Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The novel asymmetric bridging ligand 1-[(pyridin-3-yl)methyl]-2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole (L) has been used to construct the coordination polymers catena-poly[[[dibromidocadmium(II)]-μ3-1-[(pyridin-3-yl)methyl]-2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole] monohydrate], {[CdBr2(C24H18N4)]·H2O}n, (I), and catena-poly[[diiodidocadmium(II)]-μ3-1-[(pyridin-3-yl)methyl]-2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole], [CdI2(C24H18N4)]n, (II). Com­pounds (I) and (II) are closely related one-dimensional polymers based on 16- and 20-membered macrocycles along the chains, but they are not isomorphous. The chains are crosslinked into a two-dimensional network via hydrogen bonds and π–π inter­actions in (I), and into a three-dimensional framework through π–π inter­actions in (II). One well-ordered solvent water mol­ecule per asymmetric unit is included in (I) and forms O...Br hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113006471/eg3111sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113006471/eg3111Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113006471/eg3111IIsup3.hkl
Contains datablock II

CCDC references: 950349; 950350

Comment top

Coordination polymers assembled from metal nodes and organic ligands have attracted considerable interest over recent decades. Due to their often porous structures and special properties, they may have potential applications in, for example, absorption and separation processes (Gu et al., 2010), gas storage (Stavila et al., 2012) or drug delivery (Horcajada et al., 2008), or as functional materials (Wang et al., 2011), for photophysical applications (Yanai et al., 2012) or as catalysts (Li et al., 2012).

Appropriate ligands doubtless play an important role as building blocks to construct supramolecular complexes. Among the numerous reports concerned with benzimidazole ligands (Kundu et al., 2010; Li et al., 2010; Xiao et al., 2011), no coordination compound generated from 1-[(pyridin-3-yl)methyl]-2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole (L) has yet been reported. In order to investigate its self-assembly reactions, we have synthesized this novel ligand. The combination of L with CdBr2 and CdI2 afforded two one-dimensional coordination complexes, {[CdBr2(L)].H2O}n, (I) (Fig. 1), and [CdI2(L)]n, (II) (Fig. 2).

The compounds crystallize in the triclinic system; the asymmetric unit comprises one CdII centre, one L ligand and two halide anions in both cases and, only for (I), a solvent water molecule. As a consequence of this solvent content, the unit cell of (I) has a larger volume [1174.7 (5) Å3] than that of (II) [1154.4 (5) Å3], despite the sterically less demanding halide in the former. The chains in (I) extend in the [101] direction, with the length of this diagonal being 14.153 (3) Å, whereas (II) forms chains along the [001] direction, the lattice parameter c being 13.429 (4) Å.

In (I), each CdII centre is five-coordinated by two Br and three N atoms; one N atom belongs to the benzimidazole ring, and the other two originate from the pyridine rings of two different ligands. The distortion parameter τ(I) (Addison et al., 1984) of 0.83 indicates that the coordination environment corresponds to a slightly distorted trigonal bipyramid; expected values are τ = 0 for a square pyramid and τ = 1 for an ideal trigonal bipyramid, with τ = (β - α)/60°, α and β being the two largest angles around the central atom (Addison et al., 1984).

The tridentate ligands and the coordinated CdII cations subtend two kinds of macrocycles. In the 20-membered macrocycle of (I) (Fig. 3a), the distance between atoms Cd1 and N1i is 2.397 (6) Å [symmetry code: (i) -x + 1, -y + 1, -z], similar to the Cd—N distance reported by Ding et al. (2012). Moreover, the dihedral angle between the benzene rings and the neighbouring imidazole rings is 52.0 (2)°, and the dihedral angle between the benzene rings and the neighbouring pyridine rings is 32.1 (3)°. The 16-membered macrocycle is also centrosymmetric (Fig. 3b), with Cd1—N2 = 2.315 (6) Å and Cd1—N4ii = 2.475 (7) Å [symmetry code: (ii) -x + 2, -y + 1, -z + 1], similar to published values (Xu et al., 2011; Lan et al., 2009). The overall chain in (I) extends in the [101] direction and is shown in Fig. 3(c). Adjacent chains are linked to form two-dimensional sheets by hydrogen bonds (Table 1 and Fig. 4). Water molecules are arranged regularly in the voids and play an important role in connecting the chains via O—H···Br interactions.

The CdII centre in (II) has a similar coordination environment to that in polymer (I), with two iodide ligands and τ(II) = 0.75. Chains extend along the c axis, with an intrachain geometry similar to that depicted for (I) in Fig. 3. The Cd—N bonds (Table 3) are slightly longer than in the bromide derivative, (I). In the 20-membered macrocycle, the dihedral angle between the benzene rings and the neighbouring imidazole rings is 54.3 (2)°, and the interplanar angle between the benzene ring and the neighbouring pyridine ring is 34.7 (2)°.

Fig. 5 shows, in the direction of the a axis, how neighbouring chains in (II) are linked by ππ interactions between two parallel pyridine rings and by C—H···π interactions C23—H23···Cgi, where Cgi denotes the centroid of the C6—C11 ring at the symmetry-related position (-x + 1, -y + 1, -z + 1). The ππ interactions in (II) are associated with a centroid-to-centroid distance of 3.612 (2) Å; in contrast, the analogous contacts in (I) amount to 4.117 (2) Å and are not relevant. The C—H···π angle of 133° and the H···π distance of 3.00 Å are in close agreement with values reported previously (Goswami et al., 2007) and lead to the formation of two-dimensional sheets in the bc plane. A second kind of ππ interaction between the imidazole rings and benzene rings of the benzimidazoles from adjacent chains, with a centroid-to-centroid distance of 3.723 (2) Å, is shown in Fig. 6 and results in a three-dimensional network. No water molecules reside in the crystal structure of (II), presumably due to the larger ionic radius of the iodide anion. If the water molecule is not taken into account, the `cavity' in (I), with a Br1···Br2i [symmetry code: (i) -x + 1, -y, -z] distance of 5.092 (2) Å, is much larger than that in (II), where the corresponding distance between two iodides amounts to 4.853 (2) Å.

In summary, a novel asymmetric bridging benzimidazole ligand has been successfully synthesized and used as a tridentate ligand to construct two coordination polymers. In (I), hydrogen bonds between water molecules and bromide anions play an important role in linking the chains to form a two-dimensional motif; in (II), weak ππ interactions generate a three-dimensional framework.

Related literature top

For related literature, see: Addison et al. (1984); Ding et al. (2012); Gong & Pauls (2000); Goswami et al. (2007); Gu et al. (2010); Horcajada et al. (2008); Kundu et al. (2010); Lan et al. (2009); Li et al. (2010, 2012); Stavila et al. (2012); Wang et al. (2011); Xiao et al. (2011); Xu et al. (2011); Yanai et al. (2012).

Experimental top

4-(Pyridin-3-yl)benzoic acid was obtained according to the method of Gong & Pauls (2000).

For the preparation of 2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole, polyphosphoric acid (30.0 g) was added to a mixture of 4-(pyridin-3-yl)benzoic acid (2.60 g, 13.07 mmol) and o-phenylenediamine (1.41 g, 13.07 mmol). The reaction mixture was stirred for 5 h at 453 K, and then water was poured into the cooled beaker. After adjusting the pH to 9 with aqueous ammonia, the precipitate was filtered off, washed with water, dried and purified by column chromatography on silica gel with dichloromethane and methanol (15:1 v/v) as the eluent to afford 2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole as a white solid (yield 2.67 g, 75.4%). Spectroscopic analysis: 1H NMR (300 MHz, DMSO, 298 K, TMS, δ, p.p.m.): 13.00 (s, 1H, –NH), 9.00 (s, 1H, –C5H4N), 8.61–8.59 (d, 1H, –C5H4N), 8.32–8.29 (d, 2H, –C5H4N), 8.19–8.16 (d, 1H, –C6H4), 7.95–7.93 (d, 2H, –C6H4), 7.53 (m, 1H, –C6H4), 7.51 (t, 2H, –C6H4), 7.23–7.21 (s, 2H, –C6H4); IR (KBr pellet, ν, cm-1): 3054 (m), 1621 (w), 1592 (w), 1550 (m), 1501 (s), 1473 (s), 1449 (s), 1417 (s),1316 (s), 1280 (s), 1230 (m), 1187 (w), 1103 (m), 1058 (m), 1027 (s), 1005 (m), 950 (w), 858 (w), 814 (s), 766 (s), 710 (m), 671 (w), 630 (m), 562 (m), 538 (m), 504 (w), 455 (w). Elemental analysis, calculated for C18H18N3: C 78.23, H 6.57, N 15.21%; found: C 78.25, H 6.55, N 15.20%.

For the preparation of (L), anhydrous dimethylformamide (10 ml) was added with stirring to a mixture of 2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole (0.90 g, 3.33 mmol), 3-chloromethylpyridine hydrochloride (0.55 g, 3.33 mmol), anhydrous potassium carbonate (4.60 g, 33.3 mmol) and potassium iodide (0.06 g). Stirring was continued for 24 h at 341 K, and the reaction was monitored by thin-layer chromatography (TLC). The resulting mixture was poured into water and the precipitate was filtered off, washed with water, dried and purified by column chromatography on silica gel with dichloromethane and tetrahydrofuran (2:1 v/v) as the eluent to afford L as a white solid (yield 0.82 g, 68.3%). Spectroscopic analysis: 1H NMR (300 MHz, CDCl3, 298 K, TMS, δ, p.p.m.): 8.89 (s, 1H, –C5H4N), 8.65–8.64 (d, 1H, –C5H4N), 8.59 (d, 1H, –C5H4N), 8.53 (s, 1H, –C5H4N), 7.96–7.94 (d, 2H, –C6H4), 7.84–7.83 (d, 2H, –C5H4N), 7.74–7.71 (d, 2H, –C5H4N), 7.46–7.44 (d, 2H, –C6H4), 7.38–7.36 (d, 2H, –C6H4), 7.33–7.32 (m, 2H, –C6H4); IR (KBr pellet, ν, cm-1): 3324 (s), 1637 (s), 1457 (s), 1396 (s), 1329 (m), 1283 (m), 1249 (m), 1162 (m), 1124 (w), 1024 (m), 989 (w), 942 (w), 852 (s), 809 (m), 765 (m), 746 (s), 711 (s), 594 (w). Elemental analysis, calculated for C16H11N3O4: C 79.54, H 5.01, N 15.46%; found: C79.58, H 4.96, N 15.49%.

For the preparation of (I), a mixture of L (3.62 mg, 0.01 mmol), CdBr2 (13.8 mg, 0.04 mmol) and water (2 ml) was sealed in a 5 ml test tube, heated to 423 K for 38 h and cooled slowly to room temperature over a period of 50 h. Colourless crystals of (I) were obtained (yield 5.43 mg, 75%). Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3485 (s), 1626 (s), 1461 (s), 1440 (m), 1407 (s), 1291 (w), 1257 (w), 1131 (m), 1031 (w), 1008 (w), 989 (w), 856 (m), 816 (m), 752 (s), 701 (s), 491 (w).

For the preparation of (II), a mixture of L (3.62 mg, 0.01 mmol), CdI2 (14.7 mg, 0.04 mmol) and water (2 ml) was sealed in a 5 ml test tube, heated to 423 K for 38 h and cooled slowly to room temperature over a period of 50 h. Colourless [Yellow in CIF tables - please clarify] crystals of compound (II) were obtained (yield 5.82 mg, 80%). Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3439 (s), 1661 (s), 1614 (s), 1509 (w), 1456 (m), 1402 (s), 1293 (w), 1131 (m), 1030 (w), 1007 (w), 989 (w), 854 (m), 807 (w), 749 (m), 699 (s), 528 (w).

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions and included as riding, with C—H = 0.93 (aromatic) or 0.97 Å (methylene). Water H atoms were located in difference maps and constrained to an O—H distance of 0.85 Å. All H atoms were refined with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thesymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The asymmetric unit of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. (a) The 20-membered macrocycle [symmetry code: (i) -x + 1, -y + 1, -z], (b) the 16-membered macrocycle [symmetry code: (ii) -x + 2, -y + 1, -z+1], and (c) the one-dimensional chain in (I).
[Figure 4] Fig. 4. The two-dimensional sheet in (I), linked by two kinds of hydrogen bonds (blue and pink dashed lines in the electronic version of the paper). H atoms not involved in short contacts have been omitted for clarity. [Symmetry code: (i) -x + 1, -y, -z.]
[Figure 5] Fig. 5. ππ interactions (red dashed lines in the electronic version of the paper) and C—H···π interactions (purple dashed lines) between adjacent chains of (II), viewed along the crystallographic a axis. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
[Figure 6] Fig. 6. ππ interactions (red and purple dashed lines in the electronic version of the paper) in the stacking motif of complex (II), along the c axis. H atoms have been omitted for clarity.
(I) catena-Poly[[[dibromidocadmium(II)]-µ3-1-[(pyridin-3-yl)methyl]-2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole] monohydrate] top
Crystal data top
[CdBr2(C24H18N4)]·H2OZ = 2
Mr = 652.66F(000) = 636
Triclinic, P1Dx = 1.845 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 9.379 (2) ÅCell parameters from 3305 reflections
b = 10.023 (2) Åθ = 2.3–28.1°
c = 13.773 (3) ŵ = 4.36 mm1
α = 101.504 (3)°T = 298 K
β = 107.424 (3)°Bar, colourless
γ = 99.561 (3)°0.28 × 0.16 × 0.12 mm
V = 1174.7 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4256 independent reflections
Radiation source: fine-focus sealed tube3348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1110
Tmin = 0.375, Tmax = 0.623k = 1012
6132 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0941P)2 + 1.6163P]
where P = (Fo2 + 2Fc2)/3
4256 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 2.03 e Å3
0 restraintsΔρmin = 1.63 e Å3
Crystal data top
[CdBr2(C24H18N4)]·H2Oγ = 99.561 (3)°
Mr = 652.66V = 1174.7 (5) Å3
Triclinic, P1Z = 2
a = 9.379 (2) ÅMo Kα radiation
b = 10.023 (2) ŵ = 4.36 mm1
c = 13.773 (3) ÅT = 298 K
α = 101.504 (3)°0.28 × 0.16 × 0.12 mm
β = 107.424 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4256 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3348 reflections with I > 2σ(I)
Tmin = 0.375, Tmax = 0.623Rint = 0.031
6132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.10Δρmax = 2.03 e Å3
4256 reflectionsΔρmin = 1.63 e Å3
289 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.72809 (12)0.13263 (12)0.08554 (8)0.0669 (3)
Br20.50224 (10)0.02270 (10)0.31475 (8)0.0564 (3)
C10.7284 (9)0.8361 (9)0.1574 (6)0.0447 (19)
H10.73020.88300.20900.054*
C20.8654 (10)0.8238 (11)0.0919 (7)0.054 (2)
H20.95770.86010.10000.064*
C30.8640 (10)0.7573 (10)0.0145 (7)0.051 (2)
H30.95560.74730.03030.061*
C40.7246 (8)0.7048 (8)0.0032 (6)0.0348 (16)
C50.5922 (8)0.7210 (8)0.0741 (6)0.0364 (17)
H50.49800.68610.06770.044*
C60.7147 (8)0.6424 (8)0.0847 (6)0.0361 (17)
C70.6005 (8)0.6606 (8)0.1269 (6)0.0348 (16)
H70.52610.70480.09610.042*
C80.5952 (8)0.6144 (8)0.2135 (6)0.0357 (16)
H80.51690.62710.24030.043*
C90.7062 (8)0.5486 (7)0.2616 (6)0.0345 (16)
C100.8169 (9)0.5250 (8)0.2178 (6)0.0431 (19)
H100.88810.47670.24680.052*
C110.8230 (9)0.5726 (8)0.1305 (6)0.0427 (18)
H110.89960.55780.10250.051*
C120.7061 (8)0.5069 (8)0.3580 (5)0.0333 (16)
C130.7188 (8)0.3921 (8)0.4776 (6)0.0352 (16)
C140.7294 (10)0.2935 (9)0.5360 (6)0.047 (2)
H140.73130.20210.50660.057*
C150.7368 (10)0.3366 (10)0.6388 (7)0.053 (2)
H150.74530.27280.67960.064*
C160.7322 (10)0.4709 (10)0.6838 (7)0.053 (2)
H160.73960.49570.75420.064*
C170.7169 (9)0.5691 (9)0.6268 (6)0.047 (2)
H170.71040.65900.65600.057*
C180.7115 (8)0.5260 (8)0.5227 (6)0.0380 (17)
C190.7062 (9)0.7475 (8)0.4641 (7)0.0453 (19)
H19A0.61730.76240.48290.054*
H19B0.69700.77410.39890.054*
C200.8490 (8)0.8410 (7)0.5493 (6)0.0340 (16)
C210.8425 (9)0.9734 (8)0.5980 (7)0.046 (2)
H210.75141.00260.57900.056*
C220.9733 (11)1.0613 (10)0.6751 (9)0.074 (3)
H220.97181.15060.70940.089*
C231.1053 (11)1.0151 (9)0.7002 (9)0.068 (3)
H231.19351.07650.75090.081*
C240.9868 (8)0.8034 (8)0.5820 (6)0.0384 (17)
H240.99110.71380.55030.046*
Cd10.64339 (6)0.16969 (6)0.24849 (4)0.0364 (2)
N10.5924 (7)0.7835 (7)0.1503 (5)0.0393 (15)
N20.7140 (7)0.3821 (6)0.3747 (5)0.0363 (14)
N30.7043 (7)0.5982 (6)0.4458 (5)0.0350 (14)
N41.1153 (7)0.8880 (7)0.6567 (6)0.0488 (17)
O10.7725 (9)0.2847 (11)0.1092 (7)0.104 (3)
H1A0.76340.25750.05590.125*
H1B0.71340.22080.16420.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0616 (6)0.0932 (8)0.0639 (6)0.0345 (5)0.0373 (5)0.0227 (6)
Br20.0507 (5)0.0512 (6)0.0753 (7)0.0100 (4)0.0215 (4)0.0361 (5)
C10.048 (5)0.048 (5)0.049 (5)0.013 (4)0.026 (4)0.022 (4)
C20.040 (4)0.075 (6)0.059 (5)0.016 (4)0.027 (4)0.029 (5)
C30.041 (4)0.066 (6)0.055 (5)0.020 (4)0.018 (4)0.026 (5)
C40.032 (4)0.038 (4)0.035 (4)0.010 (3)0.013 (3)0.010 (3)
C50.032 (4)0.042 (4)0.037 (4)0.008 (3)0.013 (3)0.013 (3)
C60.033 (4)0.034 (4)0.037 (4)0.008 (3)0.005 (3)0.011 (3)
C70.034 (4)0.037 (4)0.038 (4)0.013 (3)0.012 (3)0.015 (3)
C80.031 (4)0.040 (4)0.038 (4)0.012 (3)0.009 (3)0.016 (3)
C90.036 (4)0.029 (4)0.035 (4)0.005 (3)0.008 (3)0.009 (3)
C100.040 (4)0.041 (4)0.046 (5)0.014 (3)0.006 (3)0.016 (4)
C110.044 (4)0.043 (4)0.051 (5)0.020 (4)0.020 (4)0.021 (4)
C120.029 (3)0.034 (4)0.029 (4)0.006 (3)0.003 (3)0.003 (3)
C130.033 (4)0.032 (4)0.041 (4)0.007 (3)0.012 (3)0.012 (3)
C140.059 (5)0.041 (5)0.046 (5)0.014 (4)0.018 (4)0.019 (4)
C150.055 (5)0.051 (5)0.055 (5)0.003 (4)0.018 (4)0.027 (5)
C160.055 (5)0.063 (6)0.039 (5)0.003 (4)0.019 (4)0.012 (4)
C170.055 (5)0.044 (5)0.038 (4)0.005 (4)0.019 (4)0.003 (4)
C180.035 (4)0.037 (4)0.038 (4)0.004 (3)0.009 (3)0.011 (3)
C190.042 (4)0.035 (4)0.050 (5)0.016 (3)0.003 (4)0.009 (4)
C200.037 (4)0.026 (4)0.040 (4)0.009 (3)0.011 (3)0.012 (3)
C210.044 (4)0.040 (4)0.053 (5)0.019 (4)0.010 (4)0.010 (4)
C220.064 (6)0.036 (5)0.095 (8)0.018 (4)0.002 (6)0.004 (5)
C230.048 (5)0.034 (5)0.091 (7)0.011 (4)0.006 (5)0.003 (5)
C240.036 (4)0.032 (4)0.045 (4)0.012 (3)0.013 (3)0.004 (3)
Cd10.0355 (3)0.0342 (3)0.0396 (3)0.0091 (2)0.0113 (2)0.0123 (2)
N10.040 (3)0.044 (4)0.038 (3)0.010 (3)0.015 (3)0.017 (3)
N20.041 (3)0.033 (3)0.036 (3)0.011 (3)0.010 (3)0.012 (3)
N30.032 (3)0.036 (3)0.034 (3)0.009 (3)0.007 (2)0.008 (3)
N40.040 (4)0.033 (4)0.066 (5)0.009 (3)0.007 (3)0.015 (3)
O10.075 (5)0.151 (9)0.082 (6)0.016 (5)0.021 (4)0.039 (6)
Geometric parameters (Å, º) top
Cd1—Br12.5766 (12)C14—H140.9300
Cd1—Br22.6233 (10)C15—C161.379 (13)
C1—N11.336 (10)C15—H150.9300
C1—C21.373 (12)C16—C171.376 (12)
C1—H10.9300C16—H160.9300
C2—C31.367 (12)C17—C181.396 (11)
C2—H20.9300C17—H170.9300
C3—C41.392 (11)C18—N31.389 (9)
C3—H30.9300C19—N31.463 (9)
C4—C51.388 (10)C19—C201.500 (10)
C4—C61.488 (10)C19—H19A0.9700
C5—N11.326 (9)C19—H19B0.9700
C5—H50.9300C20—C241.377 (10)
C6—C71.383 (11)C20—C211.382 (11)
C6—C111.396 (10)C21—C221.377 (12)
C7—C81.374 (10)C21—H210.9300
C7—H70.9300C22—C231.365 (13)
C8—C91.396 (10)C22—H220.9300
C8—H80.9300C23—N41.327 (11)
C9—C101.378 (11)C23—H230.9300
C9—C121.470 (10)C24—N41.342 (10)
C10—C111.392 (11)C24—H240.9300
C10—H100.9300Cd1—N22.315 (6)
C11—H110.9300Cd1—N1i2.397 (6)
C12—N21.327 (9)Cd1—N4ii2.475 (7)
C12—N31.368 (9)N1—Cd1i2.397 (6)
C13—C181.384 (10)N4—Cd1ii2.475 (7)
C13—N21.387 (9)O1—H1A0.8549
C13—C141.392 (10)O1—H1B0.8530
C14—C151.372 (12)
Cd1—Br1—H1A140.3C16—C17—H17122.0
N1—C1—C2122.9 (7)C18—C17—H17122.0
N1—C1—H1118.6C13—C18—N3105.8 (7)
C2—C1—H1118.6C13—C18—C17122.8 (7)
C3—C2—C1119.0 (8)N3—C18—C17131.4 (7)
C3—C2—H2120.5N3—C19—C20113.7 (6)
C1—C2—H2120.5N3—C19—H19A108.8
C2—C3—C4119.6 (8)C20—C19—H19A108.8
C2—C3—H3120.2N3—C19—H19B108.8
C4—C3—H3120.2C20—C19—H19B108.8
C5—C4—C3117.1 (7)H19A—C19—H19B107.7
C5—C4—C6120.0 (6)C24—C20—C21117.7 (7)
C3—C4—C6122.8 (7)C24—C20—C19124.1 (7)
N1—C5—C4123.6 (7)C21—C20—C19118.2 (7)
N1—C5—H5118.2C22—C21—C20118.9 (8)
C4—C5—H5118.2C22—C21—H21120.6
C7—C6—C11118.5 (7)C20—C21—H21120.6
C7—C6—C4119.5 (6)C23—C22—C21118.9 (9)
C11—C6—C4121.9 (7)C23—C22—H22120.6
C8—C7—C6121.2 (7)C21—C22—H22120.6
C8—C7—H7119.4N4—C23—C22124.0 (8)
C6—C7—H7119.4N4—C23—H23118.0
C7—C8—C9120.5 (7)C22—C23—H23118.0
C7—C8—H8119.7N4—C24—C20124.1 (7)
C9—C8—H8119.7N4—C24—H24117.9
C10—C9—C8118.8 (7)C20—C24—H24117.9
C10—C9—C12120.7 (7)N2—Cd1—N1i92.7 (2)
C8—C9—C12120.5 (7)N2—Cd1—N4ii89.9 (2)
C9—C10—C11120.6 (7)N1i—Cd1—N4ii177.4 (2)
C9—C10—H10119.7N2—Cd1—Br1123.50 (15)
C11—C10—H10119.7N1i—Cd1—Br191.39 (15)
C10—C11—C6120.3 (8)N4ii—Cd1—Br186.88 (18)
C10—C11—H11119.9N2—Cd1—Br2108.50 (15)
C6—C11—H11119.9N1i—Cd1—Br293.21 (15)
N2—C12—N3111.0 (6)N4ii—Cd1—Br286.34 (16)
N2—C12—C9126.3 (7)Br1—Cd1—Br2127.48 (4)
N3—C12—C9122.7 (7)C5—N1—C1117.8 (7)
C18—C13—N2109.3 (6)C5—N1—Cd1i118.4 (5)
C18—C13—C14119.9 (7)C1—N1—Cd1i123.0 (5)
N2—C13—C14130.8 (7)C12—N2—C13106.6 (6)
C15—C14—C13117.3 (8)C12—N2—Cd1127.1 (5)
C15—C14—H14121.4C13—N2—Cd1122.8 (5)
C13—C14—H14121.4C12—N3—C18107.3 (6)
C14—C15—C16122.5 (8)C12—N3—C19129.1 (6)
C14—C15—H15118.8C18—N3—C19123.4 (6)
C16—C15—H15118.8C23—N4—C24116.4 (7)
C17—C16—C15121.4 (8)C23—N4—Cd1ii113.1 (5)
C17—C16—H16119.3C24—N4—Cd1ii129.4 (5)
C15—C16—H16119.3H1A—O1—H1B107.0
C16—C17—C18116.1 (8)
N1—C1—C2—C31.3 (14)C21—C20—C24—N41.1 (12)
C1—C2—C3—C40.5 (14)C19—C20—C24—N4178.6 (8)
C2—C3—C4—C51.3 (13)H1A—Br1—Cd1—N241.4
C2—C3—C4—C6174.5 (8)H1A—Br1—Cd1—N1i52.7
C3—C4—C5—N10.3 (12)H1A—Br1—Cd1—N4ii129.2
C6—C4—C5—N1175.6 (7)H1A—Br1—Cd1—Br2147.8
C5—C4—C6—C730.2 (10)C4—C5—N1—C11.4 (12)
C3—C4—C6—C7145.5 (8)C4—C5—N1—Cd1i171.4 (6)
C5—C4—C6—C11153.6 (8)C2—C1—N1—C52.2 (13)
C3—C4—C6—C1130.7 (11)C2—C1—N1—Cd1i171.7 (7)
C11—C6—C7—C81.6 (11)N3—C12—N2—C130.4 (8)
C4—C6—C7—C8174.7 (7)C9—C12—N2—C13176.8 (7)
C6—C7—C8—C90.5 (11)N3—C12—N2—Cd1158.6 (5)
C7—C8—C9—C103.0 (11)C9—C12—N2—Cd124.1 (10)
C7—C8—C9—C12176.3 (7)C18—C13—N2—C120.8 (8)
C8—C9—C10—C113.5 (11)C14—C13—N2—C12179.1 (8)
C12—C9—C10—C11175.8 (7)C18—C13—N2—Cd1159.4 (5)
C9—C10—C11—C61.4 (12)C14—C13—N2—Cd120.7 (11)
C7—C6—C11—C101.1 (11)N1i—Cd1—N2—C1244.9 (6)
C4—C6—C11—C10175.1 (7)N4ii—Cd1—N2—C12134.7 (6)
C10—C9—C12—N250.4 (10)Br1—Cd1—N2—C1248.5 (6)
C8—C9—C12—N2130.3 (8)Br2—Cd1—N2—C12139.2 (5)
C10—C9—C12—N3126.6 (8)N1i—Cd1—N2—C13111.0 (5)
C8—C9—C12—N352.7 (10)N4ii—Cd1—N2—C1369.4 (5)
C18—C13—C14—C152.0 (11)Br1—Cd1—N2—C13155.6 (5)
N2—C13—C14—C15177.9 (8)Br2—Cd1—N2—C1316.7 (6)
C13—C14—C15—C160.8 (13)N2—C12—N3—C180.0 (8)
C14—C15—C16—C171.2 (14)C9—C12—N3—C18177.5 (6)
C15—C16—C17—C182.1 (12)N2—C12—N3—C19175.7 (6)
N2—C13—C18—N30.8 (8)C9—C12—N3—C191.7 (11)
C14—C13—C18—N3179.1 (7)C13—C18—N3—C120.5 (8)
N2—C13—C18—C17178.8 (7)C17—C18—N3—C12178.3 (8)
C14—C13—C18—C171.1 (11)C13—C18—N3—C19175.5 (6)
C16—C17—C18—C130.9 (11)C17—C18—N3—C192.2 (12)
C16—C17—C18—N3176.5 (8)C20—C19—N3—C12114.9 (8)
N3—C19—C20—C2422.1 (12)C20—C19—N3—C1860.3 (10)
N3—C19—C20—C21158.2 (7)C22—C23—N4—C241.6 (17)
C24—C20—C21—C220.9 (13)C22—C23—N4—Cd1ii167.4 (10)
C19—C20—C21—C22178.9 (9)C20—C24—N4—C230.1 (13)
C20—C21—C22—C230.5 (16)C20—C24—N4—Cd1ii166.8 (6)
C21—C22—C23—N41.8 (19)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Br2iii0.852.623.459 (9)170
O1—H1A···Br10.852.593.433 (9)170
Symmetry code: (iii) x+1, y, z.
(II) catena-Poly[[diiodidocadmium (II)]-µ3-1-[(pyridin-3-yl)methyl]-2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole] top
Crystal data top
[CdI2(C24H18N4)]Z = 2
Mr = 728.62F(000) = 688
Triclinic, P1Dx = 2.096 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.128 (2) ÅCell parameters from 3305 reflections
b = 10.254 (3) Åθ = 2.3–28.0°
c = 13.429 (4) ŵ = 3.64 mm1
α = 70.065 (3)°T = 298 K
β = 77.717 (4)°Bar, yellow
γ = 86.952 (3)°0.28 × 0.16 × 0.12 mm
V = 1154.4 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4424 independent reflections
Radiation source: fine-focus sealed tube3863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1111
Tmin = 0.502, Tmax = 0.646k = 1012
6318 measured reflectionsl = 1116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.214P]
where P = (Fo2 + 2Fc2)/3
4424 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[CdI2(C24H18N4)]γ = 86.952 (3)°
Mr = 728.62V = 1154.4 (5) Å3
Triclinic, P1Z = 2
a = 9.128 (2) ÅMo Kα radiation
b = 10.254 (3) ŵ = 3.64 mm1
c = 13.429 (4) ÅT = 298 K
α = 70.065 (3)°0.28 × 0.16 × 0.12 mm
β = 77.717 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4424 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3863 reflections with I > 2σ(I)
Tmin = 0.502, Tmax = 0.646Rint = 0.017
6318 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.04Δρmax = 0.84 e Å3
4424 reflectionsΔρmin = 0.55 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.36190 (3)1.32721 (3)0.23763 (2)0.02950 (9)
I10.64498 (4)1.37177 (4)0.10783 (3)0.05443 (11)
I20.13184 (3)1.50971 (3)0.27458 (2)0.04140 (10)
N10.7491 (4)0.7373 (3)0.1127 (3)0.0330 (8)
N20.3074 (4)1.1119 (3)0.3762 (2)0.0272 (7)
N30.2289 (4)0.8917 (3)0.4570 (3)0.0268 (7)
N40.5115 (4)0.6109 (3)0.6357 (3)0.0354 (8)
C10.8846 (5)0.6977 (5)0.0930 (3)0.0393 (10)
H10.94730.65790.13860.047*
C20.9356 (5)0.7129 (6)0.0089 (4)0.0508 (13)
H21.03140.68510.00170.061*
C30.8426 (5)0.7702 (5)0.0600 (4)0.0446 (11)
H30.87470.77930.11870.053*
C40.7029 (5)0.8138 (4)0.0419 (3)0.0318 (9)
C50.6607 (5)0.7932 (4)0.0451 (3)0.0312 (9)
H50.56530.81980.05730.037*
C60.5966 (5)0.8703 (4)0.1159 (3)0.0307 (9)
C70.6494 (5)0.9482 (4)0.1686 (3)0.0351 (9)
H70.75030.97410.15020.042*
C80.5542 (5)0.9875 (4)0.2477 (3)0.0328 (9)
H80.59201.03850.28250.039*
C90.4032 (4)0.9520 (4)0.2757 (3)0.0274 (8)
C100.3474 (5)0.8807 (4)0.2189 (3)0.0313 (9)
H100.24530.86010.23390.038*
C110.4436 (5)0.8408 (4)0.1405 (3)0.0317 (9)
H110.40530.79330.10350.038*
C120.3096 (4)0.9876 (4)0.3660 (3)0.0267 (8)
C130.2237 (4)1.0964 (4)0.4795 (3)0.0253 (8)
C140.1860 (4)1.1918 (4)0.5325 (3)0.0306 (9)
H140.21621.28450.49900.037*
C150.1027 (5)1.1447 (4)0.6358 (3)0.0347 (9)
H150.07731.20700.67310.042*
C160.0539 (5)1.0056 (5)0.6879 (3)0.0386 (10)
H160.00270.97780.75820.046*
C170.0893 (5)0.9100 (4)0.6354 (3)0.0355 (9)
H170.05820.81750.66860.043*
C180.1736 (4)0.9588 (4)0.5304 (3)0.0272 (8)
C190.2048 (4)0.7445 (4)0.4788 (3)0.0311 (9)
H19A0.21870.72840.41030.037*
H19B0.10160.71970.51620.037*
C200.3062 (4)0.6507 (4)0.5452 (3)0.0259 (8)
C210.4219 (4)0.6962 (4)0.5774 (3)0.0306 (9)
H210.43820.79130.55730.037*
C220.4864 (5)0.4756 (4)0.6638 (4)0.0391 (10)
H220.54860.41500.70410.047*
C230.3738 (5)0.4208 (4)0.6364 (4)0.0392 (10)
H230.36020.32520.65800.047*
C240.2816 (5)0.5083 (4)0.5770 (3)0.0338 (9)
H240.20370.47320.55810.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03043 (16)0.02622 (16)0.03053 (17)0.00191 (12)0.00370 (12)0.00968 (12)
I10.03719 (18)0.0559 (2)0.0597 (2)0.00668 (15)0.00824 (15)0.01606 (17)
I20.03625 (17)0.03927 (17)0.0528 (2)0.01083 (12)0.00949 (14)0.02213 (14)
N10.0385 (19)0.0304 (18)0.0294 (18)0.0044 (15)0.0058 (15)0.0105 (14)
N20.0313 (17)0.0228 (16)0.0280 (17)0.0005 (13)0.0044 (14)0.0104 (13)
N30.0323 (17)0.0197 (15)0.0282 (17)0.0012 (13)0.0093 (14)0.0060 (13)
N40.0380 (19)0.0253 (18)0.046 (2)0.0016 (15)0.0164 (17)0.0110 (16)
C10.037 (2)0.044 (3)0.035 (2)0.001 (2)0.0017 (19)0.017 (2)
C20.036 (2)0.073 (4)0.049 (3)0.018 (2)0.010 (2)0.030 (3)
C30.045 (3)0.060 (3)0.039 (3)0.008 (2)0.015 (2)0.028 (2)
C40.034 (2)0.031 (2)0.028 (2)0.0038 (17)0.0037 (17)0.0108 (17)
C50.036 (2)0.029 (2)0.028 (2)0.0028 (17)0.0064 (17)0.0088 (17)
C60.040 (2)0.026 (2)0.026 (2)0.0064 (17)0.0100 (17)0.0074 (16)
C70.032 (2)0.035 (2)0.038 (2)0.0030 (18)0.0060 (18)0.0131 (19)
C80.038 (2)0.030 (2)0.032 (2)0.0006 (18)0.0092 (18)0.0124 (18)
C90.036 (2)0.0180 (18)0.0260 (19)0.0034 (16)0.0074 (17)0.0045 (15)
C100.031 (2)0.030 (2)0.033 (2)0.0023 (17)0.0063 (17)0.0104 (17)
C110.039 (2)0.028 (2)0.033 (2)0.0051 (17)0.0128 (19)0.0136 (17)
C120.0280 (19)0.0243 (19)0.029 (2)0.0045 (15)0.0108 (16)0.0080 (16)
C130.0262 (19)0.0231 (19)0.0259 (19)0.0011 (15)0.0069 (16)0.0066 (15)
C140.033 (2)0.026 (2)0.034 (2)0.0016 (16)0.0080 (18)0.0117 (17)
C150.036 (2)0.036 (2)0.036 (2)0.0065 (18)0.0097 (19)0.0178 (19)
C160.034 (2)0.050 (3)0.027 (2)0.000 (2)0.0009 (18)0.012 (2)
C170.038 (2)0.032 (2)0.034 (2)0.0013 (18)0.0076 (19)0.0072 (18)
C180.0242 (19)0.0263 (19)0.031 (2)0.0026 (15)0.0084 (16)0.0087 (16)
C190.035 (2)0.0228 (19)0.036 (2)0.0019 (16)0.0112 (18)0.0076 (17)
C200.032 (2)0.0208 (18)0.0246 (19)0.0002 (15)0.0037 (16)0.0085 (15)
C210.035 (2)0.0202 (19)0.039 (2)0.0000 (16)0.0107 (18)0.0116 (17)
C220.040 (2)0.029 (2)0.048 (3)0.0063 (19)0.015 (2)0.0108 (19)
C230.048 (3)0.020 (2)0.050 (3)0.0006 (18)0.015 (2)0.0090 (18)
C240.034 (2)0.026 (2)0.044 (2)0.0008 (17)0.0084 (19)0.0149 (18)
Geometric parameters (Å, º) top
Cd1—N22.346 (3)C8—C91.383 (5)
Cd1—N1i2.415 (3)C8—H80.9300
Cd1—N4ii2.507 (3)C9—C101.401 (5)
Cd1—I12.7551 (7)C9—C121.470 (5)
Cd1—I22.8161 (7)C10—C111.382 (6)
N1—C11.334 (5)C10—H100.9300
N1—C51.340 (5)C11—H110.9300
N1—Cd1i2.415 (3)C13—C141.384 (5)
N2—C121.326 (5)C13—C181.394 (5)
N2—C131.395 (5)C14—C151.368 (6)
N3—C121.370 (5)C14—H140.9300
N3—C181.384 (5)C15—C161.406 (6)
N3—C191.456 (5)C15—H150.9300
N4—C221.326 (5)C16—C171.379 (6)
N4—C211.333 (5)C16—H160.9300
N4—Cd1ii2.507 (3)C17—C181.389 (6)
C1—C21.367 (6)C17—H170.9300
C1—H10.9300C19—C201.500 (5)
C2—C31.381 (6)C19—H19A0.9700
C2—H20.9300C19—H19B0.9700
C3—C41.372 (6)C20—C211.380 (5)
C3—H30.9300C20—C241.390 (5)
C4—C51.389 (5)C21—H210.9300
C4—C61.479 (5)C22—C231.368 (6)
C5—H50.9300C22—H220.9300
C6—C111.390 (6)C23—C241.367 (6)
C6—C71.393 (6)C23—H230.9300
C7—C81.382 (6)C24—H240.9300
C7—H70.9300
N2—Cd1—N1i94.05 (11)C11—C10—C9120.1 (4)
N2—Cd1—N4ii85.75 (11)C11—C10—H10119.9
N1i—Cd1—N4ii177.27 (11)C9—C10—H10119.9
N2—Cd1—I1118.09 (8)C10—C11—C6121.3 (4)
N1i—Cd1—I194.54 (9)C10—C11—H11119.4
N4ii—Cd1—I183.17 (9)C6—C11—H11119.4
N2—Cd1—I2107.95 (8)N2—C12—N3111.4 (3)
N1i—Cd1—I294.30 (8)N2—C12—C9124.5 (3)
N4ii—Cd1—I288.35 (8)N3—C12—C9123.6 (3)
I1—Cd1—I2132.223 (19)C14—C13—C18120.1 (4)
C1—N1—C5117.2 (4)C14—C13—N2130.9 (3)
C1—N1—Cd1i123.5 (3)C18—C13—N2109.0 (3)
C5—N1—Cd1i118.2 (3)C15—C14—C13117.5 (4)
C12—N2—C13106.3 (3)C15—C14—H14121.2
C12—N2—Cd1127.6 (3)C13—C14—H14121.2
C13—N2—Cd1123.6 (2)C14—C15—C16122.5 (4)
C12—N3—C18107.5 (3)C14—C15—H15118.8
C12—N3—C19128.6 (3)C16—C15—H15118.8
C18—N3—C19123.9 (3)C17—C16—C15120.5 (4)
C22—N4—C21117.5 (4)C17—C16—H16119.7
C22—N4—Cd1ii113.2 (3)C15—C16—H16119.7
C21—N4—Cd1ii123.6 (3)C16—C17—C18116.6 (4)
N1—C1—C2123.0 (4)C16—C17—H17121.7
N1—C1—H1118.5C18—C17—H17121.7
C2—C1—H1118.5N3—C18—C17131.3 (4)
C1—C2—C3118.9 (4)N3—C18—C13105.9 (3)
C1—C2—H2120.5C17—C18—C13122.8 (4)
C3—C2—H2120.5N3—C19—C20114.5 (3)
C4—C3—C2119.9 (4)N3—C19—H19A108.6
C4—C3—H3120.0C20—C19—H19A108.6
C2—C3—H3120.0N3—C19—H19B108.6
C3—C4—C5116.9 (4)C20—C19—H19B108.6
C3—C4—C6122.0 (4)H19A—C19—H19B107.6
C5—C4—C6120.9 (4)C21—C20—C24117.8 (4)
N1—C5—C4124.0 (4)C21—C20—C19124.4 (3)
N1—C5—H5118.0C24—C20—C19117.8 (3)
C4—C5—H5118.0N4—C21—C20123.4 (4)
C11—C6—C7118.0 (4)N4—C21—H21118.3
C11—C6—C4121.7 (4)C20—C21—H21118.3
C7—C6—C4120.2 (4)N4—C22—C23123.3 (4)
C8—C7—C6121.1 (4)N4—C22—H22118.3
C8—C7—H7119.5C23—C22—H22118.3
C6—C7—H7119.5C22—C23—C24119.2 (4)
C7—C8—C9120.7 (4)C22—C23—H23120.4
C7—C8—H8119.6C24—C23—H23120.4
C9—C8—H8119.6C23—C24—C20118.8 (4)
C8—C9—C10118.6 (4)C23—C24—H24120.6
C8—C9—C12118.3 (4)C20—C24—H24120.6
C10—C9—C12123.1 (4)
N1i—Cd1—N2—C1236.3 (3)C19—N3—C12—C97.4 (6)
N4ii—Cd1—N2—C12141.0 (3)C8—C9—C12—N249.5 (5)
I1—Cd1—N2—C1261.0 (3)C10—C9—C12—N2132.3 (4)
I2—Cd1—N2—C12132.1 (3)C8—C9—C12—N3121.6 (4)
N1i—Cd1—N2—C13123.2 (3)C10—C9—C12—N356.7 (5)
N4ii—Cd1—N2—C1359.6 (3)C12—N2—C13—C14179.9 (4)
I1—Cd1—N2—C13139.5 (3)Cd1—N2—C13—C1417.0 (6)
I2—Cd1—N2—C1327.3 (3)C12—N2—C13—C180.9 (4)
C5—N1—C1—C20.6 (6)Cd1—N2—C13—C18162.2 (2)
Cd1i—N1—C1—C2167.8 (4)C18—C13—C14—C151.7 (6)
N1—C1—C2—C30.8 (8)N2—C13—C14—C15179.2 (4)
C1—C2—C3—C41.5 (8)C13—C14—C15—C160.8 (6)
C2—C3—C4—C51.9 (7)C14—C15—C16—C170.1 (7)
C2—C3—C4—C6177.4 (4)C15—C16—C17—C180.2 (6)
C1—N1—C5—C41.1 (6)C12—N3—C18—C17177.9 (4)
Cd1i—N1—C5—C4169.0 (3)C19—N3—C18—C170.7 (6)
C3—C4—C5—N11.7 (6)C12—N3—C18—C130.3 (4)
C6—C4—C5—N1177.3 (4)C19—N3—C18—C13178.9 (3)
C3—C4—C6—C11141.7 (4)C16—C17—C18—N3179.0 (4)
C5—C4—C6—C1133.6 (6)C16—C17—C18—C131.1 (6)
C3—C4—C6—C734.1 (6)C14—C13—C18—N3179.7 (3)
C5—C4—C6—C7150.6 (4)N2—C13—C18—N30.4 (4)
C11—C6—C7—C83.9 (6)C14—C13—C18—C171.9 (6)
C4—C6—C7—C8172.0 (4)N2—C13—C18—C17178.8 (3)
C6—C7—C8—C90.8 (6)C12—N3—C19—C2098.4 (5)
C7—C8—C9—C102.9 (6)C18—N3—C19—C2079.9 (5)
C7—C8—C9—C12175.5 (3)N3—C19—C20—C215.0 (6)
C8—C9—C10—C113.4 (6)N3—C19—C20—C24174.8 (4)
C12—C9—C10—C11174.9 (3)C22—N4—C21—C200.1 (6)
C9—C10—C11—C60.2 (6)Cd1ii—N4—C21—C20151.6 (3)
C7—C6—C11—C103.4 (6)C24—C20—C21—N40.9 (6)
C4—C6—C11—C10172.5 (4)C19—C20—C21—N4179.4 (4)
C13—N2—C12—N31.1 (4)C21—N4—C22—C230.4 (7)
Cd1—N2—C12—N3161.1 (2)Cd1ii—N4—C22—C23153.9 (4)
C13—N2—C12—C9170.8 (3)N4—C22—C23—C240.1 (7)
Cd1—N2—C12—C926.9 (5)C22—C23—C24—C200.6 (6)
C18—N3—C12—N20.9 (4)C21—C20—C24—C231.1 (6)
C19—N3—C12—N2179.4 (3)C19—C20—C24—C23179.2 (4)
C18—N3—C12—C9171.1 (3)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[CdBr2(C24H18N4)]·H2O[CdI2(C24H18N4)]
Mr652.66728.62
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)298298
a, b, c (Å)9.379 (2), 10.023 (2), 13.773 (3)9.128 (2), 10.254 (3), 13.429 (4)
α, β, γ (°)101.504 (3), 107.424 (3), 99.561 (3)70.065 (3), 77.717 (4), 86.952 (3)
V3)1174.7 (5)1154.4 (5)
Z22
Radiation typeMo KαMo Kα
µ (mm1)4.363.64
Crystal size (mm)0.28 × 0.16 × 0.120.28 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.375, 0.6230.502, 0.646
No. of measured, independent and
observed [I > 2σ(I)] reflections
6132, 4256, 3348 6318, 4424, 3863
Rint0.0310.017
(sin θ/λ)max1)0.6060.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.178, 1.10 0.030, 0.077, 1.04
No. of reflections42564424
No. of parameters289280
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.03, 1.630.84, 0.55

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
Cd1—Br12.5766 (12)Cd1—N1i2.397 (6)
Cd1—Br22.6233 (10)Cd1—N4ii2.475 (7)
Cd1—N22.315 (6)
N2—Cd1—N1i92.7 (2)N4ii—Cd1—Br186.88 (18)
N2—Cd1—N4ii89.9 (2)N2—Cd1—Br2108.50 (15)
N1i—Cd1—N4ii177.4 (2)N1i—Cd1—Br293.21 (15)
N2—Cd1—Br1123.50 (15)N4ii—Cd1—Br286.34 (16)
N1i—Cd1—Br191.39 (15)Br1—Cd1—Br2127.48 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Br2iii0.852.623.459 (9)169.9
O1—H1A···Br10.852.593.433 (9)170.2
Symmetry code: (iii) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
Cd1—N22.346 (3)Cd1—I12.7551 (7)
Cd1—N1i2.415 (3)Cd1—I22.8161 (7)
Cd1—N4ii2.507 (3)
N2—Cd1—N1i94.05 (11)N4ii—Cd1—I183.17 (9)
N2—Cd1—N4ii85.75 (11)N2—Cd1—I2107.95 (8)
N1i—Cd1—N4ii177.27 (11)N1i—Cd1—I294.30 (8)
N2—Cd1—I1118.09 (8)N4ii—Cd1—I288.35 (8)
N1i—Cd1—I194.54 (9)I1—Cd1—I2132.223 (19)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds