12)0.40878 (11)0.0449 (6)
H35A1.08870.56440.44720.067*
H35B1.07260.55310.36640.067*
H35C1.00270.49100.41490.067*
C360.7284 (2)0.75154 (14)0.51375 (11)0.0598 (8)
H36A0.76860.80340.50400.090*
H36B0.77080.73080.55670.090*
H36C0.62940.75760.51750.090*
C371.0505 (2)0.73625 (12)0.17970 (10)0.0325 (5)
C380.9908 (2)0.59460 (11)0.07831 (10)0.0329 (5)
H2A0.700 (2)0.4799 (12)0.1180 (10)0.056 (7)*
H5B0.8208 (19)0.7254 (11)0.2505 (10)0.050 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0317 (10)0.0219 (8)0.0251 (9)0.0011 (7)0.0020 (8)0.0026 (7)
N20.0248 (10)0.0200 (8)0.0270 (9)0.0018 (7)0.0001 (7)0.0029 (7)
N30.0473 (13)0.0432 (12)0.0479 (12)0.0167 (10)0.0091 (10)0.0003 (9)
N40.0347 (11)0.0396 (10)0.0405 (11)0.0026 (9)0.0049 (9)0.0061 (9)
N50.0305 (10)0.0192 (8)0.0234 (9)0.0011 (7)0.0012 (7)0.0035 (7)
N60.0295 (10)0.0209 (8)0.0233 (9)0.0021 (7)0.0009 (7)0.0020 (7)
N70.0491 (13)0.0484 (12)0.0416 (12)0.0197 (10)0.0049 (9)0.0053 (9)
N80.0564 (14)0.0427 (11)0.0451 (12)0.0145 (10)0.0186 (10)0.0117 (10)
C10.0572 (15)0.0248 (11)0.0334 (13)0.0024 (10)0.0162 (11)0.0026 (10)
C20.0819 (19)0.0290 (12)0.0248 (12)0.0129 (13)0.0139 (12)0.0009 (10)
C30.095 (2)0.0366 (13)0.0263 (13)0.0214 (14)0.0097 (13)0.0066 (11)
C40.0660 (17)0.0256 (12)0.0405 (14)0.0087 (11)0.0128 (12)0.0057 (10)
C50.0478 (14)0.0218 (11)0.0294 (12)0.0031 (10)0.0002 (10)0.0004 (9)
C60.0422 (13)0.0209 (10)0.0269 (11)0.0022 (10)0.0108 (10)0.0018 (9)
C70.0303 (12)0.0197 (10)0.0362 (12)0.0028 (9)0.0049 (10)0.0006 (9)
C80.0407 (15)0.0332 (12)0.0479 (14)0.0065 (11)0.0111 (11)0.0016 (11)
C90.0285 (13)0.0482 (15)0.0694 (18)0.0048 (11)0.0040 (13)0.0016 (13)
C100.0316 (14)0.0458 (14)0.0578 (16)0.0026 (11)0.0097 (12)0.0040 (12)
C110.0342 (13)0.0296 (11)0.0406 (13)0.0037 (10)0.0006 (10)0.0025 (10)
C120.0272 (11)0.0194 (10)0.0331 (12)0.0036 (9)0.0017 (9)0.0011 (9)
C130.0292 (12)0.0219 (10)0.0207 (10)0.0023 (9)0.0021 (9)0.0003 (8)
C140.0307 (12)0.0232 (10)0.0210 (10)0.0035 (9)0.0050 (9)0.0006 (8)
C150.0254 (11)0.0239 (10)0.0218 (10)0.0009 (9)0.0009 (9)0.0003 (8)
C160.126 (3)0.0427 (14)0.0311 (14)0.0179 (15)0.0274 (15)0.0123 (11)
C170.084 (2)0.0422 (15)0.0654 (18)0.0048 (14)0.0372 (16)0.0085 (13)
C180.0373 (13)0.0285 (11)0.0249 (11)0.0026 (10)0.0049 (9)0.0022 (9)
C190.0282 (12)0.0268 (11)0.0281 (11)0.0073 (9)0.0046 (9)0.0023 (9)
C200.0371 (12)0.0234 (10)0.0272 (11)0.0022 (9)0.0051 (9)0.0010 (9)
C210.0414 (13)0.0283 (11)0.0297 (12)0.0018 (10)0.0016 (10)0.0026 (9)
C220.0527 (15)0.0368 (12)0.0265 (12)0.0021 (11)0.0032 (11)0.0017 (10)
C230.0571 (16)0.0340 (12)0.0270 (12)0.0001 (11)0.0099 (11)0.0022 (10)
C240.0405 (14)0.0291 (11)0.0340 (12)0.0039 (10)0.0127 (10)0.0021 (10)
C250.0322 (12)0.0235 (10)0.0275 (11)0.0021 (9)0.0082 (9)0.0018 (9)
C260.0314 (12)0.0199 (10)0.0366 (12)0.0025 (9)0.0065 (10)0.0009 (9)
C270.0349 (13)0.0386 (13)0.0478 (14)0.0038 (11)0.0114 (11)0.0053 (11)
C280.0261 (13)0.0474 (15)0.0673 (17)0.0026 (11)0.0103 (12)0.0083 (13)
C290.0291 (13)0.0420 (13)0.0560 (16)0.0042 (11)0.0056 (11)0.0132 (12)
C300.0346 (13)0.0262 (11)0.0416 (13)0.0042 (10)0.0009 (10)0.0069 (9)
C310.0264 (11)0.0181 (10)0.0341 (11)0.0023 (8)0.0015 (9)0.0030 (9)
C320.0290 (12)0.0176 (10)0.0235 (10)0.0000 (8)0.0038 (9)0.0009 (8)
C330.0299 (12)0.0231 (10)0.0225 (10)0.0035 (9)0.0017 (9)0.0009 (8)
C340.0330 (12)0.0232 (10)0.0221 (10)0.0003 (9)0.0040 (9)0.0008 (8)
C350.0462 (15)0.0429 (14)0.0439 (14)0.0080 (11)0.0083 (11)0.0007 (11)
C360.080 (2)0.0621 (17)0.0377 (15)0.0078 (15)0.0100 (14)0.0177 (13)
C370.0399 (13)0.0319 (12)0.0257 (12)0.0049 (10)0.0036 (10)0.0042 (9)
C380.0400 (14)0.0279 (11)0.0317 (12)0.0095 (10)0.0072 (10)0.0054 (9)
Geometric parameters (Å, º) top
N1—C131.331 (2)C15—C191.426 (3)
N1—C141.373 (2)C16—H16A0.9800
N2—C131.356 (2)C16—H16B0.9800
N2—C151.377 (2)C16—H16C0.9800
N2—H2A0.97 (2)C17—H17A0.9800
N3—C181.147 (2)C17—H17B0.9800
N4—C191.145 (2)C17—H17C0.9800
N5—C321.357 (2)C20—C211.386 (3)
N5—C331.365 (2)C20—C251.395 (3)
N5—H5B0.953 (19)C20—H20A0.9500
N6—C321.334 (2)C21—C221.390 (3)
N6—C341.373 (2)C21—C351.504 (3)
N7—C371.146 (2)C22—C231.392 (3)
N8—C381.147 (2)C22—H22A0.9500
C1—C21.383 (3)C23—C241.386 (3)
C1—C61.401 (2)C23—C361.516 (3)
C1—H1A0.9500C24—C251.400 (2)
C2—C31.386 (3)C24—H24A0.9500
C2—C161.513 (3)C25—C261.495 (3)
C3—C41.393 (3)C26—C271.397 (3)
C3—H3A0.9500C26—C311.405 (2)
C4—C51.388 (3)C27—C281.377 (3)
C4—C171.510 (3)C27—H27A0.9500
C5—C61.390 (3)C28—C291.382 (3)
C5—H5A0.9500C28—H28A0.9500
C6—C71.488 (3)C29—C301.383 (3)
C7—C81.397 (3)C29—H29A0.9500
C7—C121.402 (2)C30—C311.396 (2)
C8—C91.377 (3)C30—H30A0.9500
C8—H8A0.9500C31—C321.465 (2)
C9—C101.380 (3)C33—C341.372 (2)
C9—H9A0.9500C33—C371.424 (3)
C10—C111.385 (3)C34—C381.428 (3)
C10—H10A0.9500C35—H35A0.9800
C11—C121.395 (3)C35—H35B0.9800
C11—H11A0.9500C35—H35C0.9800
C12—C131.467 (2)C36—H36A0.9800
C14—C151.372 (2)C36—H36B0.9800
C14—C181.433 (3)C36—H36C0.9800
C13—N1—C14105.12 (14)H17A—C17—H17C109.5
C13—N2—C15107.45 (15)H17B—C17—H17C109.5
C13—N2—H2A125.0 (12)N3—C18—C14178.7 (2)
C15—N2—H2A126.9 (12)N4—C19—C15179.0 (2)
C32—N5—C33107.46 (16)C21—C20—C25121.88 (18)
C32—N5—H5B128.0 (12)C21—C20—H20A119.1
C33—N5—H5B124.5 (12)C25—C20—H20A119.1
C32—N6—C34105.18 (15)C20—C21—C22118.4 (2)
C2—C1—C6121.5 (2)C20—C21—C35120.88 (18)
C2—C1—H1A119.3C22—C21—C35120.73 (19)
C6—C1—H1A119.3C21—C22—C23121.5 (2)
C1—C2—C3118.7 (2)C21—C22—H22A119.3
C1—C2—C16120.8 (2)C23—C22—H22A119.3
C3—C2—C16120.5 (2)C24—C23—C22118.90 (19)
C2—C3—C4121.7 (2)C24—C23—C36120.3 (2)
C2—C3—H3A119.1C22—C23—C36120.8 (2)
C4—C3—H3A119.1C23—C24—C25121.2 (2)
C5—C4—C3118.1 (2)C23—C24—H24A119.4
C5—C4—C17121.0 (2)C25—C24—H24A119.4
C3—C4—C17120.9 (2)C20—C25—C24118.15 (19)
C4—C5—C6122.0 (2)C20—C25—C26121.49 (17)
C4—C5—H5A119.0C24—C25—C26120.24 (18)
C6—C5—H5A119.0C27—C26—C31117.42 (19)
C5—C6—C1118.0 (2)C27—C26—C25118.62 (18)
C5—C6—C7122.20 (17)C31—C26—C25123.88 (18)
C1—C6—C7119.72 (19)C28—C27—C26121.9 (2)
C8—C7—C12117.13 (19)C28—C27—H27A119.1
C8—C7—C6119.00 (18)C26—C27—H27A119.1
C12—C7—C6123.85 (17)C27—C28—C29120.5 (2)
C9—C8—C7121.9 (2)C27—C28—H28A119.7
C9—C8—H8A119.0C29—C28—H28A119.7
C7—C8—H8A119.0C28—C29—C30118.9 (2)
C8—C9—C10120.6 (2)C28—C29—H29A120.6
C8—C9—H9A119.7C30—C29—H29A120.6
C10—C9—H9A119.7C29—C30—C31121.1 (2)
C9—C10—C11119.0 (2)C29—C30—H30A119.4
C9—C10—H10A120.5C31—C30—H30A119.4
C11—C10—H10A120.5C30—C31—C26120.14 (18)
C10—C11—C12120.6 (2)C30—C31—C32115.67 (17)
C10—C11—H11A119.7C26—C31—C32124.10 (17)
C12—C11—H11A119.7N6—C32—N5111.24 (17)
C11—C12—C7120.69 (18)N6—C32—C31123.37 (16)
C11—C12—C13115.99 (17)N5—C32—C31125.13 (17)
C7—C12—C13123.27 (18)N5—C33—C34105.98 (16)
N1—C13—N2111.46 (16)N5—C33—C37124.07 (17)
N1—C13—C12127.54 (16)C34—C33—C37129.88 (18)
N2—C13—C12120.83 (16)C33—C34—N6110.14 (16)
C15—C14—N1110.63 (16)C33—C34—C38126.50 (18)
C15—C14—C18127.52 (18)N6—C34—C38123.28 (16)
N1—C14—C18121.81 (16)C21—C35—H35A109.5
C14—C15—N2105.33 (16)C21—C35—H35B109.5
C14—C15—C19131.59 (18)H35A—C35—H35B109.5
N2—C15—C19123.06 (16)C21—C35—H35C109.5
C2—C16—H16A109.5H35A—C35—H35C109.5
C2—C16—H16B109.5H35B—C35—H35C109.5
H16A—C16—H16B109.5C23—C36—H36A109.5
C2—C16—H16C109.5C23—C36—H36B109.5
H16A—C16—H16C109.5H36A—C36—H36B109.5
H16B—C16—H16C109.5C23—C36—H36C109.5
C4—C17—H17A109.5H36A—C36—H36C109.5
C4—C17—H17B109.5H36B—C36—H36C109.5
H17A—C17—H17B109.5N7—C37—C33177.9 (2)
C4—C17—H17C109.5N8—C38—C34176.9 (2)
C6—C1—C2—C32.1 (3)C25—C20—C21—C220.6 (3)
C6—C1—C2—C16176.46 (18)C25—C20—C21—C35178.24 (18)
C1—C2—C3—C41.7 (3)C20—C21—C22—C231.3 (3)
C16—C2—C3—C4176.88 (19)C35—C21—C22—C23179.77 (19)
C2—C3—C4—C50.5 (3)C21—C22—C23—C242.1 (3)
C2—C3—C4—C17178.2 (2)C21—C22—C23—C36177.13 (19)
C3—C4—C5—C62.5 (3)C22—C23—C24—C250.9 (3)
C17—C4—C5—C6176.30 (19)C36—C23—C24—C25178.36 (19)
C4—C5—C6—C12.1 (3)C21—C20—C25—C241.8 (3)
C4—C5—C6—C7174.95 (18)C21—C20—C25—C26174.31 (17)
C2—C1—C6—C50.3 (3)C23—C24—C25—C201.0 (3)
C2—C1—C6—C7177.39 (18)C23—C24—C25—C26175.13 (18)
C5—C6—C7—C8133.6 (2)C20—C25—C26—C27135.43 (19)
C1—C6—C7—C843.3 (3)C24—C25—C26—C2740.6 (3)
C5—C6—C7—C1244.4 (3)C20—C25—C26—C3141.1 (3)
C1—C6—C7—C12138.66 (19)C24—C25—C26—C31142.82 (19)
C12—C7—C8—C91.9 (3)C31—C26—C27—C282.0 (3)
C6—C7—C8—C9176.26 (19)C25—C26—C27—C28174.83 (18)
C7—C8—C9—C100.5 (3)C26—C27—C28—C290.3 (3)
C8—C9—C10—C110.9 (3)C27—C28—C29—C302.0 (3)
C9—C10—C11—C120.9 (3)C28—C29—C30—C311.4 (3)
C10—C11—C12—C70.6 (3)C29—C30—C31—C260.9 (3)
C10—C11—C12—C13176.92 (18)C29—C30—C31—C32175.68 (17)
C8—C7—C12—C111.9 (3)C27—C26—C31—C302.5 (3)
C6—C7—C12—C11176.11 (17)C25—C26—C31—C30174.06 (17)
C8—C7—C12—C13175.41 (17)C27—C26—C31—C32173.76 (17)
C6—C7—C12—C136.6 (3)C25—C26—C31—C329.6 (3)
C14—N1—C13—N20.2 (2)C34—N6—C32—N50.5 (2)
C14—N1—C13—C12174.96 (18)C34—N6—C32—C31173.90 (16)
C15—N2—C13—N10.0 (2)C33—N5—C32—N60.6 (2)
C15—N2—C13—C12175.52 (16)C33—N5—C32—C31173.62 (17)
C11—C12—C13—N1130.2 (2)C30—C31—C32—N637.1 (3)
C7—C12—C13—N147.2 (3)C26—C31—C32—N6146.47 (18)
C11—C12—C13—N244.5 (2)C30—C31—C32—N5136.51 (18)
C7—C12—C13—N2138.05 (18)C26—C31—C32—N539.9 (3)
C13—N1—C14—C150.3 (2)C32—N5—C33—C340.5 (2)
C13—N1—C14—C18177.64 (17)C32—N5—C33—C37176.68 (18)
N1—C14—C15—N20.3 (2)N5—C33—C34—N60.2 (2)
C18—C14—C15—N2177.49 (18)C37—C33—C34—N6176.73 (19)
N1—C14—C15—C19179.01 (19)N5—C33—C34—C38177.10 (18)
C18—C14—C15—C191.2 (3)C37—C33—C34—C380.1 (3)
C13—N2—C15—C140.2 (2)C32—N6—C34—C330.1 (2)
C13—N2—C15—C19179.03 (17)C32—N6—C34—C38176.85 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N60.97 (2)2.02 (2)2.907 (2)150.9 (17)
N5—H5B···N1i0.953 (19)1.95 (2)2.882 (2)164.4 (17)
C11—H11A···N8ii0.952.693.567 (3)154
C16—H16B···N6iii0.982.603.484 (3)150
C16—H16C···N3iv0.982.653.497 (3)145
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y+1, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
(II) 2-(2',4',6'-Trimethylbiphenyl-2-yl)-1H-imidazole-4,5-dicarbonitrile top
Crystal data top
C20H16N4F(000) = 656
Mr = 312.37Dx = 1.227 Mg m3
Monoclinic, P21/cMelting point: 486(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.373 (1) ÅCell parameters from 247 reflections
b = 10.303 (2) Åθ = 3–23°
c = 13.279 (2) ŵ = 0.08 mm1
β = 92.578 (7)°T = 133 K
V = 1691.1 (4) Å3Plate, colourless
Z = 40.60 × 0.40 × 0.10 mm
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
4381 independent reflections
Radiation source: normal-focus sealed tube3014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 29.0°, θmin = 2.5°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 1416
Tmin = 0.784, Tmax = 0.993k = 1214
25406 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4381 reflectionsΔρmax = 0.23 e Å3
225 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0160 (17)
Crystal data top
C20H16N4V = 1691.1 (4) Å3
Mr = 312.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.373 (1) ŵ = 0.08 mm1
b = 10.303 (2) ÅT = 133 K
c = 13.279 (2) Å0.60 × 0.40 × 0.10 mm
β = 92.578 (7)°
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
4381 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
3014 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.993Rint = 0.033
25406 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.23 e Å3
4381 reflectionsΔρmin = 0.20 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.71987 (8)0.43078 (10)0.52011 (7)0.0234 (2)
N20.64706 (8)0.49068 (11)0.37197 (7)0.0280 (2)
N30.69072 (11)0.23410 (13)0.20203 (8)0.0476 (3)
N40.83141 (11)0.11688 (13)0.50582 (9)0.0430 (3)
C10.66536 (9)0.52552 (12)0.46789 (8)0.0232 (3)
C20.69141 (10)0.36986 (13)0.36458 (8)0.0264 (3)
C30.73685 (9)0.33054 (12)0.45601 (8)0.0241 (3)
C40.68981 (11)0.29635 (14)0.27323 (9)0.0341 (3)
C50.78988 (10)0.21276 (14)0.48468 (9)0.0287 (3)
C60.62895 (9)0.64746 (12)0.51227 (8)0.0240 (3)
C70.53525 (10)0.70443 (13)0.46939 (10)0.0306 (3)
H7A0.49920.66540.41240.037*
C80.49484 (11)0.81694 (14)0.50929 (11)0.0373 (3)
H8A0.43130.85550.47970.045*
C90.54702 (11)0.87375 (14)0.59256 (11)0.0392 (3)
H9A0.51790.94990.62120.047*
C100.64133 (11)0.82023 (13)0.63424 (10)0.0334 (3)
H10A0.67720.86120.69040.040*
C110.68438 (10)0.70702 (12)0.59482 (9)0.0254 (3)
C120.78750 (9)0.65169 (12)0.63979 (8)0.0237 (3)
C130.78784 (10)0.59029 (12)0.73408 (9)0.0260 (3)
C140.88263 (10)0.53157 (13)0.77167 (9)0.0289 (3)
H14A0.88300.49010.83560.035*
C150.97678 (10)0.53191 (13)0.71823 (9)0.0287 (3)
C160.97493 (10)0.59668 (13)0.62640 (9)0.0284 (3)
H16A1.03910.59910.58970.034*
C170.88270 (10)0.65811 (12)0.58621 (9)0.0254 (3)
C180.68692 (11)0.58439 (15)0.79433 (10)0.0367 (3)
H18A0.70000.52800.85310.055*
H18B0.62690.54950.75200.055*
H18C0.66850.67190.81700.055*
C191.07663 (11)0.46266 (16)0.75969 (10)0.0403 (4)
H19A1.13520.47330.71310.060*
H19B1.06070.37010.76740.060*
H19C1.09880.49960.82540.060*
C200.88650 (11)0.73054 (14)0.48770 (10)0.0350 (3)
H20A0.96010.72710.46340.053*
H20B0.86570.82120.49790.053*
H20C0.83620.69040.43780.053*
H1A0.7366 (12)0.4278 (15)0.5868 (11)0.045 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0270 (5)0.0252 (6)0.0177 (5)0.0006 (4)0.0014 (4)0.0000 (4)
N20.0321 (5)0.0295 (6)0.0221 (5)0.0040 (5)0.0020 (4)0.0028 (4)
N30.0669 (9)0.0493 (9)0.0261 (6)0.0069 (7)0.0025 (6)0.0069 (6)
N40.0577 (8)0.0368 (8)0.0343 (6)0.0118 (6)0.0016 (6)0.0040 (6)
C10.0204 (5)0.0263 (7)0.0227 (5)0.0040 (5)0.0000 (4)0.0040 (5)
C20.0303 (6)0.0285 (7)0.0205 (5)0.0056 (5)0.0007 (5)0.0005 (5)
C30.0257 (6)0.0248 (7)0.0219 (5)0.0035 (5)0.0013 (4)0.0019 (5)
C40.0441 (8)0.0345 (8)0.0235 (6)0.0069 (6)0.0016 (5)0.0013 (6)
C50.0342 (7)0.0303 (7)0.0213 (6)0.0003 (6)0.0004 (5)0.0038 (5)
C60.0226 (6)0.0236 (7)0.0260 (6)0.0020 (5)0.0026 (5)0.0054 (5)
C70.0237 (6)0.0324 (8)0.0357 (7)0.0040 (6)0.0007 (5)0.0111 (6)
C80.0246 (6)0.0329 (8)0.0547 (8)0.0034 (6)0.0066 (6)0.0159 (7)
C90.0363 (7)0.0262 (8)0.0564 (9)0.0059 (6)0.0159 (7)0.0048 (7)
C100.0352 (7)0.0266 (7)0.0388 (7)0.0008 (6)0.0072 (6)0.0024 (6)
C110.0255 (6)0.0234 (7)0.0276 (6)0.0010 (5)0.0045 (5)0.0020 (5)
C120.0265 (6)0.0206 (6)0.0239 (6)0.0018 (5)0.0001 (5)0.0047 (5)
C130.0298 (6)0.0254 (7)0.0228 (6)0.0042 (5)0.0022 (5)0.0051 (5)
C140.0345 (7)0.0299 (7)0.0221 (6)0.0033 (6)0.0013 (5)0.0008 (5)
C150.0287 (6)0.0286 (7)0.0282 (6)0.0029 (5)0.0047 (5)0.0004 (5)
C160.0228 (6)0.0329 (7)0.0297 (6)0.0026 (5)0.0027 (5)0.0001 (5)
C170.0276 (6)0.0240 (7)0.0245 (6)0.0052 (5)0.0002 (5)0.0007 (5)
C180.0376 (7)0.0433 (9)0.0298 (7)0.0013 (6)0.0099 (6)0.0021 (6)
C190.0331 (7)0.0486 (10)0.0386 (7)0.0041 (7)0.0048 (6)0.0059 (7)
C200.0313 (7)0.0423 (9)0.0318 (7)0.0029 (6)0.0037 (5)0.0088 (6)
Geometric parameters (Å, º) top
N1—C11.3588 (15)C11—C121.4969 (17)
N1—C31.3606 (15)C12—C131.4027 (16)
N1—H1A0.901 (14)C12—C171.4048 (16)
N2—C11.3329 (15)C13—C141.3921 (17)
N2—C21.3657 (17)C13—C181.5142 (17)
N3—C41.1429 (17)C14—C151.3911 (17)
N4—C51.1427 (17)C14—H14A0.9500
C1—C61.4672 (17)C15—C161.3895 (17)
C2—C31.3758 (16)C15—C191.5090 (18)
C2—C41.4294 (17)C16—C171.3902 (17)
C3—C51.4232 (18)C16—H16A0.9500
C6—C71.3976 (17)C17—C201.5086 (17)
C6—C111.4075 (17)C18—H18A0.9800
C7—C81.3778 (19)C18—H18B0.9800
C7—H7A0.9500C18—H18C0.9800
C8—C91.385 (2)C19—H19A0.9800
C8—H8A0.9500C19—H19B0.9800
C9—C101.3834 (19)C19—H19C0.9800
C9—H9A0.9500C20—H20A0.9800
C10—C111.3940 (18)C20—H20B0.9800
C10—H10A0.9500C20—H20C0.9800
C1—N1—C3108.24 (10)C17—C12—C11119.94 (10)
C1—N1—H1A127.8 (10)C14—C13—C12119.00 (11)
C3—N1—H1A123.6 (10)C14—C13—C18119.64 (11)
C1—N2—C2105.23 (10)C12—C13—C18121.35 (11)
N2—C1—N1110.69 (11)C15—C14—C13121.83 (11)
N2—C1—C6124.92 (11)C15—C14—H14A119.1
N1—C1—C6124.37 (10)C13—C14—H14A119.1
N2—C2—C3110.76 (11)C16—C15—C14117.89 (11)
N2—C2—C4123.62 (11)C16—C15—C19121.88 (12)
C3—C2—C4125.62 (12)C14—C15—C19120.22 (12)
N1—C3—C2105.08 (11)C15—C16—C17122.44 (11)
N1—C3—C5124.20 (10)C15—C16—H16A118.8
C2—C3—C5130.72 (11)C17—C16—H16A118.8
N3—C4—C2177.46 (16)C16—C17—C12118.47 (11)
N4—C5—C3178.45 (14)C16—C17—C20120.06 (11)
C7—C6—C11120.03 (12)C12—C17—C20121.47 (11)
C7—C6—C1117.39 (11)C13—C18—H18A109.5
C11—C6—C1122.58 (11)C13—C18—H18B109.5
C8—C7—C6120.35 (13)H18A—C18—H18B109.5
C8—C7—H7A119.8C13—C18—H18C109.5
C6—C7—H7A119.8H18A—C18—H18C109.5
C7—C8—C9119.90 (13)H18B—C18—H18C109.5
C7—C8—H8A120.1C15—C19—H19A109.5
C9—C8—H8A120.1C15—C19—H19B109.5
C10—C9—C8120.36 (13)H19A—C19—H19B109.5
C10—C9—H9A119.8C15—C19—H19C109.5
C8—C9—H9A119.8H19A—C19—H19C109.5
C9—C10—C11120.87 (13)H19B—C19—H19C109.5
C9—C10—H10A119.6C17—C20—H20A109.5
C11—C10—H10A119.6C17—C20—H20B109.5
C10—C11—C6118.44 (11)H20A—C20—H20B109.5
C10—C11—C12120.14 (11)C17—C20—H20C109.5
C6—C11—C12121.42 (11)H20A—C20—H20C109.5
C13—C12—C17120.29 (11)H20B—C20—H20C109.5
C13—C12—C11119.74 (10)
C2—N2—C1—N10.25 (13)C1—C6—C11—C10177.61 (11)
C2—N2—C1—C6177.98 (11)C7—C6—C11—C12177.38 (11)
C3—N1—C1—N20.45 (13)C1—C6—C11—C122.69 (18)
C3—N1—C1—C6177.79 (10)C10—C11—C12—C1372.88 (16)
C1—N2—C2—C30.04 (14)C6—C11—C12—C13107.42 (13)
C1—N2—C2—C4179.89 (12)C10—C11—C12—C17108.95 (14)
C1—N1—C3—C20.45 (13)C6—C11—C12—C1770.75 (16)
C1—N1—C3—C5178.74 (11)C17—C12—C13—C142.52 (18)
N2—C2—C3—N10.31 (13)C11—C12—C13—C14175.64 (11)
C4—C2—C3—N1179.63 (12)C17—C12—C13—C18178.75 (12)
N2—C2—C3—C5178.80 (12)C11—C12—C13—C183.09 (18)
C4—C2—C3—C51.3 (2)C12—C13—C14—C150.14 (19)
N2—C1—C6—C728.19 (17)C18—C13—C14—C15178.61 (12)
N1—C1—C6—C7149.80 (12)C13—C14—C15—C161.96 (19)
N2—C1—C6—C11151.88 (12)C13—C14—C15—C19177.59 (12)
N1—C1—C6—C1130.13 (17)C14—C15—C16—C171.2 (2)
C11—C6—C7—C81.86 (18)C19—C15—C16—C17178.37 (12)
C1—C6—C7—C8178.07 (11)C15—C16—C17—C121.41 (19)
C6—C7—C8—C90.24 (19)C15—C16—C17—C20178.07 (12)
C7—C8—C9—C101.9 (2)C13—C12—C17—C163.27 (18)
C8—C9—C10—C111.4 (2)C11—C12—C17—C16174.89 (11)
C9—C10—C11—C60.73 (19)C13—C12—C17—C20176.21 (12)
C9—C10—C11—C12178.97 (12)C11—C12—C17—C205.63 (18)
C7—C6—C11—C102.32 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.901 (14)2.351 (15)2.9883 (16)127.7 (12)
C14—H14A···N4i0.952.623.5476 (17)166
C19—H19C···N4ii0.982.663.6327 (19)175
C16—H16A···C3iii0.952.963.8507 (17)158
C16—H16A···C5iii0.953.073.8580 (18)142
C19—H19A···C2iii0.982.913.7899 (19)150
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y+1, z+1.
(III) 2-[8-(3,5-Dimethylphenyl)naphthalen-1-yl]-1H-imidazole-4,5-dicarbonitrile top
Crystal data top
C23H16N4Dx = 1.285 Mg m3
Mr = 348.40Melting point: 514(1) K
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 16.7042 (14) Åθ = 46–62°
b = 7.1632 (7) ŵ = 0.62 mm1
c = 15.0528 (11) ÅT = 294 K
V = 1801.2 (3) Å3Block, colourless
Z = 40.60 × 0.40 × 0.25 mm
F(000) = 728
Data collection top
Enraf–Nonius CAD-4
diffractometer
1753 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 69.9°, θmin = 5.3°
ω scansh = 2020
Absorption correction: ψ scan
MolEN (Fair, 1990)
k = 08
Tmin = 0.776, Tmax = 0.857l = 1818
3815 measured reflections3 standard reflections every 90 min
1781 independent reflections intensity decay: 2.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.046P)2 + 0.15P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1781 reflectionsΔρmax = 0.13 e Å3
251 parametersΔρmin = 0.12 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0137 (6)
Crystal data top
C23H16N4V = 1801.2 (3) Å3
Mr = 348.40Z = 4
Orthorhombic, Pca21Cu Kα radiation
a = 16.7042 (14) ŵ = 0.62 mm1
b = 7.1632 (7) ÅT = 294 K
c = 15.0528 (11) Å0.60 × 0.40 × 0.25 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1753 reflections with I > 2σ(I)
Absorption correction: ψ scan
MolEN (Fair, 1990)
Rint = 0.019
Tmin = 0.776, Tmax = 0.8573 standard reflections every 90 min
3815 measured reflections intensity decay: 2.0%
1781 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.13 e Å3
1781 reflectionsΔρmin = 0.12 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39034 (9)0.03608 (19)0.39285 (9)0.0420 (3)
N20.48444 (8)0.0795 (2)0.49401 (9)0.0394 (3)
N30.47805 (12)0.0167 (3)0.18351 (11)0.0665 (5)
N40.66997 (11)0.1656 (3)0.38986 (14)0.0759 (6)
C10.33666 (9)0.1751 (2)0.62080 (10)0.0393 (3)
C20.37449 (10)0.3547 (2)0.62529 (11)0.0432 (4)
C30.36311 (12)0.4641 (3)0.70001 (13)0.0534 (4)
H3A0.38870.57910.70320.064*
C40.31469 (13)0.4082 (3)0.77064 (14)0.0593 (5)
H4A0.30930.48420.82040.071*
C50.27531 (11)0.2422 (3)0.76655 (13)0.0550 (5)
H5A0.24210.20620.81300.066*
C60.28460 (10)0.1244 (3)0.69229 (12)0.0456 (4)
C70.24059 (12)0.0446 (3)0.68892 (15)0.0551 (5)
H7A0.20760.07690.73620.066*
C80.24593 (14)0.1599 (3)0.61781 (15)0.0605 (5)
H8A0.21440.26670.61480.073*
C90.29923 (11)0.1173 (3)0.54884 (13)0.0516 (4)
H9A0.30330.19820.50070.062*
C100.34525 (10)0.0400 (2)0.55056 (11)0.0409 (3)
C110.42305 (11)0.4389 (2)0.55251 (12)0.0426 (4)
C120.39158 (11)0.4619 (2)0.46758 (12)0.0438 (4)
H12A0.33970.42190.45570.053*
C130.43646 (12)0.5437 (2)0.40042 (12)0.0462 (4)
C140.51353 (12)0.6051 (2)0.41944 (13)0.0501 (4)
H14A0.54400.65880.37450.060*
C150.54637 (11)0.5882 (3)0.50413 (14)0.0503 (4)
C160.49942 (13)0.5053 (3)0.56997 (13)0.0486 (4)
H16A0.52000.49430.62720.058*
C170.40170 (15)0.5662 (3)0.30870 (15)0.0640 (6)
H17A0.39210.44540.28320.096*
H17B0.43870.63400.27200.096*
H17C0.35220.63370.31240.096*
C180.62974 (14)0.6562 (4)0.52483 (18)0.0712 (6)
H18A0.66810.56680.50370.107*
H18B0.63550.67110.58790.107*
H18C0.63860.77400.49600.107*
C190.40546 (10)0.0538 (2)0.47883 (11)0.0384 (3)
C200.46288 (11)0.0564 (2)0.35248 (10)0.0414 (4)
C210.52226 (11)0.0854 (2)0.41370 (11)0.0404 (3)
C220.47209 (12)0.0383 (3)0.25815 (12)0.0486 (4)
C230.60471 (11)0.1274 (3)0.40170 (12)0.0501 (4)
H2A0.5051 (13)0.085 (3)0.5428 (16)0.047 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0488 (7)0.0474 (7)0.0300 (7)0.0024 (6)0.0010 (6)0.0004 (6)
N20.0462 (7)0.0457 (7)0.0262 (7)0.0063 (6)0.0019 (6)0.0015 (5)
N30.0735 (12)0.0953 (13)0.0307 (8)0.0048 (10)0.0045 (8)0.0014 (9)
N40.0537 (9)0.1049 (15)0.0692 (12)0.0031 (10)0.0037 (9)0.0089 (12)
C10.0414 (7)0.0462 (8)0.0303 (7)0.0045 (6)0.0005 (6)0.0025 (7)
C20.0496 (8)0.0474 (9)0.0326 (8)0.0027 (7)0.0007 (7)0.0002 (7)
C30.0627 (11)0.0539 (10)0.0437 (10)0.0017 (8)0.0045 (8)0.0079 (8)
C40.0665 (12)0.0699 (12)0.0414 (10)0.0048 (9)0.0095 (9)0.0134 (10)
C50.0570 (10)0.0697 (12)0.0383 (9)0.0047 (8)0.0131 (8)0.0004 (9)
C60.0445 (8)0.0542 (9)0.0380 (9)0.0050 (7)0.0046 (7)0.0044 (8)
C70.0539 (10)0.0593 (10)0.0522 (11)0.0027 (8)0.0127 (9)0.0087 (9)
C80.0622 (10)0.0530 (10)0.0664 (13)0.0115 (9)0.0110 (10)0.0020 (10)
C90.0590 (10)0.0486 (9)0.0473 (10)0.0011 (8)0.0024 (8)0.0045 (8)
C100.0444 (8)0.0455 (8)0.0327 (8)0.0047 (6)0.0000 (7)0.0026 (6)
C110.0524 (9)0.0378 (8)0.0377 (8)0.0022 (6)0.0030 (7)0.0011 (6)
C120.0521 (9)0.0383 (8)0.0410 (9)0.0020 (7)0.0002 (7)0.0011 (7)
C130.0624 (10)0.0369 (8)0.0393 (9)0.0035 (7)0.0033 (8)0.0024 (7)
C140.0628 (11)0.0396 (8)0.0478 (10)0.0004 (7)0.0108 (8)0.0040 (8)
C150.0549 (10)0.0416 (8)0.0543 (10)0.0027 (7)0.0031 (8)0.0015 (8)
C160.0568 (9)0.0479 (8)0.0411 (9)0.0023 (7)0.0043 (8)0.0010 (8)
C170.0856 (15)0.0629 (12)0.0436 (10)0.0065 (11)0.0042 (10)0.0110 (9)
C180.0625 (12)0.0749 (15)0.0762 (16)0.0162 (11)0.0018 (11)0.0082 (12)
C190.0454 (8)0.0400 (8)0.0299 (8)0.0047 (6)0.0017 (6)0.0004 (6)
C200.0533 (9)0.0430 (8)0.0279 (8)0.0043 (7)0.0006 (7)0.0009 (6)
C210.0486 (9)0.0413 (8)0.0314 (8)0.0067 (7)0.0005 (6)0.0008 (6)
C220.0557 (9)0.0576 (10)0.0326 (9)0.0020 (8)0.0004 (8)0.0007 (7)
C230.0517 (10)0.0600 (10)0.0386 (9)0.0051 (8)0.0003 (7)0.0011 (8)
Geometric parameters (Å, º) top
N1—C191.325 (2)C9—C101.365 (3)
N1—C201.363 (2)C9—H9A0.9300
N2—C191.352 (2)C10—C191.479 (2)
N2—C211.365 (2)C11—C161.387 (3)
N2—H2A0.81 (2)C11—C121.392 (2)
N3—C221.138 (2)C12—C131.388 (2)
N4—C231.138 (3)C12—H12A0.9300
C1—C61.430 (2)C13—C141.390 (3)
C1—C21.435 (2)C13—C171.506 (3)
C1—C101.440 (2)C14—C151.393 (3)
C2—C31.384 (3)C14—H14A0.9300
C2—C111.491 (2)C15—C161.397 (3)
C3—C41.394 (3)C15—C181.508 (3)
C3—H3A0.9300C16—H16A0.9300
C4—C51.361 (3)C17—H17A0.9600
C4—H4A0.9300C17—H17B0.9600
C5—C61.409 (3)C17—H17C0.9600
C5—H5A0.9300C18—H18A0.9600
C6—C71.417 (3)C18—H18B0.9600
C7—C81.355 (3)C18—H18C0.9600
C7—H7A0.9300C20—C211.370 (2)
C8—C91.401 (3)C20—C221.434 (2)
C8—H8A0.9300C21—C231.421 (3)
C19—N1—C20104.82 (14)C13—C12—H12A119.5
C19—N2—C21107.84 (14)C11—C12—H12A119.5
C19—N2—H2A125.1 (15)C12—C13—C14118.92 (17)
C21—N2—H2A127.0 (15)C12—C13—C17120.30 (17)
C6—C1—C2117.37 (14)C14—C13—C17120.77 (17)
C6—C1—C10116.25 (15)C13—C14—C15121.71 (17)
C2—C1—C10126.37 (14)C13—C14—H14A119.1
C3—C2—C1119.04 (16)C15—C14—H14A119.1
C3—C2—C11116.30 (16)C14—C15—C16117.73 (17)
C1—C2—C11124.59 (15)C14—C15—C18121.65 (19)
C2—C3—C4122.47 (18)C16—C15—C18120.62 (19)
C2—C3—H3A118.8C11—C16—C15121.86 (18)
C4—C3—H3A118.8C11—C16—H16A119.1
C5—C4—C3119.78 (18)C15—C16—H16A119.1
C5—C4—H4A120.1C13—C17—H17A109.5
C3—C4—H4A120.1C13—C17—H17B109.5
C4—C5—C6120.41 (18)H17A—C17—H17B109.5
C4—C5—H5A119.8C13—C17—H17C109.5
C6—C5—H5A119.8H17A—C17—H17C109.5
C5—C6—C7118.87 (17)H17B—C17—H17C109.5
C5—C6—C1120.78 (16)C15—C18—H18A109.5
C7—C6—C1120.35 (16)C15—C18—H18B109.5
C8—C7—C6120.99 (18)H18A—C18—H18B109.5
C8—C7—H7A119.5C15—C18—H18C109.5
C6—C7—H7A119.5H18A—C18—H18C109.5
C7—C8—C9119.63 (18)H18B—C18—H18C109.5
C7—C8—H8A120.2N1—C19—N2111.36 (15)
C9—C8—H8A120.2N1—C19—C10125.26 (15)
C10—C9—C8121.58 (18)N2—C19—C10123.33 (14)
C10—C9—H9A119.2N1—C20—C21111.10 (14)
C8—C9—H9A119.2N1—C20—C22121.80 (16)
C9—C10—C1120.84 (16)C21—C20—C22127.02 (17)
C9—C10—C19115.11 (15)N2—C21—C20104.83 (15)
C1—C10—C19123.98 (14)N2—C21—C23124.60 (16)
C16—C11—C12118.75 (16)C20—C21—C23130.42 (16)
C16—C11—C2120.00 (16)N3—C22—C20177.1 (2)
C12—C11—C2121.15 (16)N4—C23—C21177.5 (2)
C13—C12—C11120.98 (17)
C6—C1—C2—C34.0 (2)C16—C11—C12—C132.3 (2)
C10—C1—C2—C3176.64 (17)C2—C11—C12—C13178.74 (15)
C6—C1—C2—C11172.89 (16)C11—C12—C13—C140.9 (2)
C10—C1—C2—C116.5 (3)C11—C12—C13—C17179.54 (17)
C1—C2—C3—C41.5 (3)C12—C13—C14—C150.6 (2)
C11—C2—C3—C4175.69 (18)C17—C13—C14—C15178.99 (17)
C2—C3—C4—C51.4 (3)C13—C14—C15—C160.6 (3)
C3—C4—C5—C61.5 (3)C13—C14—C15—C18179.54 (19)
C4—C5—C6—C7177.90 (19)C12—C11—C16—C152.3 (3)
C4—C5—C6—C11.2 (3)C2—C11—C16—C15178.80 (17)
C2—C1—C6—C53.9 (2)C14—C15—C16—C110.9 (3)
C10—C1—C6—C5176.62 (16)C18—C15—C16—C11178.97 (19)
C2—C1—C6—C7175.19 (16)C20—N1—C19—N21.6 (2)
C10—C1—C6—C74.2 (2)C20—N1—C19—C10179.23 (14)
C5—C6—C7—C8178.2 (2)C21—N2—C19—N12.2 (2)
C1—C6—C7—C80.9 (3)C21—N2—C19—C10179.93 (14)
C6—C7—C8—C93.8 (3)C9—C10—C19—N152.5 (2)
C7—C8—C9—C101.2 (3)C1—C10—C19—N1130.50 (18)
C8—C9—C10—C14.3 (3)C9—C10—C19—N2124.88 (18)
C8—C9—C10—C19172.79 (18)C1—C10—C19—N252.1 (2)
C6—C1—C10—C96.8 (2)C19—N1—C20—C210.35 (19)
C2—C1—C10—C9172.56 (17)C19—N1—C20—C22177.34 (16)
C6—C1—C10—C19170.01 (15)C19—N2—C21—C201.85 (17)
C2—C1—C10—C1910.6 (3)C19—N2—C21—C23174.04 (16)
C3—C2—C11—C1655.2 (2)N1—C20—C21—N20.94 (18)
C1—C2—C11—C16127.87 (19)C22—C20—C21—N2175.85 (18)
C3—C2—C11—C12121.27 (19)N1—C20—C21—C23174.61 (17)
C1—C2—C11—C1255.7 (2)C22—C20—C21—C238.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.81 (2)2.26 (2)3.001 (2)152 (2)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC19H14N4C20H16N4C23H16N4
Mr298.34312.37348.40
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cOrthorhombic, Pca21
Temperature (K)134133294
a, b, c (Å)9.771 (2), 16.807 (2), 19.692 (2)12.373 (1), 10.303 (2), 13.279 (2)16.7042 (14), 7.1632 (7), 15.0528 (11)
α, β, γ (°)90, 93.976 (7), 9090, 92.578 (7), 9090, 90, 90
V3)3226.1 (8)1691.1 (4)1801.2 (3)
Z844
Radiation typeMo KαMo KαCu Kα
µ (mm1)0.080.080.62
Crystal size (mm)0.36 × 0.30 × 0.150.60 × 0.40 × 0.100.60 × 0.40 × 0.25
Data collection
DiffractometerSiemens SMART 1K CCD area-detector
diffractometer
Siemens SMART 1K CCD area-detector
diffractometer
Enraf–Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Multi-scan
SADABS (Sheldrick, 1996)
ψ scan
MolEN (Fair, 1990)
Tmin, Tmax0.867, 0.9890.784, 0.9930.776, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
47542, 7317, 3808 25406, 4381, 3014 3815, 1781, 1753
Rint0.0670.0330.019
(sin θ/λ)max1)0.6500.6820.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.093, 0.92 0.040, 0.104, 1.04 0.027, 0.070, 1.05
No. of reflections731743811781
No. of parameters428225251
No. of restraints001
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.170.23, 0.200.13, 0.12

Computer programs: SMART (Siemens, 1995), CAD-4 Software (Enraf–Nonius, 1989), SAINT (Siemens, 1995), MolEN (Fair, 1990), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N60.97 (2)2.02 (2)2.907 (2)150.9 (17)
N5—H5B···N1i0.953 (19)1.95 (2)2.882 (2)164.4 (17)
C11—H11A···N8ii0.952.693.567 (3)153.6
C16—H16B···N6iii0.982.603.484 (3)149.6
C16—H16C···N3iv0.982.653.497 (3)144.9
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y+1, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.901 (14)2.351 (15)2.9883 (16)127.7 (12)
C14—H14A···N4i0.952.623.5476 (17)165.6
C19—H19C···N4ii0.982.663.6327 (19)174.6
C16—H16A···C3iii0.952.963.8507 (17)157.6
C16—H16A···C5iii0.953.073.8580 (18)141.8
C19—H19A···C2iii0.982.913.7899 (19)149.7
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.81 (2)2.26 (2)3.001 (2)152 (2)
Symmetry code: (i) x+1, y, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds