Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Reaction of biotin {C10H16N2O3S, HL; systematic name: 5-[(3aS,4S,6aR)-2-oxohexa­hydro-1H-thieno[3,4-d]imidazol-4-yl]pentan­oic acid} with silver acetate and a few drops of aqueous ammonia leads to the deprotonation of the carb­oxy­lic acid group and the formation of a neutral chiral two-dimensional polymer network, poly[[{μ3-5-[(3aS,4S,6aR)-2-oxohexa­hydro-1H-thieno[3,4-d]imidazol-4-yl]pentan­oato}silver(I)] trihydrate], {[Ag(C10H15N2O3S)]·3H2O}n or {[Ag(L)]·3H2O}n, (I). Here, the AgI cations are penta­coordinate, coordinated by four biotin anions via two S atoms and a ureido O atom, and by two carboxylate O atoms of the same mol­ecule. The reaction of biotin with silver salts of potentially coordinating anions, viz. nitrate and perchlorate, leads to the formation of the chiral one-dimensional coordination polymers catena-poly[[bis­[nitratosilver(I)]-bis{μ3-5-[(3aS,4S,6aR)-2-oxohexa­hydro-1H-thieno[3,4-d]imidazol-4-yl]pentan­oato}] monohydrate], {[Ag2(NO3)2(C10H16N2O3S)2]·H2O}n or {[Ag2(NO3)2(HL)2]·H2O}n, (II), and catena-poly[bis­[per­chlor­atosilver(I)]-bis­{μ3-5-[(3aS,4S,6aR)-2-oxohexa­hydro-1H-thieno[3,4-d]imidazol-4-yl]pentan­oato}], [Ag2(ClO4)2(C10H16N2O3S)2]n or [Ag2(ClO4)2(HL)2]n, (III), respectively. In (II), the AgI cations are again penta­coordinated by three biotin mol­ecules via two S atoms and a ureido O atom, and by two O atoms of a nitrate anion. In (I), (II) and (III), the AgI cations are bridged by an S atom and are coordinated by the ureido O atom and the O atoms of the anions. The reaction of biotin with silver salts of noncoordinating anions, viz. hexa­fluorido­phosphate (PF6) and hexa­fluorido­antimonate (SbF6), gave the chiral double-stranded helical structures catena-poly[[silver(I)-bis­{μ2-5-[(3aS,4S,6aR)-2-oxohexa­hydro-1H-thieno[3,4-d]imidazol-4-yl]pentan­oato}] hexafluoridophosphate], {[Ag(C10H16N2O3S)2](PF6)}n or {[Ag(HL)2](PF6)}n, (IV), and catena-poly[[[{5-[(3aS,4S,6aR)-2-oxohexa­hydro-1H-thieno[3,4-d]imidazol-4-yl]pentan­oato}silver(I)]-μ2-{5-[(3aS,4S,6aR)-2-oxo­hexa­hydro-1H-thieno[3,4-d]imidazol-4-yl]pentan­oato}] hexafluoridoantimonate], {[Ag(C10H16N2O3S)2](SbF6)}n or {[Ag(HL)2](SbF6)}n, (V), respectively. In (IV), the AgI cations have a tetra­hedral coordination environment, coordinated by four biotin mol­ecules via two S atoms, and by two carb­oxy O atoms of two different mol­ecules. In (V), however, the AgI cations have a trigonal coordination environment, coordinated by three biotin mol­ecules via two S atoms and one carboxy O atom. In (IV) and (V), neither the ureido O atom nor the F atoms of the anion are involved in coordination. Hence, the coordination environment of the AgI cations varies from AgS2O trigonal to AgS2O2 tetra­hedral to AgS2O3 square-pyramidal. The conformation of the valeric acid side chain varies from extended to twisted and this, together with the various anions present, has an influence on the solid-state structures of the resulting compounds. The various O—H...O and N—H...O hydrogen bonds present result in the formation of chiral two- and three-dimensional networks, which are further stabilized by C—H...X (X = O, F, S) inter­actions, and by N—H...F inter­actions for (IV) and (V). Biotin itself has a twisted valeric acid side chain which is involved in an intramolecular C—H...S hydrogen bond. The tetrahydrothiophene ring has an envelope conformation with the S atom as the flap. It is displaced from the mean plane of the four C atoms (plane B) by 0.8789 (6) Å, towards the ureido ring (plane A). Planes A and B are inclined to one another by 58.89 (14)°. In the crystal, molecules are linked via O—H...O and N—H...O hydrogen bonds, enclosing R22(8) loops, forming zigzag chains propagating along [001]. These chains are linked via N—H...O hydrogen bonds, and C—H...S and C—H...O interactions forming a three-dimensional network. The absolute configurations of biotin and complexes (I), (II), (IV) and (V) were confirmed crystallographically by resonant scattering.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113000322/eg3103sup1.cif
Contains datablocks HL, I, II, IV, V, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113000322/eg3103HLsup2.hkl
Contains datablock HL

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113000322/eg3103Isup3.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113000322/eg3103IIsup4.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113000322/eg3103IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113000322/eg3103Vsup6.hkl
Contains datablock V

CCDC references: 925753; 925754; 925755; 925756; 925757

Comment top

Biotin, also known as vitamin H or B7, is an essential coenzyme which is biologically active only when it is covalently attached to the active site of biotin carboxylases. The latter are a class of important enzymes for fatty acid biosynthesis, gluconeogenesis and propionate catabolism (Knowles, 1989; Bagautdinov et al., 2005; Goodwin et al., 1998; Brady et al., 1966). Biotin also acts as a coenzyme for a number of enzymatic processes catalyzing the fixation and transfer of carbon dioxide. As shown by Moss & Lane (1971), in this process the carboxylate group of biotin is linked via the amide unit to the amino group of the lysine residue in the active site of the respective enzyme and a N1-carboxybiotinyl intermediate is formed. There are a number of different biotin-dependent carboxylases, all of which require divalent metal ions, such as Mg2+, Mn2+, Co2+, Zn2+ or Cu2+, for carboxylation of biotin with HCO3- and adenosine triphosphate (Moss & Lane, 1971; Wood & Zwolinski, 1976; Aoki & Saenger, 1983). The exact role of these tightly bound metal ions is not well understood (Griesser et al., 1973; Sigel et al., 1969).

Biotin (HL) has three possible binding sites for metal ions: the carboxylic acid group of the valeric acid side chain, the O atom of the ureido group and the S atom of the tetrahydrothiophene ring. It is normally thought that the coordination tendency of the ureido O atom is weak, while that of the S atom is more pronounced. Various authors have indicated that the thioether coordination could be stereoselective (Sigel et al., 1969; Griesser et al., 1973; Hadjiliadis & Pneumatikakis, 1979).

A search of the Cambridge Structural Database (CSD, Version 5.33, Update 4, August 2012; Allen, 2002) gave three hits for silver complexes of biotin [all three compounds are described in an abstract by Aoki & Saenger (1984) registered for the 13th General Assembly and International Congress of Crystallography, Hamburg, Germany, 1984]. The first complex is described as a biotin silver(I) sesquihydrate three-dimensional coordination polymer, (VI) (CSD refcode CIVGIX). The AgI cation is pentacoordinate, coordinated by four biotin molecules via two S atoms, one ureido O atom and two carboxyl O atoms of one molecule. The second is an AgNO3 two-dimensional coordination polymer, catena-[(µ2-biotin-O,S)nitratosilver(I) hemihydrate], (VII) (CSD refcode CEGKAA). This structure was published earlier by Aoki & Saenger (1983), and the AgI cation is described as being tetrahedrally coordinated by three different biotin molecules, via two S atoms and a ureido O atom, and by a nitrate O atom. However, bond-valence analysis [Brese & O'Keeffe, 1991; Brown, 2002; as implemented in PLATON (Spek, 2009)] indicates that the AgI cation is pentacoordinate with a long bond to a second nitrate O atom. The third complex is a bis(biotin) silver(I) hexaflorophosphate two-dimensional coordination polymer, (VIII) (CSD refcode CIVGET). The coordination environment of the AgI cation is described as tetrahedral, coordinated by four biotin molecules via two S atoms and by two carboxyl O atoms. As no atomic coordinates are available in the CSD for complexes (VI) and (VIII), it was not possible to verify the geometry of the silver(I) coordination environments for these two compounds.

Herein, we describe and compare the crystal structures of biotin and six chiral silver(I) coordination polymers, namely {[Ag(L)].3H2O}n, (I), {[Ag2(NO3)2(HL)2].H2O}n, (II), [Ag2(ClO4)2(HL)2]n, (III) (Altaf & Stoeckli-Evans, 2012), {[Ag(HL)2](PF6)}n, (IV), {[Ag(HL)2](SbF6)}n, (V), and {[Ag(NO3)(HL)].0.5H2O}n, (VII) (CSD refcode CEGKAA; Aoki & Saenger, 1983). The various coordination modes of biotin are compared and it is shown how these chiral coordination polymers form hydrogen-bonded networks, which rely on the presence of the counterions and, in certain compounds, the solvent water molecules.

We carried out a new low-temperature X-ray diffraction analysis of biotin (Fig. 1) and confirmed its absolute structure crystallographically for the first time [Flack parameter (Flack, 1983) = -0.03 (9)]. The bond lengths and angles are within the normal ranges and close to those reported previously for two independent room-temperature analyses reported by DeTitta et al. (1976). The conformational features are also very similar and we note here that: (a) the ureido ring [plane A = N1/C8/C7/N2/C10] is planar to within 0.026 (2) Å, with atom O3 displaced from this mean plane by 0.0785 (18) Å; (b) the tetrahydrothiophene ring (S1/C6–C9) has an envelope conformation with atom S1 at the flap and directed toward the ureido ring, as observed previously (Lett & Marquet, 1971; DeTitta et al., 1976, 1980). The S atom is displaced from the mean plane of atoms C6–C9 (plane B) by 0.8789 (6) Å; (c) the folding angle about bond C7—C8, defined as the dihedral angle involving planes A and B, is 58.89 (14)°; (d) The valeric acid side chain has a twisted conformation, with the C3—C4—C5—C6 torsion angle being 73.2 (3)° (Table 1); and (e) the C3 methylene group is involved in an intramolecular C—H···S interaction (Fig. 1 and Table 2).

In the crystal structure of biotin, molecules are linked head-to-tail via O—H···O and N—H···O hydrogen bonds involving the carboxylic acid group, one of the N-bound H atoms and the ureido carbonyl O atom (Table 2). This gives a classical C O···H—N ring arrangement with an R22(8) ring motif (Bernstein et al., 1995), forming zigzag chains propagating along [001]. These chains are linked via an N—H···O hydrogen bond involving the other N-bound H atom of the ureido group and a carboxyl O atom. This results in the formation of a two-dimensional undulating sheet-like arrangement (Fig. 2) lying parallel to (100), which is further stabilized by a C—H···S interaction (Table 2). These sheets are in turn linked via C—H···O interactions to form a three-dimensional network (Table 2).

In (I), {[Ag(L)].3H2O}n, prepared by the reaction of biotin with silver acetate and a few drops of aqueous ammonia, the valeric acid group is deprotonated (Fig. 3). Atom Ag1 is coordinated by four biotin molecules, two via the S atom of a tetrahydrothiophene ring, one via a ureido group O atom and one via two carboxyl O atoms of the same molecule (Table 3). This leads to the formation of a two-dimensional network lying parallel to the bc plane (Fig. 4). In (VI) mentioned above, the structure is described as a three-dimensional coordination polymer. In (I), the geometric environment around the silver(I) cation as indicated by bond-valence analysis is pentacoordinate. The bicyclic system of the biotin molecule is folded along the C7—C8 bond, with the dihedral angle between planes A and B being 57.62 (17)°, which is slightly smaller than that found in biotin itself [58.89 (14)°]. The valeric acid side chain has an extended conformation (Table 3).

In the crystal structure of (I), the two-dimensional networks are linked via N—H···O and O—H···O hydrogen bonds involving the carboxyl O atoms and the solvent water molecules (Fig. 5 and Table 4). There are also C—H···O and C—H···N interactions present, leading ultimately to the formation of a three-dimensional network (Table 4).

Compound (II), {[Ag2(NO3)2(HL)2].H2O}n, synthesized by the reaction of biotin with silver(I) nitrate, is a one-dimensional coordination polymer (Figs. 6 and 7a). The structure is similar to that of the known silver(I) nitrate complex, {[Ag(NO3)(HL)].0.5H2O}n, (VII), described above (CEGKAA; Aoki & Saenger, 1983) (see Fig. 7b). On comparing the structures of the two compounds (cf. Figs. 7a and 7b), it can be seen that (II) is composed of two independent biotin molecules, two independent AgI cations and one solvent water molecule, while (VII) is composed of one biotin molecule, one AgI cation and one half of a solvent water molecule.

In (II), atom Ag1 is coordinated by three biotin molecules, twice via an S atom and once via a ureido O atom, and by the nitrate O atoms, which coordinate in a bidentate manner; the Ag1—Onitrate distances are 2.4529 (15) and 2.6679 (15) Å, while the Ag2—Onitrate distances are 2.3959 (15) and 2.8007 (14) Å. This leads to a pentacoordination mode for the two AgI cations (Table 5), similar to the situation in (VII), where the Ag—Onitrate distances are 2.45 (4) and 2.82 (4) Å.

In (II), the two valeric acid side chains have different conformations, one twisted, with the torsion angle C12—C13—C14—C15 being -74.6 (3)°, and the other extended (Table 5). In (VII) this chain has an extended arrangement. In (II) the bicyclic units are folded, with the dihedral angles between planes A and B being 59.14 (12) and 59.27 (12)°, similar to that in biotin itself.

In the crystal structure of (II), the acid groups are linked via C O···H—O hydrogen bonds, generating R22(8) ring motifs. The presence of O—H···O and N—H···O hydrogen bonds leads to the formation of a three-dimensional network (Fig. 8 and Table 6). There are also C—H···O interactions present (Table 6).

The crystal structure of the silver perchlorate complex of biotin, [Ag2(ClO4)2(HL)2]n, (III), has been reported elsewhere (Altaf & Stoeckli-Evans, 2012). The crystals were twinned and gave a poor set of diffraction data. However, the overall structure is similar to that of (II). There are two independent AgI cations coordinated by three biotin molecules, via two S atoms and a ureido O atom, and by an O atom of a perchlorate anion. Hence, the two AgI cations of (III) have distorted tetrahedral coordination environments. This leads to the formation of a one-dimensional polymer chain similar to that observed for (II). Here too one of the valeric acid chains is in an extended conformation while the other is twisted (Fig. 9).

In the crystal structure of (III), the chains are linked via pairs of O—H···O hydrogen bonds involving the carboxylic acid groups, with R22(8) ring motifs, forming a two-dimensional network lying parallel to the ab plane. There are also N—H···O hydrogen bonds involving the perchlorate O atoms, not only within the chains but also linking the chains, which together with the inter-chain O—H···O hydrogen bonds leads to the formation of a three-dimensional network.

Complex (IV), {[Ag(HL)2](PF6)}n, prepared by the reaction of biotin with AgPF6 in a 1:2 molar ratio, is composed of three independent silver(I) cations and six independent biotin molecules (Fig. 10a). All three AgI cations, Ag1, Ag2 and Ag3, have a distorted tetrahedral coordination geometry, being coordinated by four biotin molecules, two via the S atoms and two via carboxyl O atoms of two different biotin molecules (Table 7). This leads to the formation of a double-stranded helical chain (Fig. 10b). In (VIII) (CIVGET), the AgPF6 complex of biotin mentioned above, the structure is described as a two-dimensional coordination polymer, the AgI cation coordinated by four biotin molecules in the same manner as in (IV), with a tetrahedral coordination environment.

The presence of O—H···O hydrogen bonds in (IV), involving the acid OH group and the ureido O atom, stabilizes the polymeric chain structure (Fig. 9b). The conformations of the valeric acid side chains involving atoms C1–C4, C21–C24, C41–44 and C51–C54 are extended, different from those involving atoms C11–C14 and C31–C34 which are twisted (Table 7). The bicyclic units are folded, with the dihedral angles involving planes A and B varying from 58.3 (4) to 59.9 (4)°, again similar to that in biotin itself.

In the crystal structure of (IV), there are N—H···F hydrogen bonds involving the PF6- anions (Fig. 11 and Table 8), which result in the formation of two-dimensional slab-like structures lying parallel to (011). These slabs are in turn connected via C—H···O and C—H···F interactions, forming a three-dimensional network (Table 8).

The asymmetric unit of the silver(I) coordination polymer, {[Ag(HL)2](SbF6)}n, (V), is illustrated in Fig. 12(a). The silver(I) cation is coordinated by three biotin molecules in a trigonal-planar geometry. Two of the three biotin molecules coordinate to atom Ag1 via the S atom of the tetrahydrothiophene group, while the third is coordinated via a carboxyl O atom of the valeric acid side chain (Table 9). This results in the formation of a chiral double-stranded helical chain, stabilized by O—H···O and N—H···O hydrogen bonds (Fig. 12b and Table 10). The conformations of the two valeric acid side chains are different, one extended and one twisted, and similar to those observed in (IV) (Table 9). The bicyclic units are folded, with the dihedral angles involving planes A and B being 59.2 (3) and 59.8 (3)°, respectively.

In the crystal of (V), N—H···F hydrogen bonds involving the SbF6- anions are also present (Fig. 13 and Table 10), resulting in the formation of two-dimensional slab-like structures lying parallel to (101). These slabs are in turn connected via C—H···O and C—H···F interactions, forming a three-dimensional network. This arrangement is similar to that observed for (IV).

In conclusion, the absolute configuration of biotin and complexes (I), (II), (IV) and (V) has been confirmed crystallographically by resonant scattering. The coordinates of each compound correspond to the absolute structure of the molecule in the crystal.

We now compare these four new chiral, one- and two-dimensional coordination polymers with each other. [Rephrasing OK?] In (I), (II) and (III), two silver(I) cations are bridged by an S atom. The Ag—S—Ag bridging angle in (I) is 130.04 (12)°. This is much larger than the same angles observed in (II) and (III), which vary from 116.09 (2) to 119.56 (2)°. In (II), (IV) and (V) the Ag—S distances vary from 2.4192 (10) to 2.4851 (5) Å, while in (I) these distances are considerably longer, 2.5154 (7) and 2.5642 (7) Å. In (III) there are both short and long Ag—S bonds present, that is 2.438 (6) and 2.517 (6) for Ag1, and 2.441 (6) and 2.519 (6) for Ag2. In (VII) these distances are 2.39 (1) and 2.52 (1) Å, similar to the situation in (III).

In (I), (II) and (III) the AgI cation is coordinated by the ureido O atom, with similar Ag—O distances in (I) [2.5148 (18) Å] and (II) [2.5243 (14) and 2.5295 (14) Å] but with significantly shorter distances in (III) [2.338 (1) and 2.392 (17) Å]. The longest distance [2.68 (3) Å] is reported for (VII). In (I), the carboxylic acid group is deprotonated and it coordinates to the silver(I) cation with a short Ag1—O2ii distance of only 2.299 (2) Å [symmetry code: (ii) x, y, z - 1]. In (IV), two of the six valeric acid groups are deprotonated and coordinate to the silver(I) cations with Ag—O distances of 2.491 (4) and 2.623 (6) Å, while in (V) the same distance is 2.440 (3) Å.

All the tetrahydrothiophene rings have envelope conformations, with the displacement of the S atom from the mean plane of the four C atoms (plane B) varying from 0.781 (1) to 0.926 (6) Å. The O atom of the ureido group is coordinated to an AgI cation in (I), (II) and (III), and is displaced from the five-membered ring (plane A) by as much as 0.156 (2) Å [In which compound?]. In (IV) and (V) it is not coordinated to the silver(I) cation and the displacement is only ca 0.05 Å. The conformation of the bicyclic tetrahydro-1H-thieno[3,4-d]imidazol-2(3H)-one entity in the various complexes is similar, with the dihedral angles involving planes A and B varying only slightly, from 57.62 (17) to 59.9 (4)°. This is similar to the value observed for biotin itself [58.89 (14)°].

The most significant differences occur in the conformation of the valeric acid side chains. The torsion angles along the chains indicate that in (II)–(V) one of the pair of chains is twisted, as in biotin itself, while the other pair of chains is in an extended conformation, as is the chain in (I) and (VII).

In (II), and (III) and (VII), prepared with potentially coordinating anions, viz. nitrate and perchlorate, respectively, they do indeed coordinate to the silver(I) cations and are also involved in intra- and interchain N—H···O hydrogen bonds. In comparison, in (IV) and (V), the PF6- and SbF6- anions, respectively, do not coordinate to the AgI cations but participate in intermolecular N—H···F and C—H···F interactions.

The coordination environment around the AgI cations varies between the structures. It is AgS2O distorted trigonal planar in (V), AgS2O2 distorted tetrahedral in (III) and (IV), and AgS2O3 pentacoordinate, distorted square pyramidal, in (I), (II) and (VII). The AgI cation in (VI) is reported to be pentacoordinate (AgS2O3), while in (VIII) it is reported to be tetrahedral (AgS2O2).

In the crystal structures of (I)–(V) and (VII), the one- and two-dimensional polymers are linked via a series of classical and non-classical hydrogen bonds, forming three-dimensional networks.

Crystallographic details of (I) and (VI), (II) and (VII), and (IV) and (VIII), are compared in Table 11. In (I) and (VI), the ratio of biotin to silver is 1:1, with three solvent water molecules for (I) and 1.5 for (VI). While (I) is a two-dimensional polymer, (VI) is described as a three-dimensional network. However, in both compounds the AgI cations have pentacoordination environments, being coordinated by four biotin molecules via two S atoms, a ureido O atom and two carboxyl O atoms of one molecule. They crystallize in space groups P21 (Z = 2) and I222 (Z = 8), respectively. The volume occupied by the molecular unit (silver:biotin) and the density are 357.1 Å3 and 1.885 Mg m-3, respectively, for (I), compared with 374.5 Å3 and 1.721 Mg m-3, respectively, for (VI).

Compounds (II) and (VII) crystallize in the same monoclinic space group, C2. In both compounds the biotin:silver ratio is 1:1 and the AgI cations have pentacoordination environments, being coordinated by three biotin molecules via two S atoms and a ureido O atom, and by two nitrate O atoms. The volume occupied by the molecular unit (silver:biotin) and the density are, respectively, 365.7 Å3 and 1.555 Mg m-3 for (II), and 373.77 Å3 and 1.88 Mg m-3 for (VII).

Compounds (IV) and (VIII) have the same biotin:silver ratio (2:1). In both compounds the AgI cations have tetrahedral coordination environments, being coordinated by four biotin molecules via two S atoms and two carboxyl O atoms. They crystallize in space groups P21 (Z = 2) and P21212 (Z = 2; this complex possesses two-fold rotation symmetry), respectively. The volume occupied by the molecular unit (2biotin:silver) and the density are, respectively, 693.3 Å3 and 1.776 Mg m-3 for (IV), and 716.7 Å3 and 1.72 Mg m-3 for (VIII). Compound (IV) is a double-stranded helical chain, while (VIII) is described as a two-dimensional coordination polymer.

Further work will entail efforts to synthesize (VI), (VII) and (VIII) to determine if they are polymorphs of (I), (II) and (IV), respectively, and to examine the possibility of phase transformations taking place on cooling. Crystals of (VI)–(VIII) were measured at room temperature, while those of (I), (II) and (IV) were measured at 173 K. Compounds (II) and (VII), for example, both crystallize in space group C2 and the length of the unique b axis is almost the same, while the volume of the unit cell of (II) is almost twice that of (VII). Interestingly, the simulated X-ray powder patterns (routine SimPowderP in PLATON; Spek, 2009) of (II) and (VII) are very similar concerning peak positions and relative intensity. Hence, it may be possible that (II) is the result of a phase transformation giving a k2 subgroup at lower temperature. It is also possible that these structures are different simply due to the presence of different conformations of the valeric acid side chains. The packing indices [KPI (Kitajgorodskij, 1973), calculated using PLATON (Spek, 2009)] are 72.1 and 68.4% for (II) and (VII), respectively, with both extended and twisted valeric acid side chains in (II) but only extended in (VII) (see Fig. 7). The highest value of 74.3% is observed for the two-dimensional coordination polymer, (I), where the valeric acid side chain has an extended conformation (Fig. 4).

Related literature top

For related literature, see: Allen (2002); Altaf & Stoeckli-Evans (2012); Aoki & Saenger (1983, 1984); Bagautdinov et al. (2005); Bernstein et al. (1995); Brady et al. (1966); Brese & O'Keeffe (1991); Brown (2002); DeTitta, Edmonds, Stallings & Donohue (1976); DeTitta, Parthasarathy, Blessing & Stallings (1980); Farrugia (2012); Flack (1983); Goodwin et al. (1998); Griesser et al. (1973); Hadjiliadis & Pneumatikakis (1979); Kitajgorodskij (1973); Knowles (1989); Lett & Marquet (1971); Moss & Lane (1971); Nardelli (1999); Sigel et al. (1969); Spek (2009); Wood & Zwolinski (1976).

Experimental top

For the synthesis of (I), an equimolar (0.1 mmol) ratio of biotin to silver acetate in methanol–water (4:1 v/v, 20 ml) at room temperature, with continuous stirring for 30 min, was used, together with five drops of aqueous ammonia. The solution was then filtered and left undisturbed for crystallization by slow evaporation. The syntheses of (II) and (III) were carried out by dissolving equimolar amounts (0.1 mmol) of biotin and silver nitrate for (II), or silver perchlorate for (III), in methanol–water (4:1 v/v, 20 ml) at room temperature with continuous stirring for 30 min. The solutions were then filtered and left undisturbed for crystallization by slow evaporation. After approximately 5 d, colourless rod-like crystals of both complexes were obtained. The syntheses of (IV) and (V) were carried out in a similar manner using the silver salts AgPF6 and AgSbF6, respectively, but with a biotin-to-silver-salt molar ratio of 1:2. Warning! perchlorate salts are potentially explosive and should be handled with care and used in only very small quantities.

Refinement top

The absolute configurations of biotin and complexes (I), (II), (IV) and (V) were confirmed crystallographically by resonant scattering. The coordinates of each compound correspond to the absolute structure of the molecule in the crystal. In (I), one of the carboxyl O atoms (O1) exhibited a very elongated displacement ellipsoid. It was decided to split this atom (O1A/O1B) and it was refined with a fixed occupancy ratio of 0.6:0.4. For all compounds, the N-bound H atoms were located in difference electron-density maps and refined with distance restraints of N—H = 0.88 (2) Å, and with Uiso(H) = 1.2Ueq(N). The OH and C-bound H atoms were included in calculated positions and treated as riding atoms, with O—H = 0.84 Å and with Uiso(H) = 1.5Ueq(O), or with C—H = 1.00 and 0.99 Å for CH and CH2 H atoms, respectively, and with Uiso(H) = 1.2Ueq(C). The water H atoms on OW1 in (I) and those in (II) were located in difference Fourier maps. The H atoms on OW2 and OW3 in (I) were included in calculated positions using the method developed by Nardelli (1999) and implemented in WinGX (Farrugia, 2012). They were all refined with O—H distance restraints of 0.84 (2) Å, and for (I) with H···H = 1.45 (2) Å. For (I), (II) and (IV), a certain number of reflections were omitted using the OMIT instruction [In which software? Reference?]. These reflections were either affected by the beam stop at very low θ values or they were the most disagreeable reflections where Δ(F2)/e.s.d. was greater than 5.0–6.0.

Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
Fig. 1. A view of the molecular structure of biotin, HL, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular C—H···S hydrogen bond is shown as a dashed line.

Fig. 2. A view, along the a axis, of the hydrogen-bonded three-dimensional structure of biotin. O—H···O and N—H···O hydrogen bonds are shown as dashed lines (see Table 2 for details). C-bound H atoms have been omitted for clarity.

Fig. 3. A view of the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x, y - 1, z; (ii) x, y, z - 1; (iii) -x + 2, y - 1/2, -z.]

Fig. 4. A view, normal to the bc plane, of the chiral two-dimensional network of (I). C-bound H atoms have been omitted for clarity. The AgI cations are shown as large balls.

Fig. 5. A view, along the b axis, of the crystal packing of (I). O—H···O and N—H···O hydrogen bonds are shown as dashed lines (see Table 4 for details). C-bound H atoms have been omitted for clarity.

Fig. 6. A view of the asymmetric unit of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The solvent water molecules have been omitted for clarity. [Symmetry code: (i) x, y + 1, z.]

Fig. 7. (a) A view of part of the chiral polymer chain in (II). (b) A view of part of the chiral polymer chain in (VII) (Aoki & Saenger, 1983). C-bound H atoms have been omitted for clarity. The AgI cations are shown as large balls.

Fig. 8. A view, along the c axis, of the crystal packing in (II). O—H···O and N—H···O hydrogen bonds are shown as dashed lines (see Table 6 for details). C-bound H atoms have been omitted for clarity.

Fig. 9. A view of the chiral one-dimensional polymer of (III). C-bound H atoms have been omitted for clarity. The AgI cations are shown as large balls.

Fig. 10. (a) A view of the asymmetric unit of (IV), showing the atom-numbering scheme for the heteroatoms. Displacement ellipsoids are drawn at the 50% probability level. Counterions and H atoms have been omitted for clarity. [Symmetry code: (i) x, y, z + 1]. (b) A view of the chiral one-dimensional polymer of (IV). C-bound H atoms have been omitted for clarity. The AgI cations are shown as large balls. O—H···O hydrogen bonds are shown as dashed lines. C-bound H atoms have been omitted for clarity.

Fig. 11. A view, along the a axis, of the crystal packing in (IV). O—H···O, N—H···O and N—H···F hydrogen bonds are shown as dotted lines (see Table 8 for details). C-bound H atoms have been omitted for clarity.

Fig. 12. (a) A view of the asymmetric unit of (V), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Counterions have been omitted for clarity. [Symmetry code: (i) x, y, z - 1]. (b) A view of the chiral one-dimensional polymer of (V). O—H···O and N—H···O hydrogen bonds are shown as dashed lines. C-bound H atoms have been omitted for clarity and AgI cations are shown as large balls.

Fig. 13. A view, along the c axis, of the crystal packing in (V). O—H···O, N—H···O and N—H···F hydrogen bonds are shown as dashed lines (see Table 10 for details). C-bound H atoms have been omitted for clarity.
(HL) 5-[(3aS,4S,6aR)-2-Oxohexahydro-1H- thieno[3,4-d]imidazol-4-yl]pentanoic acid top
Crystal data top
C10H16N2O3SF(000) = 520
Mr = 244.31Dx = 1.448 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4899 reflections
a = 5.1955 (6) Åθ = 1.9–26.1°
b = 10.3017 (17) ŵ = 0.28 mm1
c = 20.943 (2) ÅT = 173 K
V = 1120.9 (2) Å3Rod, colourless
Z = 40.50 × 0.13 × 0.13 mm
Data collection top
Stoe IPDS 2
diffractometer
2102 independent reflections
Radiation source: fine-focus sealed tube1871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω rotation scansθmax = 25.6°, θmin = 2.2°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 65
Tmin = 0.841, Tmax = 1.000k = 1210
3715 measured reflectionsl = 2522
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0601P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2102 reflectionsΔρmax = 0.23 e Å3
152 parametersΔρmin = 0.25 e Å3
2 restraintsAbsolute structure: Flack (1983), with 837 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (9)
Crystal data top
C10H16N2O3SV = 1120.9 (2) Å3
Mr = 244.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1955 (6) ŵ = 0.28 mm1
b = 10.3017 (17) ÅT = 173 K
c = 20.943 (2) Å0.50 × 0.13 × 0.13 mm
Data collection top
Stoe IPDS 2
diffractometer
2102 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
1871 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 1.000Rint = 0.047
3715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090Δρmax = 0.23 e Å3
S = 0.99Δρmin = 0.25 e Å3
2102 reflectionsAbsolute structure: Flack (1983), with 837 Friedel pairs
152 parametersAbsolute structure parameter: 0.03 (9)
2 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56496 (11)0.37007 (6)0.04622 (3)0.0262 (2)
O10.4697 (4)0.48208 (15)0.18884 (9)0.0357 (6)
O20.3843 (4)0.69236 (17)0.19861 (9)0.0348 (6)
O30.4230 (4)0.57414 (16)0.24408 (8)0.0310 (5)
N10.5386 (4)0.37186 (18)0.20590 (9)0.0268 (6)
N20.7453 (4)0.54283 (19)0.17099 (10)0.0247 (6)
C10.5182 (4)0.6058 (2)0.17793 (10)0.0229 (6)
C20.7530 (5)0.6264 (3)0.13749 (11)0.0270 (7)
C30.7105 (5)0.5814 (2)0.06840 (11)0.0245 (7)
C40.9575 (5)0.5932 (2)0.02951 (10)0.0257 (7)
C50.9253 (5)0.5770 (2)0.04246 (10)0.0245 (6)
C60.8745 (4)0.4413 (2)0.06772 (11)0.0215 (6)
C70.8828 (4)0.4365 (2)0.14098 (11)0.0218 (6)
C80.7320 (5)0.3151 (2)0.16447 (11)0.0240 (7)
C90.6168 (5)0.2460 (2)0.10620 (11)0.0290 (8)
C100.5574 (5)0.5015 (2)0.21013 (10)0.0230 (6)
H1N0.436 (5)0.333 (2)0.2307 (11)0.0320*
H1O0.335300.475400.210900.0540*
H2A0.798300.719800.137600.0320*
H2B0.899200.577800.156100.0320*
H2N0.803 (5)0.6209 (19)0.1756 (13)0.0300*
H3A0.574000.634800.048400.0290*
H3B0.652200.489900.068300.0290*
H4A1.034300.679500.037900.0310*
H4B1.080900.527000.044900.0310*
H5A1.083300.610100.063300.0290*
H5B0.781400.633400.056300.0290*
H61.013100.382900.051100.0260*
H71.064900.433400.156400.0260*
H80.847200.255400.189000.0290*
H9A0.452000.203700.117600.0350*
H9B0.736800.179000.090100.0350*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0226 (3)0.0301 (3)0.0258 (3)0.0050 (2)0.0035 (3)0.0003 (2)
O10.0399 (11)0.0238 (9)0.0434 (11)0.0017 (8)0.0178 (9)0.0022 (8)
O20.0369 (11)0.0256 (9)0.0420 (11)0.0032 (8)0.0119 (9)0.0002 (8)
O30.0361 (10)0.0277 (9)0.0293 (9)0.0008 (8)0.0111 (9)0.0018 (7)
N10.0319 (10)0.0225 (10)0.0260 (10)0.0032 (9)0.0074 (9)0.0028 (8)
N20.0301 (11)0.0199 (9)0.0241 (10)0.0046 (8)0.0077 (9)0.0031 (8)
C10.0242 (12)0.0254 (11)0.0192 (10)0.0011 (9)0.0016 (9)0.0009 (9)
C20.0269 (12)0.0299 (12)0.0242 (12)0.0028 (11)0.0001 (10)0.0027 (10)
C30.0227 (11)0.0275 (12)0.0234 (12)0.0003 (9)0.0009 (10)0.0007 (10)
C40.0258 (11)0.0296 (12)0.0218 (11)0.0048 (10)0.0004 (10)0.0021 (9)
C50.0276 (11)0.0259 (11)0.0201 (10)0.0022 (10)0.0043 (12)0.0029 (9)
C60.0203 (11)0.0259 (11)0.0182 (10)0.0002 (9)0.0003 (9)0.0004 (9)
C70.0190 (11)0.0237 (11)0.0226 (11)0.0006 (9)0.0028 (9)0.0014 (9)
C80.0283 (13)0.0209 (11)0.0227 (11)0.0018 (9)0.0012 (10)0.0008 (9)
C90.0361 (15)0.0212 (11)0.0296 (13)0.0046 (10)0.0017 (11)0.0032 (10)
C100.0257 (11)0.0240 (10)0.0194 (10)0.0004 (10)0.0011 (10)0.0008 (9)
Geometric parameters (Å, º) top
S1—C61.824 (2)C6—C71.536 (3)
S1—C91.812 (2)C7—C81.556 (3)
O1—C11.319 (3)C8—C91.534 (3)
O2—C11.211 (3)C2—H2A0.9900
O3—C101.246 (3)C2—H2B0.9900
O1—H1O0.8400C3—H3A0.9900
N1—C81.451 (3)C3—H3B0.9900
N1—C101.342 (3)C4—H4A0.9900
N2—C101.344 (3)C4—H4B0.9900
N2—C71.451 (3)C5—H5A0.9900
N1—H1N0.85 (2)C5—H5B0.9900
N2—H2N0.86 (2)C6—H61.0000
C1—C21.500 (3)C7—H71.0000
C2—C31.535 (3)C8—H81.0000
C3—C41.525 (4)C9—H9A0.9900
C4—C51.526 (3)C9—H9B0.9900
C5—C61.518 (3)
C6—S1—C988.95 (11)C3—C2—H2B109.00
C1—O1—H1O109.00H2A—C2—H2B108.00
C8—N1—C10112.97 (19)C2—C3—H3A110.00
C7—N2—C10112.50 (18)C2—C3—H3B109.00
C10—N1—H1N118.5 (15)C4—C3—H3A109.00
C8—N1—H1N127.9 (15)C4—C3—H3B109.00
C7—N2—H2N125.5 (17)H3A—C3—H3B108.00
C10—N2—H2N118.6 (18)C3—C4—H4A108.00
O1—C1—O2122.7 (2)C3—C4—H4B108.00
O2—C1—C2124.4 (2)C5—C4—H4A109.00
O1—C1—C2112.9 (2)C5—C4—H4B109.00
C1—C2—C3111.9 (2)H4A—C4—H4B107.00
C2—C3—C4111.0 (2)C4—C5—H5A108.00
C3—C4—C5115.3 (2)C4—C5—H5B108.00
C4—C5—C6117.66 (18)C6—C5—H5A108.00
S1—C6—C5115.96 (16)C6—C5—H5B108.00
C5—C6—C7111.90 (17)H5A—C5—H5B107.00
S1—C6—C7104.98 (14)S1—C6—H6108.00
N2—C7—C8102.83 (17)C5—C6—H6108.00
C6—C7—C8109.13 (17)C7—C6—H6108.00
N2—C7—C6113.24 (18)N2—C7—H7110.00
N1—C8—C9113.1 (2)C6—C7—H7110.00
C7—C8—C9108.54 (18)C8—C7—H7110.00
N1—C8—C7102.35 (16)N1—C8—H8111.00
S1—C9—C8106.38 (14)C7—C8—H8111.00
O3—C10—N2124.4 (2)C9—C8—H8111.00
N1—C10—N2109.1 (2)S1—C9—H9A110.00
O3—C10—N1126.5 (2)S1—C9—H9B110.00
C1—C2—H2A109.00C8—C9—H9A110.00
C1—C2—H2B109.00C8—C9—H9B110.00
C3—C2—H2A109.00H9A—C9—H9B109.00
C9—S1—C6—C5166.31 (17)C2—C3—C4—C5168.35 (19)
C9—S1—C6—C742.28 (15)C3—C4—C5—C673.2 (3)
C6—S1—C9—C841.21 (17)C4—C5—C6—S167.4 (3)
C10—N1—C8—C70.8 (2)C4—C5—C6—C7172.3 (2)
C10—N1—C8—C9117.4 (2)S1—C6—C7—N281.88 (18)
C8—N1—C10—O3177.1 (2)S1—C6—C7—C832.00 (19)
C8—N1—C10—N23.5 (3)C5—C6—C7—N244.7 (2)
C10—N2—C7—C6121.9 (2)C5—C6—C7—C8158.58 (19)
C10—N2—C7—C84.3 (2)N2—C7—C8—N12.0 (2)
C7—N2—C10—O3175.6 (2)N2—C7—C8—C9117.9 (2)
C7—N2—C10—N15.0 (3)C6—C7—C8—N1122.44 (18)
O1—C1—C2—C369.4 (3)C6—C7—C8—C92.6 (2)
O2—C1—C2—C3110.4 (3)N1—C8—C9—S184.6 (2)
C1—C2—C3—C4175.51 (19)C7—C8—C9—S128.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (2)2.24 (2)3.044 (3)158 (2)
O1—H1O···O3ii0.841.722.544 (3)167
N2—H2N···O2iii0.86 (2)2.03 (2)2.881 (3)169 (2)
C3—H3B···S10.992.743.328 (2)119
C6—H6···S1iv1.002.873.689 (2)139
C8—H8···O1v1.002.533.340 (3)138
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y+3/2, z; (iv) x+1, y, z; (v) x+1/2, y+1/2, z.
(I) Poly[[{µ3-5-[(3aS,4S,6aR)-2-oxohexahydro-1H- thieno[3,4-d]imidazol-4-yl]pentanoato}silver(I)] trihydrate] top
Crystal data top
[Ag(C10H15N2O3S)]·3H2OF(000) = 412
Mr = 405.22Dx = 1.885 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 11662 reflections
a = 8.7869 (8) Åθ = 2.1–29.6°
b = 8.2847 (10) ŵ = 1.58 mm1
c = 9.8588 (10) ÅT = 173 K
β = 95.718 (8)°Plate, colourless
V = 714.12 (13) Å30.40 × 0.40 × 0.15 mm
Z = 2
Data collection top
Stoe IPDS 2
diffractometer
3827 independent reflections
Radiation source: fine-focus sealed tube3718 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 29.2°, θmin = 3.0°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 1210
Tmin = 0.574, Tmax = 0.810k = 1111
8354 measured reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.1972P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.43 e Å3
3827 reflectionsΔρmin = 0.52 e Å3
215 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
18 restraintsExtinction coefficient: 0.0228 (16)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1776 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (2)
Crystal data top
[Ag(C10H15N2O3S)]·3H2OV = 714.12 (13) Å3
Mr = 405.22Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.7869 (8) ŵ = 1.58 mm1
b = 8.2847 (10) ÅT = 173 K
c = 9.8588 (10) Å0.40 × 0.40 × 0.15 mm
β = 95.718 (8)°
Data collection top
Stoe IPDS 2
diffractometer
3827 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
3718 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 0.810Rint = 0.024
8354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061Δρmax = 0.43 e Å3
S = 1.07Δρmin = 0.52 e Å3
3827 reflectionsAbsolute structure: Flack (1983), with 1776 Friedel pairs
215 parametersAbsolute structure parameter: 0.00 (2)
18 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.95339 (2)0.24575 (3)0.09734 (2)0.0231 (1)
S10.88972 (6)0.53872 (7)0.04098 (6)0.0168 (1)
O1A0.7544 (5)0.1797 (7)0.6569 (4)0.0355 (11)0.600
O1B0.7674 (10)0.1050 (10)0.6221 (7)0.045 (2)0.400
O20.9833 (4)0.2655 (4)0.6742 (2)0.0515 (9)
O30.7373 (2)1.0996 (2)0.0014 (2)0.0277 (6)
N10.6609 (3)0.8383 (3)0.0354 (3)0.0244 (6)
N20.7378 (3)0.8979 (3)0.1630 (3)0.0291 (7)
C10.8718 (4)0.2120 (3)0.5997 (3)0.0319 (9)
C20.8752 (4)0.2232 (4)0.4474 (3)0.0349 (9)
C30.7871 (3)0.3698 (4)0.3879 (3)0.0279 (8)
C40.7933 (3)0.3826 (3)0.2351 (3)0.0251 (7)
C50.7057 (3)0.5289 (3)0.1744 (3)0.0223 (6)
C60.6985 (3)0.5401 (3)0.0197 (3)0.0192 (6)
C70.6224 (3)0.6938 (3)0.0423 (3)0.0208 (6)
C80.6846 (3)0.7323 (4)0.1818 (2)0.0230 (6)
C90.8140 (3)0.6155 (3)0.2059 (3)0.0232 (7)
C100.7136 (3)0.9585 (3)0.0397 (3)0.0225 (7)
O1W0.5120 (3)0.3687 (4)0.7272 (3)0.0531 (10)
O2W0.2584 (5)0.3155 (6)0.5332 (5)0.0811 (17)
O3W0.5032 (6)0.5895 (7)0.5220 (5)0.0921 (19)
H2A0.830000.124000.404300.0420*
H2B0.982700.230300.426000.0420*
H2N0.758 (5)0.975 (4)0.219 (3)0.0350*
H3A0.679100.361700.407600.0330*
H3B0.831000.468800.432200.0330*
H4A0.749400.283400.190900.0300*
H4B0.901300.390300.215500.0300*
H5A0.600100.525200.201100.0270*
H5B0.754700.628000.214400.0270*
H60.640400.444700.020100.0230*
H70.508800.679700.055200.0250*
H80.600600.725500.257900.0280*
H9A0.895000.672200.250200.0280*
H9B0.774600.525700.265700.0280*
H1N0.609 (4)0.847 (5)0.105 (3)0.0290*
H1WA0.508 (6)0.453 (4)0.675 (4)0.0800*
H1WB0.563 (6)0.293 (5)0.691 (5)0.0800*
H2WA0.357 (3)0.339 (7)0.530 (7)0.1220*
H2WB0.233 (8)0.338 (11)0.616 (4)0.1220*
H3WA0.449 (6)0.675 (6)0.499 (6)0.1380*
H3WB0.602 (3)0.607 (8)0.539 (6)0.1380*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0289 (1)0.0186 (1)0.0214 (1)0.0035 (1)0.0006 (1)0.0022 (1)
S10.0182 (2)0.0152 (2)0.0169 (2)0.0010 (2)0.0020 (2)0.0004 (2)
O1A0.045 (2)0.043 (2)0.0191 (18)0.0015 (19)0.0069 (16)0.0069 (17)
O1B0.075 (5)0.040 (4)0.020 (3)0.011 (4)0.009 (3)0.005 (3)
O20.0754 (17)0.053 (2)0.0245 (10)0.0103 (16)0.0028 (10)0.0048 (12)
O30.0250 (9)0.0191 (9)0.0401 (11)0.0010 (7)0.0095 (8)0.0021 (8)
N10.0259 (11)0.0203 (10)0.0285 (11)0.0017 (8)0.0095 (9)0.0021 (9)
N20.0446 (14)0.0178 (9)0.0263 (12)0.0023 (9)0.0101 (10)0.0047 (8)
C10.0440 (15)0.0313 (18)0.0213 (11)0.0140 (11)0.0083 (11)0.0100 (9)
C20.0583 (17)0.0306 (18)0.0162 (10)0.0150 (13)0.0065 (10)0.0035 (10)
C30.0366 (14)0.0301 (14)0.0176 (11)0.0031 (11)0.0061 (10)0.0044 (9)
C40.0353 (13)0.0215 (11)0.0181 (11)0.0026 (10)0.0006 (10)0.0016 (8)
C50.0243 (11)0.0231 (11)0.0198 (11)0.0001 (9)0.0040 (9)0.0028 (9)
C60.0175 (10)0.0188 (10)0.0215 (11)0.0028 (9)0.0031 (9)0.0030 (10)
C70.0157 (9)0.0193 (10)0.0273 (12)0.0002 (7)0.0012 (9)0.0056 (8)
C80.0262 (9)0.0202 (12)0.0217 (9)0.0032 (12)0.0017 (8)0.0051 (11)
C90.0309 (12)0.0224 (12)0.0160 (10)0.0002 (9)0.0004 (10)0.0027 (9)
C100.0172 (10)0.0193 (11)0.0315 (14)0.0027 (8)0.0047 (10)0.0019 (11)
O1W0.0443 (15)0.0662 (19)0.0505 (16)0.0136 (13)0.0131 (12)0.0137 (14)
O2W0.083 (3)0.090 (3)0.074 (3)0.022 (2)0.026 (2)0.014 (2)
O3W0.079 (3)0.110 (4)0.087 (3)0.010 (3)0.007 (2)0.017 (3)
Geometric parameters (Å, º) top
Ag1—S12.5642 (7)N2—H2N0.87 (3)
Ag1—O3i2.5148 (18)C1—C21.508 (4)
Ag1—O2ii2.299 (2)C2—C31.526 (5)
Ag1—S1iii2.5154 (7)C3—C41.517 (4)
Ag1—O1Aii2.895 (4)C4—C51.526 (4)
S1—C61.839 (3)C5—C61.523 (4)
S1—C91.810 (3)C6—C71.537 (4)
O1A—C11.253 (6)C7—C81.563 (4)
O1B—C11.310 (9)C8—C91.530 (4)
O2—C11.246 (4)C2—H2A0.9900
O3—C101.240 (3)C2—H2B0.9900
O1W—H1WB0.87 (5)C3—H3B0.9900
O1W—H1WA0.87 (4)C3—H3A0.9900
O2W—H2WA0.89 (3)C4—H4B0.9900
O2W—H2WB0.89 (5)C4—H4A0.9900
O3W—H3WB0.88 (3)C5—H5A0.9900
O3W—H3WA0.87 (5)C5—H5B0.9900
N1—C101.350 (4)C6—H61.0000
N1—C71.443 (4)C7—H71.0000
N2—C81.455 (4)C8—H81.0000
N2—C101.352 (4)C9—H9B0.9900
N1—H1N0.86 (3)C9—H9A0.9900
S1—Ag1—O3i100.66 (4)N2—C8—C7102.5 (2)
S1—Ag1—O2ii101.16 (8)S1—C9—C8107.17 (18)
S1—Ag1—S1iii130.36 (2)O3—C10—N2126.0 (3)
O2ii—Ag1—O3i124.54 (10)N1—C10—N2108.2 (2)
S1iii—Ag1—O3i82.03 (4)O3—C10—N1125.8 (3)
S1iii—Ag1—O2ii118.01 (9)C1—C2—H2A109.00
Ag1—S1—C6107.61 (8)C1—C2—H2B109.00
Ag1—S1—C9101.93 (9)C3—C2—H2A109.00
Ag1—S1—Ag1iv130.04 (2)H2A—C2—H2B108.00
C6—S1—C991.38 (13)C3—C2—H2B109.00
Ag1iv—S1—C6106.77 (9)C4—C3—H3A109.00
Ag1iv—S1—C9112.33 (9)C4—C3—H3B109.00
Ag1v—O2—C1113.1 (2)C2—C3—H3B109.00
Ag1vi—O3—C10116.72 (17)C2—C3—H3A109.00
H1WA—O1W—H1WB109 (4)H3A—C3—H3B108.00
H2WA—O2W—H2WB109 (6)C3—C4—H4A109.00
H3WA—O3W—H3WB115 (5)C3—C4—H4B109.00
C7—N1—C10113.3 (3)H4A—C4—H4B108.00
C8—N2—C10112.8 (2)C5—C4—H4A109.00
C10—N1—H1N128 (3)C5—C4—H4B109.00
C7—N1—H1N112 (3)C4—C5—H5A109.00
C10—N2—H2N111 (2)C4—C5—H5B109.00
C8—N2—H2N134 (2)C6—C5—H5A109.00
O2—C1—C2118.2 (3)C6—C5—H5B109.00
O1B—C1—C2107.1 (4)H5A—C5—H5B108.00
O1A—C1—C2124.1 (3)C7—C6—H6108.00
O1B—C1—O2131.6 (4)C5—C6—H6108.00
O1A—C1—O2116.4 (3)S1—C6—H6108.00
C1—C2—C3111.9 (3)N1—C7—H7110.00
C2—C3—C4111.8 (2)C6—C7—H7110.00
C3—C4—C5112.2 (2)C8—C7—H7110.00
C4—C5—C6114.2 (2)N2—C8—H8111.00
S1—C6—C7104.55 (18)C7—C8—H8111.00
C5—C6—C7115.0 (2)C9—C8—H8111.00
S1—C6—C5112.17 (19)S1—C9—H9B110.00
N1—C7—C6114.0 (2)H9A—C9—H9B109.00
N1—C7—C8102.4 (2)C8—C9—H9A110.00
C6—C7—C8110.1 (2)C8—C9—H9B110.00
C7—C8—C9109.8 (2)S1—C9—H9A110.00
N2—C8—C9112.5 (2)
O3i—Ag1—S1—C69.45 (11)Ag1vi—O3—C10—N231.5 (4)
O3i—Ag1—S1—C9104.77 (10)C10—N1—C7—C6127.4 (3)
O3i—Ag1—S1—Ag1iv122.02 (5)C10—N1—C7—C88.6 (3)
O2ii—Ag1—S1—C6119.25 (13)C7—N1—C10—O3171.0 (3)
O2ii—Ag1—S1—C923.93 (13)C7—N1—C10—N29.7 (3)
O2ii—Ag1—S1—Ag1iv109.28 (9)C10—N2—C8—C71.2 (3)
S1iii—Ag1—S1—C698.00 (10)C10—N2—C8—C9119.0 (2)
S1iii—Ag1—S1—C9166.67 (9)C8—N2—C10—O3174.2 (3)
S1iii—Ag1—S1—Ag1iv33.46 (4)C8—N2—C10—N16.5 (3)
S1—Ag1—O3i—C10i163.53 (18)O1A—C1—C2—C369.1 (5)
S1—Ag1—O2ii—C1ii103.6 (2)O2—C1—C2—C397.5 (4)
S1—Ag1—S1iii—Ag1iii130.05 (3)C1—C2—C3—C4178.9 (3)
S1—Ag1—S1iii—C6iii98.19 (9)C2—C3—C4—C5179.9 (2)
S1—Ag1—S1iii—C9iii0.49 (10)C3—C4—C5—C6175.7 (2)
Ag1—S1—C6—C593.70 (17)C4—C5—C6—S155.9 (3)
Ag1—S1—C6—C7141.10 (15)C4—C5—C6—C7175.2 (2)
C9—S1—C6—C5163.32 (18)S1—C6—C7—N183.7 (2)
C9—S1—C6—C738.13 (19)S1—C6—C7—C830.7 (2)
Ag1iv—S1—C6—C549.48 (18)C5—C6—C7—N139.8 (3)
Ag1iv—S1—C6—C775.72 (18)C5—C6—C7—C8154.1 (2)
Ag1—S1—C9—C8143.67 (16)N1—C7—C8—N24.2 (3)
C6—S1—C9—C835.35 (19)N1—C7—C8—C9115.5 (2)
Ag1iv—S1—C9—C873.43 (19)C6—C7—C8—N2125.7 (2)
Ag1v—O2—C1—O1A10.4 (4)C6—C7—C8—C96.0 (3)
Ag1v—O2—C1—C2178.0 (2)N2—C8—C9—S191.3 (2)
Ag1vi—O3—C10—N1147.6 (2)C7—C8—C9—S122.1 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y, z1; (iii) x+2, y1/2, z; (iv) x+2, y+1/2, z; (v) x, y, z+1; (vi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1Wvii0.86 (3)2.06 (3)2.925 (4)179 (6)
N2—H2N···O1Aviii0.87 (3)2.09 (3)2.946 (6)166 (4)
O1W—H1WA···O3W0.87 (4)1.88 (4)2.723 (6)163 (4)
O1W—H1WB···O1A0.87 (5)1.98 (5)2.786 (6)153 (4)
O2W—H2WA···O1W0.89 (3)2.27 (6)2.823 (5)120 (5)
O2W—H2WA···O3W0.89 (3)2.45 (5)3.137 (7)135 (4)
O2W—H2WB···O2ix0.89 (5)2.40 (7)2.935 (6)119 (6)
O3W—H3WA···O1Avii0.87 (5)2.24 (6)2.828 (7)125 (5)
O3W—H3WB···O2Wvii0.88 (3)2.27 (6)2.901 (7)128 (5)
C4—H4A···O3i0.992.433.309 (3)148
C7—H7···O3x1.002.383.325 (3)157
C8—H8···O3Wii1.002.523.397 (6)146
Symmetry codes: (i) x, y1, z; (ii) x, y, z1; (vii) x+1, y+1/2, z+1; (viii) x, y+1, z1; (ix) x1, y, z; (x) x+1, y1/2, z.
(II) catena-poly[[bis[nitratosilver(I)]- bis{µ3-5-[(3aS,4S,6aR)-2-oxohexahydro-1H- thieno[3,4-d]imidazol-4-yl]pentanoato}] monohydrate] top
Crystal data top
[Ag2(NO3)2(C10H16N2O3S)2]·H2OF(000) = 1704
Mr = 846.39Dx = 1.922 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 25171 reflections
a = 21.8568 (12) Åθ = 1.9–29.6°
b = 8.0321 (4) ŵ = 1.56 mm1
c = 16.8886 (9) ÅT = 173 K
β = 99.337 (4)°Block, colourless
V = 2925.6 (3) Å30.29 × 0.27 × 0.22 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
7861 independent reflections
Radiation source: fine-focus sealed tube7163 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 29.3°, θmin = 1.9°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 2929
Tmin = 0.878, Tmax = 1.000k = 1110
21197 measured reflectionsl = 2223
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0254P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max = 0.005
S = 0.97Δρmax = 0.43 e Å3
7861 reflectionsΔρmin = 0.50 e Å3
410 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
7 restraintsExtinction coefficient: 0.00060 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 3655 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.017 (10)
Crystal data top
[Ag2(NO3)2(C10H16N2O3S)2]·H2OV = 2925.6 (3) Å3
Mr = 846.39Z = 4
Monoclinic, C2Mo Kα radiation
a = 21.8568 (12) ŵ = 1.56 mm1
b = 8.0321 (4) ÅT = 173 K
c = 16.8886 (9) Å0.29 × 0.27 × 0.22 mm
β = 99.337 (4)°
Data collection top
Stoe IPDS 2
diffractometer
7861 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
7163 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 1.000Rint = 0.024
21197 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041Δρmax = 0.43 e Å3
S = 0.97Δρmin = 0.50 e Å3
7861 reflectionsAbsolute structure: Flack (1983), with 3655 Friedel pairs
410 parametersAbsolute structure parameter: 0.017 (10)
7 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.96073 (1)0.74638 (2)0.73377 (1)0.0249 (1)
Ag21.01984 (1)1.25094 (2)0.76062 (1)0.0246 (1)
S11.03829 (2)0.96628 (5)0.71999 (2)0.0173 (1)
S20.93810 (2)0.45772 (5)0.77023 (3)0.0178 (1)
O11.24701 (9)0.6217 (2)1.18055 (10)0.0328 (5)
O21.23609 (9)0.8961 (2)1.16097 (10)0.0349 (5)
O31.05523 (7)0.40317 (17)0.64498 (8)0.0278 (4)
O40.77561 (7)0.44477 (17)0.31405 (8)0.0280 (4)
O50.78634 (9)0.17023 (19)0.33308 (9)0.0305 (5)
O60.93339 (7)0.10102 (17)0.85394 (8)0.0290 (4)
O110.85954 (7)0.80387 (18)0.65211 (9)0.0316 (4)
O120.92529 (6)0.7311 (3)0.57515 (9)0.0399 (5)
O130.82953 (7)0.7727 (3)0.52437 (9)0.0456 (6)
O211.11362 (7)1.33413 (19)0.84525 (8)0.0310 (4)
O221.05366 (6)1.2525 (3)0.92783 (8)0.0385 (4)
O231.13476 (8)1.3990 (2)0.97149 (9)0.0409 (5)
N11.10084 (8)0.60691 (19)0.73132 (10)0.0214 (5)
N21.08333 (9)0.6597 (2)0.60223 (10)0.0237 (5)
N30.90087 (8)0.1529 (2)0.89484 (10)0.0233 (5)
N40.87775 (8)0.08728 (19)0.76695 (10)0.0215 (4)
N110.87129 (7)0.7712 (2)0.58269 (9)0.0245 (5)
N211.10053 (8)1.3288 (2)0.91605 (10)0.0248 (5)
C11.23722 (7)0.7492 (4)1.13477 (9)0.0253 (4)
C21.22782 (10)0.7203 (3)1.04580 (11)0.0295 (6)
C31.17007 (9)0.8031 (2)1.00042 (11)0.0251 (5)
C41.16928 (9)0.7957 (2)0.91016 (11)0.0225 (5)
C51.10729 (9)0.8550 (2)0.86342 (11)0.0210 (5)
C61.11247 (8)0.9009 (2)0.77740 (11)0.0184 (4)
C71.13342 (7)0.7636 (3)0.72555 (10)0.0186 (4)
C81.11426 (9)0.8091 (2)0.63481 (11)0.0214 (5)
C91.07093 (10)0.9605 (3)0.62781 (12)0.0239 (6)
C101.07790 (10)0.5436 (2)0.65749 (12)0.0205 (5)
C110.78917 (10)0.3179 (3)0.35905 (12)0.0224 (5)
C120.80919 (11)0.3502 (2)0.44667 (12)0.0281 (6)
C130.81348 (10)0.1982 (2)0.49986 (11)0.0255 (5)
C140.81140 (8)0.2418 (4)0.58735 (9)0.0257 (4)
C150.87171 (9)0.3185 (2)0.63114 (10)0.0205 (5)
C160.86504 (8)0.3778 (2)0.71498 (10)0.0182 (5)
C170.84567 (7)0.2437 (3)0.77139 (9)0.0195 (4)
C180.86694 (9)0.2977 (2)0.86060 (11)0.0206 (5)
C190.90770 (10)0.4545 (3)0.86401 (12)0.0218 (6)
C200.90639 (10)0.0333 (3)0.84053 (12)0.0212 (5)
O1W1.000000.7300 (4)1.000000.0470 (9)
O2W1.000000.2348 (5)0.500000.0665 (9)
H1N1.1099 (12)0.541 (3)0.7700 (13)0.0260*
H1O1.259300.652901.227900.0490*
H2A1.225100.599001.035500.0350*
H2B1.264500.762701.024600.0350*
H2N1.0720 (11)0.648 (3)0.5506 (10)0.0280*
H3A1.168800.920901.017500.0300*
H3B1.132800.746601.013700.0300*
H3N0.9197 (11)0.147 (3)0.9438 (11)0.0280*
H4A1.177000.679800.894500.0270*
H4B1.203000.866400.896100.0270*
H4N0.8675 (11)0.020 (3)0.7284 (12)0.0260*
H4O0.764300.413300.266500.0420*
H5A1.076000.765700.863200.0250*
H5B1.092900.953200.890700.0250*
H61.142200.995800.778800.0220*
H71.179300.746900.738900.0220*
H81.151600.832300.609400.0260*
H9A1.037700.948700.580800.0290*
H9B1.094301.063900.621600.0290*
H12A0.779600.429400.464800.0340*
H12B0.850300.405000.454100.0340*
H13A0.852600.138700.496500.0310*
H13B0.778700.122200.480000.0310*
H14A0.802300.139600.616000.0310*
H14B0.777000.321200.589400.0310*
H15A0.905300.234600.635200.0250*
H15B0.883500.413800.599600.0250*
H160.833700.469400.709700.0220*
H170.799800.226400.760400.0230*
H180.830200.318500.887600.0250*
H19A0.941900.449000.910200.0260*
H19B0.882800.555700.869300.0260*
H1W10.9851 (16)0.793 (4)0.9597 (16)0.0710*
H1W20.989 (2)0.292 (4)0.4589 (17)0.1000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0242 (1)0.0181 (1)0.0311 (1)0.0034 (1)0.0005 (1)0.0018 (1)
Ag20.0251 (1)0.0182 (1)0.0293 (1)0.0024 (1)0.0004 (1)0.0028 (1)
S10.0189 (2)0.0148 (2)0.0174 (2)0.0002 (2)0.0008 (2)0.0011 (2)
S20.0197 (2)0.0150 (2)0.0183 (2)0.0009 (2)0.0019 (2)0.0016 (2)
O10.0396 (10)0.0333 (8)0.0222 (8)0.0016 (7)0.0051 (7)0.0010 (6)
O20.0420 (10)0.0334 (8)0.0253 (8)0.0125 (7)0.0069 (7)0.0045 (7)
O30.0414 (8)0.0203 (6)0.0218 (7)0.0045 (6)0.0054 (6)0.0022 (5)
O40.0382 (8)0.0253 (7)0.0201 (6)0.0020 (6)0.0035 (6)0.0029 (5)
O50.0438 (10)0.0263 (7)0.0190 (7)0.0063 (6)0.0017 (7)0.0031 (6)
O60.0426 (9)0.0220 (6)0.0224 (7)0.0043 (6)0.0052 (6)0.0032 (5)
O110.0361 (8)0.0360 (8)0.0224 (7)0.0066 (6)0.0042 (6)0.0080 (6)
O120.0266 (7)0.0665 (12)0.0263 (6)0.0071 (9)0.0038 (5)0.0042 (9)
O130.0329 (7)0.0762 (15)0.0244 (7)0.0086 (9)0.0054 (5)0.0027 (9)
O210.0371 (8)0.0371 (8)0.0183 (7)0.0052 (6)0.0032 (6)0.0041 (6)
O220.0326 (7)0.0511 (8)0.0323 (7)0.0117 (11)0.0070 (5)0.0008 (10)
O230.0459 (10)0.0520 (10)0.0219 (7)0.0142 (8)0.0032 (7)0.0046 (7)
N10.0312 (9)0.0167 (7)0.0161 (8)0.0001 (6)0.0037 (6)0.0016 (5)
N20.0342 (10)0.0218 (8)0.0154 (7)0.0025 (6)0.0050 (7)0.0010 (6)
N30.0311 (9)0.0236 (8)0.0146 (7)0.0005 (6)0.0020 (6)0.0004 (6)
N40.0317 (9)0.0169 (7)0.0150 (7)0.0017 (6)0.0015 (6)0.0008 (5)
N110.0280 (8)0.0240 (10)0.0206 (7)0.0025 (6)0.0014 (5)0.0002 (6)
N210.0294 (9)0.0253 (8)0.0183 (7)0.0023 (6)0.0007 (6)0.0028 (6)
C10.0216 (8)0.0320 (8)0.0204 (7)0.0042 (12)0.0025 (5)0.0028 (11)
C20.0308 (10)0.0355 (14)0.0203 (8)0.0087 (8)0.0019 (7)0.0018 (8)
C30.0264 (10)0.0313 (9)0.0164 (8)0.0049 (7)0.0003 (7)0.0002 (7)
C40.0235 (9)0.0257 (9)0.0172 (8)0.0013 (6)0.0000 (6)0.0021 (6)
C50.0226 (9)0.0247 (8)0.0150 (8)0.0016 (6)0.0010 (6)0.0001 (6)
C60.0173 (8)0.0172 (7)0.0198 (8)0.0002 (6)0.0006 (7)0.0005 (7)
C70.0178 (7)0.0193 (9)0.0185 (7)0.0013 (8)0.0025 (5)0.0027 (8)
C80.0241 (10)0.0201 (7)0.0213 (9)0.0005 (7)0.0079 (7)0.0022 (7)
C90.0318 (11)0.0235 (9)0.0171 (9)0.0000 (8)0.0059 (8)0.0048 (8)
C100.0248 (10)0.0209 (8)0.0172 (9)0.0039 (7)0.0074 (7)0.0000 (7)
C110.0211 (10)0.0278 (9)0.0188 (9)0.0014 (7)0.0046 (7)0.0008 (8)
C120.0405 (12)0.0257 (9)0.0184 (9)0.0093 (8)0.0053 (8)0.0017 (7)
C130.0311 (10)0.0243 (9)0.0192 (9)0.0021 (6)0.0020 (7)0.0022 (6)
C140.0272 (8)0.0316 (8)0.0167 (7)0.0063 (12)0.0012 (6)0.0005 (11)
C150.0230 (9)0.0229 (7)0.0145 (8)0.0020 (7)0.0002 (6)0.0004 (6)
C160.0181 (9)0.0181 (8)0.0175 (8)0.0009 (6)0.0002 (6)0.0003 (6)
C170.0197 (7)0.0201 (6)0.0190 (7)0.0025 (10)0.0039 (5)0.0023 (10)
C180.0254 (9)0.0214 (8)0.0158 (8)0.0024 (6)0.0055 (7)0.0018 (6)
C190.0269 (11)0.0220 (9)0.0171 (9)0.0014 (7)0.0056 (7)0.0051 (7)
C200.0269 (11)0.0203 (8)0.0168 (9)0.0038 (7)0.0050 (7)0.0008 (7)
O1W0.0495 (14)0.0449 (17)0.0438 (13)0.00000.0009 (10)0.0000
O2W0.118 (2)0.0330 (14)0.0347 (12)0.00000.0291 (14)0.0000
Geometric parameters (Å, º) top
Ag1—S12.4851 (5)N4—H4N0.85 (2)
Ag1—S22.4695 (5)C1—C21.501 (2)
Ag1—O112.4529 (15)C2—C31.520 (3)
Ag1—O122.6679 (15)C3—C41.523 (3)
Ag1—O6i2.5243 (14)C4—C51.529 (3)
Ag2—S12.4395 (4)C5—C61.521 (3)
Ag2—S2i2.4638 (5)C6—C71.524 (3)
Ag2—O212.3959 (15)C7—C81.565 (3)
Ag2—O222.8007 (14)C8—C91.534 (3)
Ag2—O3i2.5295 (14)C11—C121.496 (3)
S1—C61.8261 (18)C12—C131.510 (2)
S1—C91.815 (2)C13—C141.526 (2)
S2—C161.8301 (18)C14—C151.532 (3)
S2—C191.814 (2)C15—C161.523 (2)
O1—C11.280 (3)C16—C171.542 (3)
O2—C11.262 (3)C17—C181.564 (2)
O3—C101.236 (2)C18—C191.538 (3)
O4—C111.277 (3)C2—H2B0.9900
O5—C111.263 (3)C2—H2A0.9900
O6—C201.233 (3)C3—H3A0.9900
O11—N111.268 (2)C3—H3B0.9900
O12—N111.250 (2)C4—H4A0.9900
O13—N111.230 (2)C4—H4B0.9900
O21—N211.275 (2)C5—H5A0.9900
O22—N211.237 (2)C5—H5B0.9900
O23—N211.236 (2)C6—H61.0000
O1—H1O0.8400C7—H71.0000
O4—H4O0.8400C8—H81.0000
O1W—H1W1ii0.87 (3)C9—H9A0.9900
O1W—H1W10.87 (3)C9—H9B0.9900
O2W—H1W2iii0.84 (3)C12—H12B0.9900
O2W—H1W20.84 (3)C12—H12A0.9900
N1—C101.365 (3)C13—H13B0.9900
N1—C71.457 (3)C13—H13A0.9900
N2—C101.338 (2)C14—H14A0.9900
N2—C81.442 (2)C14—H14B0.9900
N3—C181.448 (2)C15—H15A0.9900
N3—C201.347 (3)C15—H15B0.9900
N4—C201.368 (3)C16—H161.0000
N4—C171.447 (3)C17—H171.0000
N1—H1N0.84 (2)C18—H181.0000
N2—H2N0.872 (17)C19—H19A0.9900
N3—H3N0.863 (19)C19—H19B0.9900
S1—Ag1—S2149.08 (2)S2—C16—C17103.55 (11)
S1—Ag1—O11112.34 (4)C15—C16—C17115.67 (14)
S1—Ag1—O1291.72 (4)S2—C16—C15112.12 (13)
S1—Ag1—O6i89.10 (3)N4—C17—C16112.99 (14)
S2—Ag1—O1196.79 (4)C16—C17—C18109.44 (16)
S2—Ag1—O1299.78 (5)N4—C17—C18102.71 (14)
S2—Ag1—O6i99.92 (3)C17—C18—C19110.05 (15)
O11—Ag1—O1249.89 (5)N3—C18—C17102.40 (15)
O6i—Ag1—O1192.93 (5)N3—C18—C19112.74 (17)
O6i—Ag1—O12139.61 (5)S2—C19—C18105.72 (14)
S1—Ag2—O21105.35 (4)O6—C20—N4125.38 (19)
S1—Ag2—S2i143.62 (2)O6—C20—N3126.30 (19)
S1—Ag2—O3i98.66 (3)N3—C20—N4108.31 (19)
S2i—Ag2—O21109.39 (4)C1—C2—H2B109.00
O3i—Ag2—O2189.23 (5)C1—C2—H2A109.00
S2i—Ag2—O3i92.34 (4)H2A—C2—H2B108.00
Ag1—S1—Ag2119.56 (2)C3—C2—H2A109.00
Ag1—S1—C6107.84 (6)C3—C2—H2B109.00
Ag1—S1—C9115.54 (8)C4—C3—H3A109.00
Ag2—S1—C6107.05 (5)C4—C3—H3B109.00
Ag2—S1—C9111.79 (8)H3A—C3—H3B108.00
C6—S1—C990.54 (9)C2—C3—H3B109.00
Ag1—S2—C16113.31 (6)C2—C3—H3A109.00
Ag1—S2—C19110.34 (8)C3—C4—H4B109.00
Ag1—S2—Ag2iv116.09 (2)C3—C4—H4A109.00
C16—S2—C1991.56 (9)H4A—C4—H4B108.00
Ag2iv—S2—C16108.18 (6)C5—C4—H4A109.00
Ag2iv—S2—C19114.83 (8)C5—C4—H4B109.00
Ag2iv—O3—C10118.25 (12)C6—C5—H5A109.00
Ag1iv—O6—C20116.48 (12)C6—C5—H5B109.00
Ag1—O11—N11100.46 (11)H5A—C5—H5B108.00
Ag1—O12—N1190.63 (10)C4—C5—H5B109.00
Ag2—O21—N21104.46 (12)C4—C5—H5A109.00
C1—O1—H1O109.00C5—C6—H6108.00
C11—O4—H4O109.00S1—C6—H6108.00
H1W1—O1W—H1W1ii109 (3)C7—C6—H6108.00
H1W2—O2W—H1W2iii113 (3)C8—C7—H7111.00
C7—N1—C10111.83 (15)C6—C7—H7111.00
C8—N2—C10113.76 (16)N1—C7—H7111.00
C18—N3—C20113.42 (16)N2—C8—H8111.00
C17—N4—C20112.48 (16)C7—C8—H8111.00
O11—N11—O12118.95 (15)C9—C8—H8111.00
O11—N11—O13120.23 (16)S1—C9—H9A111.00
O12—N11—O13120.77 (16)C8—C9—H9B111.00
O21—N21—O23119.67 (17)H9A—C9—H9B109.00
O22—N21—O23121.30 (17)S1—C9—H9B111.00
O21—N21—O22119.03 (16)C8—C9—H9A110.00
C10—N1—H1N118.8 (16)C13—C12—H12A108.00
C7—N1—H1N122.7 (17)C11—C12—H12A108.00
C10—N2—H2N125.4 (16)C11—C12—H12B108.00
C8—N2—H2N120.7 (16)H12A—C12—H12B107.00
C20—N3—H3N122.1 (16)C13—C12—H12B108.00
C18—N3—H3N124.1 (16)C14—C13—H13A109.00
C17—N4—H4N121.6 (16)C14—C13—H13B109.00
C20—N4—H4N121.4 (16)C12—C13—H13B109.00
O2—C1—C2119.2 (2)C12—C13—H13A109.00
O1—C1—C2117.6 (2)H13A—C13—H13B108.00
O1—C1—O2123.17 (16)C13—C14—H14B109.00
C1—C2—C3113.88 (18)C13—C14—H14A109.00
C2—C3—C4111.19 (16)H14A—C14—H14B108.00
C3—C4—C5111.70 (16)C15—C14—H14A109.00
C4—C5—C6111.81 (16)C15—C14—H14B109.00
S1—C6—C5112.31 (13)C14—C15—H15A109.00
S1—C6—C7103.10 (12)C16—C15—H15B109.00
C5—C6—C7116.70 (14)C14—C15—H15B109.00
N1—C7—C8102.19 (14)C16—C15—H15A109.00
N1—C7—C6113.01 (14)H15A—C15—H15B108.00
C6—C7—C8109.64 (16)C17—C16—H16108.00
N2—C8—C7102.34 (15)C15—C16—H16108.00
N2—C8—C9112.64 (17)S2—C16—H16108.00
C7—C8—C9108.93 (15)N4—C17—H17110.00
S1—C9—C8106.13 (14)C16—C17—H17110.00
O3—C10—N2126.52 (18)C18—C17—H17110.00
N1—C10—N2108.46 (15)N3—C18—H18110.00
O3—C10—N1125.02 (17)C19—C18—H18110.00
O5—C11—C12119.77 (19)C17—C18—H18111.00
O4—C11—C12116.91 (19)S2—C19—H19B111.00
O4—C11—O5123.32 (18)S2—C19—H19A111.00
C11—C12—C13115.36 (16)H19A—C19—H19B109.00
C12—C13—C14112.44 (17)C18—C19—H19A111.00
C13—C14—C15113.65 (15)C18—C19—H19B111.00
C14—C15—C16111.70 (15)
S2—Ag1—S1—Ag2139.06 (3)C19—S2—C16—C15166.52 (13)
S2—Ag1—S1—C616.60 (7)C19—S2—C16—C1741.15 (13)
S2—Ag1—S1—C982.88 (9)Ag2iv—S2—C16—C1549.70 (12)
O11—Ag1—S1—Ag261.74 (4)Ag2iv—S2—C16—C1775.67 (11)
O11—Ag1—S1—C6175.81 (7)Ag1—S2—C19—C18152.88 (11)
O11—Ag1—S1—C976.33 (9)C16—S2—C19—C1837.27 (14)
O12—Ag1—S1—Ag2108.54 (4)Ag2iv—S2—C19—C1873.62 (14)
O12—Ag1—S1—C6129.00 (7)Ag2iv—O3—C10—N118.5 (3)
O12—Ag1—S1—C929.53 (9)Ag2iv—O3—C10—N2160.31 (18)
O6i—Ag1—S1—Ag231.06 (4)Ag1iv—O6—C20—N3162.71 (17)
O6i—Ag1—S1—C691.40 (7)Ag1iv—O6—C20—N416.0 (3)
O6i—Ag1—S1—C9169.13 (9)Ag1—O11—N11—O123.0 (2)
S1—Ag1—S2—C16151.37 (6)Ag1—O11—N11—O13174.18 (17)
S1—Ag1—S2—C19107.60 (8)Ag1—O12—N11—O112.69 (18)
S1—Ag1—S2—Ag2iv25.27 (4)Ag1—O12—N11—O13174.44 (18)
O11—Ag1—S2—C169.32 (7)Ag2—O21—N21—O2216.0 (2)
O11—Ag1—S2—C1991.72 (8)Ag2—O21—N21—O23164.27 (14)
O11—Ag1—S2—Ag2iv135.42 (4)C10—N1—C7—C6130.00 (17)
O12—Ag1—S2—C1641.05 (7)C10—N1—C7—C812.3 (2)
O12—Ag1—S2—C19142.08 (8)C7—N1—C10—O3170.5 (2)
O12—Ag1—S2—Ag2iv85.05 (4)C7—N1—C10—N210.5 (2)
O6i—Ag1—S2—C16103.51 (7)C10—N2—C8—C74.0 (2)
O6i—Ag1—S2—C192.48 (8)C10—N2—C8—C9112.8 (2)
O6i—Ag1—S2—Ag2iv130.39 (4)C8—N2—C10—O3177.5 (2)
S1—Ag1—O11—N1173.91 (11)C8—N2—C10—N13.6 (2)
S2—Ag1—O11—N1195.50 (10)C20—N3—C18—C174.5 (2)
O12—Ag1—O11—N111.59 (11)C20—N3—C18—C19113.72 (19)
O6i—Ag1—O11—N11164.14 (11)C18—N3—C20—O6179.4 (2)
S1—Ag1—O12—N11119.75 (13)C18—N3—C20—N40.5 (2)
S2—Ag1—O12—N1189.07 (13)C20—N4—C17—C16126.18 (17)
O11—Ag1—O12—N111.59 (11)C20—N4—C17—C188.4 (2)
O6i—Ag1—O12—N1129.12 (18)C17—N4—C20—O6175.1 (2)
S1—Ag1—O6i—C20i69.14 (15)C17—N4—C20—N36.0 (2)
S2—Ag1—O6i—C20i140.60 (15)O1—C1—C2—C3129.10 (19)
O11—Ag1—O6i—C20i43.18 (16)O2—C1—C2—C351.9 (3)
O12—Ag1—O6i—C20i22.45 (19)C1—C2—C3—C4169.81 (18)
O21—Ag2—S1—Ag1130.29 (4)C2—C3—C4—C5171.54 (15)
O21—Ag2—S1—C67.45 (7)C3—C4—C5—C6161.69 (14)
O21—Ag2—S1—C990.21 (8)C4—C5—C6—S1178.36 (11)
S2i—Ag2—S1—Ag132.08 (3)C4—C5—C6—C759.63 (19)
S2i—Ag2—S1—C6154.92 (6)S1—C6—C7—N176.70 (15)
S2i—Ag2—S1—C9107.43 (8)S1—C6—C7—C836.57 (16)
O3i—Ag2—S1—Ag1138.12 (4)C5—C6—C7—N146.9 (2)
O3i—Ag2—S1—C699.03 (7)C5—C6—C7—C8160.17 (16)
O3i—Ag2—S1—C91.38 (8)N1—C7—C8—N29.26 (18)
S1—Ag2—O21—N21104.82 (11)N1—C7—C8—C9110.19 (17)
S2i—Ag2—O21—N2164.20 (12)C6—C7—C8—N2129.37 (16)
O3i—Ag2—O21—N21156.41 (11)C6—C7—C8—C99.9 (2)
S1—Ag2—S2i—Ag1i139.78 (2)N2—C8—C9—S191.06 (17)
S1—Ag2—S2i—C16i11.14 (7)C7—C8—C9—S121.76 (19)
S1—Ag2—S2i—C19i89.44 (9)O4—C11—C12—C13169.25 (19)
O21—Ag2—S2i—Ag1i58.26 (4)O5—C11—C12—C1310.7 (3)
O21—Ag2—S2i—C16i173.10 (7)C11—C12—C13—C14159.81 (18)
O21—Ag2—S2i—C19i72.52 (9)C12—C13—C14—C1574.6 (3)
S1—Ag2—O3i—C10i149.71 (15)C13—C14—C15—C16173.55 (17)
O21—Ag2—O3i—C10i44.30 (15)C14—C15—C16—S2176.42 (15)
Ag1—S1—C6—C552.54 (12)C14—C15—C16—C1758.0 (2)
Ag1—S1—C6—C773.92 (12)S2—C16—C17—N480.31 (15)
Ag2—S1—C6—C577.32 (11)S2—C16—C17—C1833.47 (16)
Ag2—S1—C6—C7156.23 (10)C15—C16—C17—N442.8 (2)
C9—S1—C6—C5169.66 (13)C15—C16—C17—C18156.53 (15)
C9—S1—C6—C743.20 (13)N4—C17—C18—N37.32 (18)
Ag1—S1—C9—C871.96 (14)N4—C17—C18—C19112.79 (17)
Ag2—S1—C9—C8146.79 (11)C16—C17—C18—N3127.60 (15)
C6—S1—C9—C838.16 (14)C16—C17—C18—C197.5 (2)
Ag1—S2—C16—C1580.50 (12)N3—C18—C19—S291.22 (16)
Ag1—S2—C16—C17154.13 (10)C17—C18—C19—S222.41 (19)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z+2; (iii) x+2, y, z+1; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O6i0.87 (3)2.13 (3)2.980 (2)166 (3)
N1—H1N···O21iv0.84 (2)2.09 (2)2.899 (2)163 (2)
O1—H1O···O5v0.841.782.609 (2)167
O2W—H1W2···O3iii0.84 (3)2.06 (3)2.885 (2)168 (4)
N2—H2N···O12iii0.87 (2)2.24 (2)3.026 (2)151 (2)
N3—H3N···O22vi0.86 (2)2.31 (2)3.103 (2)152 (2)
N4—H4N···O11iv0.85 (2)2.15 (2)2.975 (2)164 (2)
O4—H4O···O2vii0.841.792.619 (2)167
C2—H2B···O23viii0.992.453.384 (3)157
C8—H8···O13iii1.002.413.145 (2)130
Symmetry codes: (i) x, y+1, z; (iii) x+2, y, z+1; (iv) x, y1, z; (v) x+1/2, y+1/2, z+1; (vi) x+2, y1, z+2; (vii) x1/2, y1/2, z1; (viii) x+5/2, y1/2, z+2.
(IV) catena-poly[[silver(I)-bis{µ2-5-[(3aS,4S,6aR)- 2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanoato}] hexafluoridophosphate] top
Crystal data top
[Ag(C10H16N2O3S)2](PF6)F(000) = 2256
Mr = 741.46Dx = 1.776 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 45970 reflections
a = 15.1130 (7) Åθ = 1.4–26.1°
b = 9.6028 (3) ŵ = 1.02 mm1
c = 28.6670 (13) ÅT = 173 K
β = 90.946 (4)°Rod, colourless
V = 4159.8 (3) Å30.37 × 0.25 × 0.24 mm
Z = 6
Data collection top
Stoe IPDS 2
diffractometer
14703 independent reflections
Radiation source: fine-focus sealed tube13212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω rotation scansθmax = 25.6°, θmin = 1.4°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 1818
Tmin = 0.718, Tmax = 0.818k = 1111
43114 measured reflectionsl = 3434
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0556P)2 + 7.6945P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.011
14703 reflectionsΔρmax = 1.54 e Å3
1123 parametersΔρmin = 0.76 e Å3
13 restraintsAbsolute structure: Flack (1983), with 6357 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[Ag(C10H16N2O3S)2](PF6)V = 4159.8 (3) Å3
Mr = 741.46Z = 6
Monoclinic, P21Mo Kα radiation
a = 15.1130 (7) ŵ = 1.02 mm1
b = 9.6028 (3) ÅT = 173 K
c = 28.6670 (13) Å0.37 × 0.25 × 0.24 mm
β = 90.946 (4)°
Data collection top
Stoe IPDS 2
diffractometer
14703 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
13212 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.818Rint = 0.038
43114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109Δρmax = 1.54 e Å3
S = 1.04Δρmin = 0.76 e Å3
14703 reflectionsAbsolute structure: Flack (1983), with 6357 Friedel pairs
1123 parametersAbsolute structure parameter: 0.02 (2)
13 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.74254 (3)0.04295 (5)0.53499 (2)0.0356 (1)
Ag20.74467 (3)0.01916 (4)0.20739 (2)0.0309 (1)
Ag30.76187 (3)0.03889 (4)0.87207 (2)0.0343 (1)
S10.89717 (10)0.09861 (17)0.52393 (5)0.0351 (5)
S20.59194 (10)0.00347 (17)0.50466 (6)0.0382 (5)
S30.90071 (9)0.04039 (17)0.19347 (5)0.0304 (4)
S40.59740 (11)0.06943 (17)0.17364 (6)0.0401 (5)
S50.91685 (10)0.02224 (16)0.85439 (6)0.0351 (5)
S60.60741 (10)0.09365 (16)0.85650 (5)0.0323 (4)
O10.8150 (3)0.1144 (5)0.28093 (15)0.0404 (16)
O20.9272 (3)0.2639 (5)0.27644 (17)0.0448 (17)
O30.6383 (3)0.3785 (5)0.53016 (15)0.0366 (14)
O40.6419 (4)0.0353 (6)0.27792 (19)0.0650 (19)
O50.5509 (3)0.2158 (6)0.2754 (2)0.0571 (19)
O60.8433 (3)0.2954 (5)0.51144 (16)0.0437 (17)
O70.8274 (3)0.1289 (5)0.05355 (15)0.0444 (16)
O80.9405 (3)0.2736 (5)0.06018 (16)0.0437 (17)
O90.6371 (3)0.3109 (5)0.20200 (17)0.0369 (14)
O100.6535 (3)0.0566 (6)0.04810 (17)0.0553 (17)
O110.5633 (3)0.2270 (6)0.06839 (18)0.0562 (19)
O120.8550 (3)0.3552 (5)0.19640 (15)0.0374 (14)
O130.9269 (3)0.2415 (6)0.58958 (17)0.0473 (17)
O140.8116 (4)0.1125 (6)0.60760 (18)0.063 (2)
O150.6519 (3)0.2917 (5)0.85867 (17)0.0426 (17)
O160.6562 (4)0.1006 (6)0.60682 (17)0.0591 (19)
O170.5784 (3)0.2957 (6)0.61117 (17)0.0522 (17)
O180.8659 (3)0.3683 (5)0.86200 (15)0.0360 (14)
N10.7653 (4)0.3686 (6)0.48719 (18)0.0350 (17)
N20.7770 (4)0.3591 (7)0.56336 (19)0.0467 (19)
N30.7210 (4)0.2707 (7)0.4632 (2)0.0440 (17)
N40.7010 (4)0.2714 (7)0.5391 (2)0.046 (2)
N50.7675 (3)0.3137 (5)0.16132 (18)0.0299 (17)
N60.7756 (4)0.2819 (6)0.23654 (18)0.0370 (17)
N70.7433 (4)0.3306 (5)0.14290 (18)0.0344 (17)
N80.7077 (4)0.3371 (7)0.2159 (2)0.045 (2)
N90.7852 (4)0.3106 (5)0.82275 (19)0.0363 (17)
N100.7852 (4)0.2507 (6)0.89572 (19)0.0400 (17)
N110.7410 (4)0.3408 (5)0.81676 (17)0.0320 (17)
N120.7256 (4)0.3764 (6)0.89140 (18)0.0387 (17)
C10.8795 (4)0.1671 (6)0.2981 (2)0.0319 (17)
C20.9172 (4)0.1309 (7)0.3451 (2)0.0371 (19)
C30.8775 (4)0.0027 (6)0.3652 (2)0.037 (2)
C40.9068 (4)0.0377 (7)0.4138 (2)0.0351 (17)
C50.8665 (4)0.1735 (6)0.4313 (2)0.0316 (17)
C60.9031 (4)0.2251 (7)0.4758 (2)0.0319 (17)
C70.8597 (4)0.3599 (7)0.4953 (2)0.0356 (19)
C80.8685 (4)0.3638 (8)0.5485 (2)0.039 (2)
C90.9203 (4)0.2367 (8)0.5659 (2)0.044 (3)
C100.7188 (4)0.3699 (6)0.5270 (2)0.0293 (17)
C110.5766 (4)0.0926 (7)0.2908 (2)0.039 (2)
C120.5168 (4)0.0347 (8)0.3279 (2)0.043 (2)
C130.5234 (5)0.1128 (8)0.3737 (2)0.046 (2)
C140.6146 (5)0.1078 (7)0.3968 (2)0.045 (2)
C150.6457 (4)0.0402 (8)0.4131 (2)0.0407 (19)
C160.5934 (4)0.1034 (7)0.4509 (2)0.0401 (19)
C170.6255 (5)0.2509 (7)0.4672 (2)0.046 (2)
C180.6114 (4)0.2661 (8)0.5203 (3)0.044 (2)
C190.5575 (4)0.1468 (7)0.5380 (3)0.045 (2)
C200.7621 (5)0.2808 (7)0.5051 (2)0.041 (2)
C210.8941 (4)0.1808 (6)0.0373 (2)0.0286 (17)
C220.9296 (4)0.1500 (7)0.0106 (2)0.0367 (17)
C230.8899 (4)0.0205 (8)0.0317 (2)0.0380 (17)
C240.9143 (4)0.0010 (6)0.0824 (2)0.0309 (19)
C250.8732 (4)0.1321 (6)0.1022 (2)0.0310 (17)
C260.9071 (4)0.1774 (6)0.1489 (2)0.0297 (17)
C270.8618 (4)0.3064 (6)0.1695 (2)0.0316 (17)
C280.8677 (4)0.2973 (7)0.2240 (2)0.037 (2)
C290.9227 (4)0.1717 (7)0.2378 (2)0.039 (2)
C300.7178 (5)0.3043 (6)0.1997 (2)0.0299 (19)
C310.5896 (4)0.1262 (8)0.0405 (2)0.042 (2)
C320.5332 (5)0.1182 (9)0.0012 (2)0.053 (3)
C330.5548 (5)0.0017 (8)0.0339 (3)0.053 (3)
C340.6367 (4)0.0227 (7)0.0636 (2)0.040 (2)
C350.6731 (5)0.1076 (8)0.0858 (2)0.046 (2)
C360.6146 (5)0.1778 (8)0.1212 (3)0.045 (2)
C370.6478 (5)0.3197 (7)0.1396 (3)0.045 (2)
C380.6208 (5)0.3384 (8)0.1913 (3)0.045 (3)
C390.5629 (5)0.2203 (8)0.2052 (3)0.050 (3)
C400.7753 (4)0.3409 (6)0.1859 (2)0.0313 (19)
C410.8835 (4)0.1578 (7)0.6174 (2)0.0353 (19)
C420.9311 (5)0.1299 (7)0.6628 (2)0.042 (2)
C430.8810 (5)0.0284 (9)0.6925 (2)0.048 (2)
C440.9204 (4)0.0047 (7)0.7412 (2)0.0361 (19)
C450.8767 (4)0.1175 (7)0.7649 (2)0.038 (2)
C460.9187 (4)0.1600 (7)0.8099 (2)0.0353 (17)
C470.8776 (4)0.2922 (6)0.8334 (2)0.0346 (19)
C480.8784 (4)0.2751 (7)0.8866 (2)0.037 (2)
C490.9365 (4)0.1503 (7)0.9003 (2)0.042 (2)
C500.7335 (4)0.2855 (6)0.8588 (2)0.0306 (19)
C510.6085 (4)0.1757 (8)0.6277 (2)0.0390 (19)
C520.5738 (5)0.1462 (8)0.6755 (2)0.045 (2)
C530.6161 (5)0.0164 (8)0.6962 (2)0.048 (3)
C540.5883 (4)0.0151 (8)0.7449 (2)0.0376 (17)
C550.6343 (4)0.1494 (7)0.7618 (2)0.0350 (17)
C560.5989 (4)0.2097 (6)0.8068 (2)0.0314 (17)
C570.6455 (4)0.3466 (6)0.8218 (2)0.0331 (17)
C580.6329 (4)0.3655 (7)0.8746 (2)0.0373 (19)
C590.5846 (5)0.2396 (7)0.8948 (2)0.041 (2)
C600.7850 (4)0.3623 (6)0.8575 (2)0.0316 (19)
P10.21129 (14)0.9947 (2)0.30814 (6)0.0467 (6)
F10.2866 (4)0.9512 (8)0.27213 (18)0.101 (3)
F20.1402 (4)0.9519 (6)0.26921 (17)0.084 (2)
F30.2087 (4)1.1455 (5)0.28668 (19)0.082 (2)
F40.2816 (4)1.0320 (9)0.34590 (18)0.107 (3)
F50.1356 (4)1.0324 (5)0.34279 (17)0.0753 (19)
F60.2128 (5)0.8401 (5)0.32875 (18)0.093 (2)
P20.76099 (15)0.4588 (2)0.02081 (6)0.0484 (6)
F70.7278 (8)0.6043 (8)0.0358 (2)0.171 (5)
F80.6842 (4)0.4388 (9)0.01645 (19)0.109 (3)
F90.8188 (4)0.5277 (7)0.01773 (19)0.098 (3)
F100.7968 (6)0.3138 (7)0.0045 (2)0.115 (3)
F110.8378 (5)0.4728 (9)0.05782 (18)0.118 (3)
F120.7069 (5)0.3853 (9)0.0596 (2)0.118 (3)
P30.72542 (17)0.50489 (17)0.35078 (6)0.0529 (7)
F130.7082 (7)0.6615 (5)0.36258 (19)0.137 (4)
F140.6493 (4)0.4982 (9)0.31409 (19)0.118 (3)
F150.7904 (5)0.5487 (6)0.31071 (17)0.091 (2)
F160.7490 (5)0.3478 (5)0.33947 (16)0.084 (2)
F170.8043 (5)0.5076 (8)0.38776 (19)0.110 (3)
F180.6638 (5)0.4581 (8)0.39175 (19)0.109 (3)
H1N0.749 (4)0.400 (8)0.4597 (13)0.0420*
H2A0.906200.208900.366800.0440*
H2B0.982000.119200.342700.0440*
H2N0.755 (5)0.367 (9)0.5921 (13)0.0560*
H2O0.900300.289500.252000.0670*
H3A0.892800.081400.344500.0440*
H3B0.812200.006400.364600.0440*
H3N0.748 (4)0.288 (9)0.4369 (15)0.0530*
H4A0.972100.045700.414800.0420*
H4B0.889900.039100.434900.0420*
H4N0.714 (5)0.270 (9)0.5689 (9)0.0560*
H5A0.874800.246100.407300.0380*
H5B0.802100.159600.434700.0380*
H5N0.740 (4)0.333 (7)0.1348 (13)0.0360*
H5O0.587300.245300.255800.0710*
H60.967100.246000.470900.0380*
H6N0.762 (5)0.273 (8)0.2663 (10)0.0440*
H70.889100.443600.481800.0430*
H7N0.765 (4)0.346 (8)0.1156 (12)0.0410*
H80.897800.451900.559100.0470*
H8N0.706 (5)0.370 (8)0.2445 (13)0.0540*
H8O0.908700.309000.081400.0660*
H9A0.900800.209200.597300.0530*
H9B0.984500.257200.567300.0530*
H9N0.760 (4)0.307 (8)0.7948 (13)0.0440*
H10N0.776 (5)0.253 (8)0.9259 (9)0.0480*
H11N0.776 (4)0.345 (7)0.7934 (16)0.0390*
H11O0.597100.231700.091300.0840*
H12A0.454800.038200.316200.0510*
H12B0.532100.064200.333400.0510*
H12N0.726 (4)0.448 (5)0.910 (2)0.0470*
H13A0.479900.073300.395500.0550*
H13B0.507200.211400.368100.0550*
H13O0.894200.263800.566800.0710*
H14A0.614800.170400.424300.0540*
H14B0.658200.144800.374600.0540*
H15A0.643600.103500.385800.0490*
H15B0.708200.033900.423800.0490*
H160.531000.112700.439300.0480*
H170.592600.325400.449700.0540*
H17O0.599000.309500.584500.0780*
H180.580400.355900.526800.0520*
H19A0.569100.132000.571700.0540*
H19B0.493500.164800.533100.0540*
H22A0.994600.138500.009100.0440*
H22B0.917600.230500.031100.0440*
H23A0.824700.025900.028600.0460*
H23B0.909700.061600.013800.0460*
H24A0.894200.080400.100600.0370*
H24B0.979400.007000.085800.0370*
H25A0.882600.209000.079800.0370*
H25B0.808500.117200.104200.0370*
H260.971100.201000.145400.0350*
H270.891000.393400.158400.0380*
H280.893400.384500.237600.0450*
H29A0.905600.137200.268900.0470*
H29B0.986400.195900.238800.0470*
H32A0.470700.109600.009300.0630*
H32B0.538900.206500.018800.0630*
H33A0.503900.017300.054600.0640*
H33B0.563100.087300.015300.0640*
H34A0.682900.064900.044100.0480*
H34B0.622500.090200.088500.0480*
H35A0.730300.084500.101200.0560*
H35B0.685500.175400.060700.0560*
H360.555400.193300.106000.0540*
H370.623000.397100.120000.0540*
H380.590100.429500.195800.0540*
H39A0.568600.203500.239200.0600*
H39B0.500300.242000.197600.0600*
H42A0.990600.091900.656500.0510*
H42B0.938900.218600.680100.0510*
H43A0.819600.062500.695700.0580*
H43B0.878100.062200.676100.0580*
H44A0.912400.089600.760300.0440*
H44B0.984700.013100.738900.0440*
H45A0.877300.198100.743400.0460*
H45B0.814100.093500.770600.0460*
H460.982100.181500.803600.0420*
H470.911500.377400.824500.0410*
H480.899700.362000.902400.0440*
H49A0.919200.112700.931000.0500*
H49B0.999700.177300.901800.0500*
H52A0.508800.133600.673600.0530*
H52B0.586400.226700.696200.0530*
H53A0.600800.064100.676100.0580*
H53B0.681200.027600.696000.0580*
H54A0.523300.027000.745700.0450*
H54B0.604700.063300.765800.0450*
H55A0.628300.220600.737000.0420*
H55B0.698200.130000.766300.0420*
H560.534800.231200.801400.0380*
H570.620200.427600.804200.0400*
H580.599800.453400.881100.0450*
H59A0.606500.219800.926900.0490*
H59B0.520100.257600.895900.0490*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0343 (2)0.0354 (3)0.0373 (2)0.0072 (2)0.0051 (2)0.0044 (2)
Ag20.0354 (2)0.0220 (2)0.0352 (2)0.0068 (2)0.0000 (2)0.0002 (2)
Ag30.0384 (2)0.0249 (2)0.0394 (2)0.0069 (2)0.0058 (2)0.0029 (2)
S10.0297 (8)0.0427 (9)0.0327 (8)0.0020 (7)0.0032 (6)0.0015 (6)
S20.0334 (7)0.0371 (10)0.0443 (9)0.0028 (6)0.0064 (6)0.0029 (6)
S30.0352 (7)0.0263 (7)0.0296 (7)0.0029 (7)0.0011 (5)0.0030 (6)
S40.0340 (8)0.0298 (9)0.0567 (10)0.0020 (6)0.0038 (7)0.0029 (7)
S50.0361 (8)0.0281 (8)0.0411 (8)0.0013 (6)0.0022 (6)0.0048 (6)
S60.0348 (8)0.0278 (7)0.0343 (8)0.0010 (6)0.0048 (6)0.0030 (6)
O10.048 (3)0.039 (3)0.034 (2)0.013 (2)0.008 (2)0.0026 (19)
O20.042 (3)0.043 (3)0.049 (3)0.011 (2)0.007 (2)0.018 (2)
O30.031 (2)0.042 (3)0.037 (2)0.0003 (19)0.0033 (18)0.0061 (19)
O40.070 (3)0.062 (4)0.064 (3)0.033 (3)0.033 (3)0.021 (3)
O50.046 (3)0.056 (3)0.070 (4)0.015 (3)0.024 (3)0.024 (3)
O60.043 (3)0.043 (3)0.045 (3)0.008 (2)0.000 (2)0.014 (2)
O70.054 (3)0.043 (3)0.036 (2)0.016 (2)0.007 (2)0.004 (2)
O80.040 (3)0.050 (3)0.041 (3)0.014 (2)0.005 (2)0.021 (2)
O90.027 (2)0.030 (2)0.054 (3)0.0042 (18)0.006 (2)0.000 (2)
O100.063 (3)0.055 (3)0.048 (3)0.027 (3)0.007 (2)0.009 (3)
O110.048 (3)0.069 (4)0.052 (3)0.025 (3)0.014 (2)0.023 (3)
O120.043 (3)0.035 (2)0.034 (2)0.005 (2)0.003 (2)0.0091 (19)
O130.045 (3)0.054 (3)0.043 (3)0.013 (2)0.008 (2)0.009 (2)
O140.070 (4)0.076 (4)0.043 (3)0.043 (3)0.007 (3)0.015 (3)
O150.039 (3)0.039 (3)0.050 (3)0.007 (2)0.004 (2)0.012 (2)
O160.088 (4)0.051 (3)0.039 (3)0.029 (3)0.024 (3)0.006 (2)
O170.054 (3)0.060 (3)0.043 (3)0.030 (3)0.017 (2)0.016 (2)
O180.035 (3)0.035 (2)0.038 (2)0.0033 (19)0.0010 (19)0.0092 (19)
N10.041 (3)0.036 (3)0.028 (3)0.003 (2)0.005 (2)0.002 (2)
N20.040 (3)0.071 (4)0.029 (3)0.001 (3)0.005 (2)0.011 (3)
N30.047 (3)0.043 (3)0.042 (3)0.005 (3)0.000 (3)0.007 (3)
N40.045 (4)0.062 (4)0.032 (3)0.007 (3)0.001 (3)0.002 (3)
N50.035 (3)0.026 (3)0.029 (3)0.006 (2)0.006 (2)0.001 (2)
N60.038 (3)0.045 (3)0.028 (3)0.004 (3)0.005 (2)0.003 (2)
N70.045 (3)0.023 (3)0.035 (3)0.005 (2)0.001 (2)0.002 (2)
N80.054 (4)0.050 (4)0.031 (3)0.004 (3)0.000 (3)0.000 (3)
N90.049 (3)0.026 (3)0.034 (3)0.003 (2)0.006 (2)0.001 (2)
N100.044 (3)0.047 (3)0.029 (3)0.003 (3)0.000 (2)0.000 (2)
N110.041 (3)0.030 (3)0.025 (3)0.011 (2)0.002 (2)0.005 (2)
N120.044 (3)0.044 (3)0.028 (3)0.007 (3)0.000 (2)0.004 (2)
C10.036 (3)0.025 (3)0.035 (3)0.001 (3)0.009 (3)0.002 (2)
C20.032 (3)0.038 (4)0.041 (3)0.006 (3)0.004 (3)0.002 (3)
C30.052 (4)0.029 (4)0.029 (3)0.005 (3)0.002 (3)0.005 (2)
C40.033 (3)0.037 (3)0.035 (3)0.000 (3)0.005 (2)0.005 (3)
C50.028 (3)0.032 (3)0.035 (3)0.000 (2)0.004 (2)0.003 (2)
C60.029 (3)0.033 (3)0.034 (3)0.004 (3)0.006 (2)0.004 (3)
C70.030 (3)0.035 (3)0.042 (4)0.004 (3)0.011 (3)0.007 (3)
C80.031 (3)0.046 (4)0.041 (4)0.003 (3)0.001 (3)0.014 (3)
C90.035 (4)0.059 (5)0.038 (4)0.013 (3)0.007 (3)0.001 (3)
C100.032 (3)0.023 (3)0.033 (3)0.000 (2)0.004 (3)0.000 (2)
C110.045 (4)0.044 (4)0.029 (3)0.004 (3)0.009 (3)0.005 (3)
C120.052 (4)0.048 (4)0.028 (3)0.002 (3)0.005 (3)0.001 (3)
C130.056 (4)0.043 (4)0.040 (4)0.002 (3)0.010 (3)0.000 (3)
C140.054 (4)0.038 (4)0.043 (4)0.001 (3)0.009 (3)0.001 (3)
C150.036 (3)0.044 (4)0.042 (3)0.002 (3)0.000 (3)0.001 (3)
C160.035 (3)0.031 (3)0.054 (4)0.006 (3)0.010 (3)0.003 (3)
C170.051 (4)0.034 (4)0.051 (4)0.013 (3)0.014 (3)0.006 (3)
C180.027 (3)0.048 (4)0.056 (4)0.011 (3)0.000 (3)0.009 (3)
C190.035 (4)0.039 (4)0.060 (4)0.007 (3)0.005 (3)0.009 (3)
C200.046 (4)0.033 (4)0.045 (4)0.002 (3)0.010 (3)0.012 (3)
C210.030 (3)0.023 (3)0.033 (3)0.003 (2)0.004 (2)0.006 (2)
C220.035 (3)0.036 (3)0.039 (3)0.010 (3)0.003 (3)0.007 (3)
C230.042 (3)0.036 (3)0.036 (3)0.012 (3)0.005 (2)0.000 (3)
C240.034 (3)0.029 (4)0.030 (3)0.000 (2)0.007 (2)0.001 (2)
C250.030 (3)0.028 (3)0.035 (3)0.001 (2)0.002 (2)0.001 (2)
C260.029 (3)0.027 (3)0.033 (3)0.000 (2)0.002 (2)0.001 (2)
C270.035 (3)0.022 (3)0.038 (3)0.007 (2)0.010 (3)0.004 (2)
C280.042 (4)0.031 (3)0.039 (4)0.012 (3)0.006 (3)0.014 (3)
C290.041 (4)0.042 (4)0.033 (3)0.011 (3)0.005 (3)0.005 (3)
C300.044 (4)0.016 (3)0.030 (3)0.005 (3)0.010 (3)0.001 (2)
C310.033 (3)0.060 (5)0.034 (3)0.004 (3)0.005 (3)0.004 (3)
C320.046 (4)0.071 (5)0.042 (4)0.010 (4)0.004 (3)0.015 (4)
C330.053 (4)0.056 (5)0.051 (4)0.012 (4)0.001 (3)0.015 (3)
C340.037 (3)0.035 (4)0.047 (4)0.005 (3)0.001 (3)0.004 (3)
C350.051 (4)0.048 (4)0.040 (4)0.000 (3)0.006 (3)0.005 (3)
C360.034 (3)0.045 (4)0.056 (4)0.001 (3)0.010 (3)0.011 (3)
C370.049 (4)0.027 (3)0.059 (4)0.003 (3)0.011 (3)0.009 (3)
C380.037 (4)0.033 (4)0.065 (5)0.007 (3)0.007 (3)0.014 (3)
C390.035 (4)0.042 (4)0.073 (5)0.017 (3)0.006 (3)0.013 (4)
C400.049 (4)0.014 (3)0.031 (3)0.003 (3)0.007 (3)0.008 (2)
C410.043 (4)0.033 (3)0.030 (3)0.007 (3)0.008 (3)0.004 (3)
C420.046 (4)0.041 (4)0.040 (4)0.016 (3)0.004 (3)0.001 (3)
C430.059 (4)0.051 (4)0.035 (3)0.027 (4)0.002 (3)0.003 (3)
C440.035 (3)0.026 (3)0.047 (4)0.000 (3)0.004 (3)0.006 (3)
C450.040 (4)0.037 (4)0.038 (3)0.007 (3)0.008 (3)0.001 (3)
C460.034 (3)0.032 (3)0.040 (3)0.005 (3)0.004 (3)0.008 (3)
C470.036 (3)0.023 (3)0.045 (4)0.002 (3)0.006 (3)0.005 (3)
C480.036 (4)0.024 (3)0.051 (4)0.009 (3)0.001 (3)0.004 (3)
C490.039 (4)0.042 (4)0.043 (4)0.009 (3)0.014 (3)0.000 (3)
C500.043 (4)0.021 (3)0.028 (3)0.002 (3)0.003 (3)0.003 (2)
C510.034 (3)0.046 (4)0.037 (3)0.007 (3)0.002 (3)0.001 (3)
C520.044 (4)0.051 (4)0.039 (4)0.016 (3)0.008 (3)0.006 (3)
C530.052 (4)0.048 (5)0.044 (4)0.022 (3)0.008 (3)0.015 (3)
C540.034 (3)0.036 (3)0.043 (3)0.011 (3)0.004 (2)0.009 (3)
C550.031 (3)0.039 (3)0.035 (3)0.007 (3)0.000 (3)0.005 (3)
C560.033 (3)0.030 (3)0.031 (3)0.002 (3)0.003 (2)0.003 (2)
C570.034 (3)0.026 (3)0.039 (3)0.002 (2)0.007 (3)0.004 (2)
C580.035 (3)0.029 (3)0.048 (4)0.005 (3)0.005 (3)0.002 (3)
C590.041 (4)0.040 (4)0.041 (4)0.005 (3)0.014 (3)0.002 (3)
C600.039 (4)0.020 (3)0.036 (3)0.002 (2)0.005 (3)0.005 (2)
P10.0713 (12)0.0390 (11)0.0302 (8)0.0005 (9)0.0102 (8)0.0038 (7)
F10.112 (4)0.131 (6)0.060 (3)0.051 (5)0.033 (3)0.025 (4)
F20.115 (4)0.079 (4)0.058 (3)0.008 (4)0.018 (3)0.011 (3)
F30.134 (5)0.041 (3)0.072 (3)0.009 (3)0.034 (3)0.012 (2)
F40.095 (4)0.171 (8)0.056 (3)0.039 (5)0.004 (3)0.000 (4)
F50.105 (4)0.057 (3)0.065 (3)0.005 (3)0.036 (3)0.005 (2)
F60.178 (6)0.045 (3)0.055 (3)0.022 (3)0.014 (3)0.019 (2)
P20.0826 (13)0.0342 (10)0.0284 (8)0.0061 (10)0.0014 (8)0.0006 (8)
F70.360 (14)0.070 (4)0.082 (4)0.112 (7)0.015 (6)0.002 (3)
F80.091 (4)0.178 (8)0.057 (3)0.001 (5)0.011 (3)0.015 (4)
F90.124 (5)0.107 (5)0.063 (3)0.046 (4)0.010 (3)0.028 (3)
F100.219 (8)0.067 (4)0.059 (3)0.046 (5)0.004 (4)0.018 (3)
F110.143 (5)0.157 (6)0.053 (3)0.056 (5)0.045 (3)0.024 (4)
F120.142 (6)0.160 (7)0.054 (3)0.028 (5)0.029 (4)0.029 (4)
P30.1054 (16)0.0251 (10)0.0284 (8)0.0049 (9)0.0061 (9)0.0006 (6)
F130.326 (12)0.032 (3)0.055 (3)0.034 (5)0.028 (5)0.008 (2)
F140.110 (4)0.182 (8)0.061 (3)0.021 (5)0.012 (3)0.037 (4)
F150.161 (5)0.062 (3)0.050 (3)0.023 (4)0.029 (3)0.001 (3)
F160.179 (6)0.030 (2)0.044 (2)0.002 (3)0.018 (3)0.0042 (19)
F170.144 (5)0.134 (7)0.050 (3)0.018 (5)0.016 (3)0.003 (3)
F180.157 (6)0.105 (5)0.065 (3)0.037 (5)0.046 (4)0.008 (4)
Geometric parameters (Å, º) top
Ag1—S12.4232 (16)C15—C161.482 (9)
Ag1—S22.4524 (16)C16—C171.566 (9)
Ag1—O162.518 (5)C17—C181.547 (10)
Ag1—O142.753 (5)C18—C191.499 (10)
Ag2—S32.4655 (15)C21—C221.496 (8)
Ag2—S42.4600 (17)C22—C231.511 (10)
Ag2—O12.517 (4)C23—C241.508 (8)
Ag2—O42.623 (6)C24—C251.518 (8)
Ag3—S52.4752 (16)C25—C261.490 (8)
Ag3—S62.4270 (16)C26—C271.538 (8)
Ag3—O7i2.491 (4)C27—C281.566 (8)
Ag3—O10i2.981 (5)C28—C291.514 (9)
S1—C61.842 (6)C31—C321.482 (9)
S1—C91.821 (7)C32—C331.517 (11)
S2—C161.852 (6)C33—C341.509 (10)
S2—C191.812 (7)C34—C351.504 (10)
S3—C261.838 (6)C35—C361.515 (11)
S3—C291.817 (6)C36—C371.542 (11)
S4—C361.850 (8)C37—C381.554 (12)
S4—C391.790 (8)C38—C391.491 (11)
S5—C461.838 (6)C41—C421.501 (9)
S5—C491.822 (6)C42—C431.507 (10)
S6—C561.812 (6)C43—C441.526 (8)
S6—C591.817 (7)C44—C451.513 (9)
P1—F51.570 (6)C45—C461.486 (8)
P1—F61.598 (5)C46—C471.570 (9)
P1—F41.546 (6)C47—C481.534 (8)
P1—F11.605 (6)C48—C491.533 (9)
P1—F21.590 (6)C51—C521.502 (8)
P1—F31.574 (5)C52—C531.517 (10)
P2—F81.576 (6)C53—C541.496 (8)
P2—F91.566 (6)C54—C551.540 (10)
P2—F101.568 (7)C55—C561.519 (8)
P2—F71.548 (8)C56—C571.549 (8)
P2—F111.565 (7)C57—C581.539 (8)
P2—F121.560 (7)C58—C591.531 (9)
P3—F171.582 (7)C2—H2A0.9900
P3—F151.581 (7)C2—H2B0.9900
P3—F161.585 (5)C3—H3A0.9900
P3—F131.564 (5)C3—H3B0.9900
P3—F141.547 (6)C4—H4A0.9900
P3—F181.576 (7)C4—H4B0.9900
O1—C11.197 (7)C5—H5A0.9900
O2—C11.336 (8)C5—H5B0.9900
O3—C101.224 (8)C6—H61.0000
O4—C111.194 (9)C7—H71.0000
O5—C111.319 (9)C8—H81.0000
O6—C201.246 (9)C9—H9A0.9900
O7—C211.211 (7)C9—H9B0.9900
O8—C211.316 (7)C12—H12A0.9900
O9—C301.224 (9)C12—H12B0.9900
O10—C311.197 (8)C13—H13B0.9900
O11—C311.313 (9)C13—H13A0.9900
O12—C401.244 (8)C14—H14B0.9900
O13—C411.315 (8)C14—H14A0.9900
O14—C411.200 (9)C15—H15A0.9900
O15—C501.235 (8)C15—H15B0.9900
O16—C511.188 (9)C16—H161.0000
O17—C511.324 (9)C17—H171.0000
O18—C601.229 (8)C18—H181.0000
O2—H2O0.8400C19—H19B0.9900
O5—H5O0.8400C19—H19A0.9900
O8—H8O0.8400C22—H22A0.9900
O11—H11O0.8400C22—H22B0.9900
O13—H13O0.8400C23—H23A0.9900
O17—H17O0.8400C23—H23B0.9900
N1—C71.444 (9)C24—H24B0.9900
N1—C101.350 (8)C24—H24A0.9900
N2—C81.454 (8)C25—H25B0.9900
N2—C101.357 (8)C25—H25A0.9900
N3—C171.462 (10)C26—H261.0000
N3—C201.347 (8)C27—H271.0000
N4—C201.357 (9)C28—H281.0000
N4—C181.450 (9)C29—H29A0.9900
N5—C271.442 (8)C29—H29B0.9900
N5—C301.345 (8)C32—H32A0.9900
N6—C301.376 (9)C32—H32B0.9900
N6—C281.451 (9)C33—H33B0.9900
N7—C371.449 (10)C33—H33A0.9900
N7—C401.320 (8)C34—H34A0.9900
N8—C401.347 (8)C34—H34B0.9900
N8—C381.480 (10)C35—H35A0.9900
N9—C501.328 (8)C35—H35B0.9900
N9—C471.435 (9)C36—H361.0000
N10—C481.456 (9)C37—H371.0000
N10—C501.347 (8)C38—H381.0000
N11—C601.350 (8)C39—H39B0.9900
N11—C571.454 (9)C39—H39A0.9900
N12—C581.478 (8)C42—H42A0.9900
N12—C601.341 (8)C42—H42B0.9900
N1—H1N0.88 (5)C43—H43A0.9900
N2—H2N0.90 (5)C43—H43B0.9900
N3—H3N0.88 (5)C44—H44B0.9900
N4—H4N0.87 (3)C44—H44A0.9900
N5—H5N0.88 (4)C45—H45A0.9900
N6—H6N0.89 (3)C45—H45B0.9900
N7—H7N0.87 (4)C46—H461.0000
N8—H8N0.88 (4)C47—H471.0000
N9—H9N0.88 (4)C48—H481.0000
N10—H10N0.88 (3)C49—H49A0.9900
N11—H11N0.86 (5)C49—H49B0.9900
N12—H12N0.87 (5)C52—H52A0.9900
C1—C21.495 (8)C52—H52B0.9900
C2—C31.533 (9)C53—H53A0.9900
C3—C41.493 (8)C53—H53B0.9900
C4—C51.528 (9)C54—H54A0.9900
C5—C61.468 (8)C54—H54B0.9900
C6—C71.559 (9)C55—H55A0.9900
C7—C81.529 (8)C55—H55B0.9900
C8—C91.529 (10)C56—H561.0000
C11—C121.513 (9)C57—H571.0000
C12—C131.514 (9)C58—H581.0000
C13—C141.520 (10)C59—H59A0.9900
C14—C151.566 (10)C59—H59B0.9900
S1—Ag1—S2151.54 (6)O16—C51—C52124.7 (7)
S1—Ag1—O16124.92 (14)C51—C52—C53111.1 (6)
S2—Ag1—O1680.41 (14)C52—C53—C54114.1 (6)
S3—Ag2—S4147.51 (6)C53—C54—C55109.3 (5)
S3—Ag2—O180.10 (11)C54—C55—C56115.0 (5)
S3—Ag2—O4131.20 (13)S6—C56—C57106.1 (4)
S4—Ag2—O1128.67 (11)C55—C56—C57113.2 (5)
S4—Ag2—O478.40 (13)S6—C56—C55114.3 (4)
O1—Ag2—O470.97 (16)C56—C57—C58108.1 (5)
S5—Ag3—S6157.56 (6)N11—C57—C58104.0 (5)
S5—Ag3—O7i83.88 (11)N11—C57—C56112.8 (5)
S6—Ag3—O7i116.73 (11)C57—C58—C59110.3 (5)
Ag1—S1—C6107.6 (2)N12—C58—C59112.8 (5)
Ag1—S1—C9104.4 (2)N12—C58—C57101.4 (5)
C6—S1—C990.2 (3)S6—C59—C58106.5 (4)
Ag1—S2—C16110.9 (2)O18—C60—N12126.6 (6)
Ag1—S2—C19102.1 (2)N11—C60—N12108.4 (5)
C16—S2—C1990.3 (3)O18—C60—N11125.0 (6)
Ag2—S3—C26109.9 (2)C1—C2—H2B109.00
Ag2—S3—C29102.3 (2)C1—C2—H2A109.00
C26—S3—C2988.8 (3)H2A—C2—H2B108.00
Ag2—S4—C36107.0 (2)C3—C2—H2A109.00
Ag2—S4—C39103.3 (3)C3—C2—H2B109.00
C36—S4—C3990.1 (4)C2—C3—H3A108.00
Ag3—S5—C46109.8 (2)C4—C3—H3B108.00
Ag3—S5—C4999.0 (2)C2—C3—H3B108.00
C46—S5—C4990.7 (3)C4—C3—H3A109.00
Ag3—S6—C56109.5 (2)H3A—C3—H3B107.00
Ag3—S6—C59104.3 (2)C5—C4—H4B109.00
C56—S6—C5989.4 (3)C3—C4—H4A109.00
F4—P1—F590.2 (3)C3—C4—H4B109.00
F4—P1—F687.2 (4)C5—C4—H4A109.00
F5—P1—F689.2 (3)H4A—C4—H4B108.00
F1—P1—F689.4 (4)H5A—C5—H5B107.00
F2—P1—F387.2 (3)C4—C5—H5B108.00
F2—P1—F4178.3 (4)C6—C5—H5B108.00
F1—P1—F287.7 (3)C4—C5—H5A109.00
F1—P1—F390.1 (3)C6—C5—H5A108.00
F1—P1—F491.4 (3)S1—C6—H6107.00
F1—P1—F5177.9 (3)C5—C6—H6107.00
F3—P1—F6178.6 (3)C7—C6—H6107.00
F2—P1—F691.4 (3)N1—C7—H7110.00
F3—P1—F494.2 (4)C8—C7—H7110.00
F2—P1—F590.7 (3)C6—C7—H7110.00
F3—P1—F591.2 (3)C9—C8—H8111.00
F7—P2—F990.1 (4)N2—C8—H8111.00
F7—P2—F10178.1 (5)C7—C8—H8111.00
F7—P2—F893.4 (5)S1—C9—H9A111.00
F8—P2—F11177.9 (5)C8—C9—H9A111.00
F8—P2—F1292.3 (4)C8—C9—H9B111.00
F9—P2—F1088.0 (4)S1—C9—H9B110.00
F7—P2—F1188.5 (5)H9A—C9—H9B109.00
F7—P2—F1292.0 (4)C11—C12—H12B109.00
F8—P2—F989.2 (3)C13—C12—H12A109.00
F8—P2—F1086.8 (4)C11—C12—H12A109.00
F11—P2—F1287.0 (4)H12A—C12—H12B108.00
F9—P2—F12177.4 (4)C13—C12—H12B109.00
F10—P2—F1191.3 (4)C12—C13—H13A109.00
F9—P2—F1191.5 (3)H13A—C13—H13B108.00
F10—P2—F1289.9 (4)C14—C13—H13B109.00
F13—P3—F1590.5 (4)C12—C13—H13B109.00
F13—P3—F16176.6 (5)C14—C13—H13A109.00
F13—P3—F1493.6 (5)C13—C14—H14A109.00
F17—P3—F1887.3 (4)C13—C14—H14B108.00
F14—P3—F17178.4 (4)C15—C14—H14A108.00
F14—P3—F1893.0 (4)C15—C14—H14B109.00
F15—P3—F1687.7 (3)H14A—C14—H14B107.00
F13—P3—F1788.0 (4)C14—C15—H15B108.00
F13—P3—F1890.6 (4)C16—C15—H15A108.00
F14—P3—F1588.9 (3)C14—C15—H15A108.00
F14—P3—F1689.4 (4)C16—C15—H15B108.00
F15—P3—F1790.7 (4)H15A—C15—H15B107.00
F15—P3—F18177.7 (4)S2—C16—H16108.00
F16—P3—F1789.0 (4)C17—C16—H16108.00
F16—P3—F1891.1 (4)C15—C16—H16108.00
Ag2—O1—C1145.9 (4)C16—C17—H17110.00
Ag2—O4—C11146.5 (5)N3—C17—H17111.00
Ag3ii—O7—C21142.1 (4)C18—C17—H17110.00
Ag1—O16—C51150.7 (5)C17—C18—H18110.00
C1—O2—H2O109.00N4—C18—H18110.00
C11—O5—H5O109.00C19—C18—H18110.00
C21—O8—H8O109.00S2—C19—H19B111.00
C31—O11—H11O110.00S2—C19—H19A111.00
C41—O13—H13O110.00H19A—C19—H19B109.00
C51—O17—H17O109.00C18—C19—H19A111.00
C7—N1—C10113.0 (5)C18—C19—H19B111.00
C8—N2—C10112.3 (5)C21—C22—H22A109.00
C17—N3—C20112.4 (5)C23—C22—H22B109.00
C18—N4—C20112.2 (6)C21—C22—H22B109.00
C27—N5—C30115.3 (5)C23—C22—H22A109.00
C28—N6—C30113.2 (5)H22A—C22—H22B108.00
C37—N7—C40114.6 (6)C24—C23—H23B109.00
C38—N8—C40111.8 (6)C22—C23—H23A109.00
C47—N9—C50113.3 (5)C22—C23—H23B109.00
C48—N10—C50111.7 (5)C24—C23—H23A109.00
C57—N11—C60112.6 (5)H23A—C23—H23B108.00
C58—N12—C60113.5 (5)C25—C24—H24A109.00
C7—N1—H1N115 (4)H24A—C24—H24B108.00
C10—N1—H1N128 (4)C23—C24—H24B109.00
C8—N2—H2N129 (5)C25—C24—H24B109.00
C10—N2—H2N117 (5)C23—C24—H24A109.00
C17—N3—H3N124 (4)C24—C25—H25A108.00
C20—N3—H3N123 (4)H25A—C25—H25B107.00
C20—N4—H4N124 (5)C24—C25—H25B108.00
C18—N4—H4N124 (5)C26—C25—H25A108.00
C30—N5—H5N117 (4)C26—C25—H25B108.00
C27—N5—H5N127 (4)C27—C26—H26107.00
C28—N6—H6N119 (5)S3—C26—H26107.00
C30—N6—H6N127 (5)C25—C26—H26107.00
C40—N7—H7N134 (4)C26—C27—H27110.00
C37—N7—H7N110 (4)N5—C27—H27110.00
C38—N8—H8N114 (5)C28—C27—H27110.00
C40—N8—H8N128 (5)N6—C28—H28111.00
C50—N9—H9N117 (4)C27—C28—H28111.00
C47—N9—H9N126 (4)C29—C28—H28111.00
C50—N10—H10N132 (5)S3—C29—H29B110.00
C48—N10—H10N110 (5)C28—C29—H29A111.00
C57—N11—H11N134 (4)S3—C29—H29A111.00
C60—N11—H11N111 (4)C28—C29—H29B110.00
C58—N12—H12N105 (4)H29A—C29—H29B109.00
C60—N12—H12N122 (4)C31—C32—H32A109.00
O1—C1—O2123.0 (5)C33—C32—H32B109.00
O2—C1—C2112.3 (5)H32A—C32—H32B108.00
O1—C1—C2124.6 (5)C31—C32—H32B109.00
C1—C2—C3112.8 (5)C33—C32—H32A109.00
C2—C3—C4115.3 (5)C32—C33—H33A109.00
C3—C4—C5112.6 (5)H33A—C33—H33B108.00
C4—C5—C6115.3 (5)C32—C33—H33B109.00
S1—C6—C5114.0 (5)C34—C33—H33A109.00
C5—C6—C7115.9 (5)C34—C33—H33B109.00
S1—C6—C7104.7 (4)C33—C34—H34A109.00
N1—C7—C6114.3 (5)C33—C34—H34B109.00
N1—C7—C8103.2 (5)C35—C34—H34A109.00
C6—C7—C8110.4 (5)C35—C34—H34B109.00
C7—C8—C9110.0 (5)H34A—C34—H34B108.00
N2—C8—C7102.9 (5)H35A—C35—H35B107.00
N2—C8—C9111.3 (6)C34—C35—H35A108.00
S1—C9—C8105.9 (4)C36—C35—H35B108.00
O3—C10—N2125.5 (6)C36—C35—H35A108.00
O3—C10—N1126.5 (6)C34—C35—H35B108.00
N1—C10—N2108.0 (5)S4—C36—H36108.00
O4—C11—O5123.4 (6)C37—C36—H36108.00
O4—C11—C12123.7 (6)C35—C36—H36108.00
O5—C11—C12112.9 (5)N7—C37—H37110.00
C11—C12—C13113.3 (6)C36—C37—H37110.00
C12—C13—C14114.1 (6)C38—C37—H37110.00
C13—C14—C15115.1 (6)N8—C38—H38111.00
C14—C15—C16115.4 (5)C37—C38—H38111.00
S2—C16—C17105.1 (4)C39—C38—H38111.00
S2—C16—C15113.3 (5)S4—C39—H39B110.00
C15—C16—C17115.0 (5)S4—C39—H39A110.00
C16—C17—C18109.4 (5)H39A—C39—H39B109.00
N3—C17—C18102.5 (5)C38—C39—H39A110.00
N3—C17—C16113.3 (6)C38—C39—H39B110.00
N4—C18—C17103.1 (5)H42A—C42—H42B108.00
N4—C18—C19114.2 (6)C41—C42—H42A109.00
C17—C18—C19110.2 (6)C41—C42—H42B109.00
S2—C19—C18105.5 (5)C43—C42—H42A109.00
O6—C20—N4125.7 (6)C43—C42—H42B109.00
N3—C20—N4109.1 (6)H43A—C43—H43B107.00
O6—C20—N3125.3 (6)C42—C43—H43B109.00
O7—C21—O8122.3 (5)C44—C43—H43A108.00
O7—C21—C22123.8 (5)C42—C43—H43A109.00
O8—C21—C22113.9 (5)C44—C43—H43B108.00
C21—C22—C23113.0 (5)C43—C44—H44A109.00
C22—C23—C24114.0 (5)C43—C44—H44B109.00
C23—C24—C25112.3 (5)C45—C44—H44A109.00
C24—C25—C26116.2 (5)C45—C44—H44B109.00
S3—C26—C25113.2 (4)H44A—C44—H44B108.00
S3—C26—C27106.3 (4)C46—C45—H45B108.00
C25—C26—C27115.6 (5)H45A—C45—H45B108.00
N5—C27—C28101.8 (5)C46—C45—H45A109.00
N5—C27—C26114.9 (5)C44—C45—H45A109.00
C26—C27—C28108.7 (5)C44—C45—H45B109.00
N6—C28—C29112.3 (5)S5—C46—H46107.00
N6—C28—C27102.4 (5)C47—C46—H46107.00
C27—C28—C29109.1 (5)C45—C46—H46107.00
S3—C29—C28106.1 (4)N9—C47—H47110.00
O9—C30—N6126.0 (6)C48—C47—H47110.00
N5—C30—N6106.4 (6)C46—C47—H47110.00
O9—C30—N5127.6 (6)C47—C48—H48111.00
O11—C31—C32110.9 (6)N10—C48—H48111.00
O10—C31—C32126.5 (6)C49—C48—H48111.00
O10—C31—O11122.5 (6)H49A—C49—H49B109.00
C31—C32—C33114.7 (7)S5—C49—H49B111.00
C32—C33—C34113.4 (6)S5—C49—H49A111.00
C33—C34—C35113.6 (6)C48—C49—H49A111.00
C34—C35—C36116.1 (6)C48—C49—H49B111.00
C35—C36—C37115.6 (6)C51—C52—H52B109.00
S4—C36—C37105.6 (6)C51—C52—H52A109.00
S4—C36—C35112.7 (5)C53—C52—H52A109.00
N7—C37—C36113.9 (6)C53—C52—H52B109.00
N7—C37—C38101.9 (6)H52A—C52—H52B108.00
C36—C37—C38109.8 (6)C52—C53—H53B109.00
C37—C38—C39109.4 (6)C54—C53—H53A109.00
N8—C38—C37102.0 (6)C54—C53—H53B109.00
N8—C38—C39112.7 (7)C52—C53—H53A109.00
S4—C39—C38107.7 (6)H53A—C53—H53B108.00
N7—C40—N8108.9 (6)C53—C54—H54A110.00
O12—C40—N7124.9 (6)C53—C54—H54B110.00
O12—C40—N8126.2 (6)H54A—C54—H54B108.00
O13—C41—C42113.5 (5)C55—C54—H54B110.00
O13—C41—O14122.6 (6)C55—C54—H54A110.00
O14—C41—C42123.9 (6)C56—C55—H55B109.00
C41—C42—C43111.6 (6)C56—C55—H55A109.00
C42—C43—C44114.9 (6)C54—C55—H55B109.00
C43—C44—C45111.1 (5)C54—C55—H55A108.00
C44—C45—C46114.8 (5)H55A—C55—H55B108.00
S5—C46—C45113.2 (5)C55—C56—H56108.00
S5—C46—C47105.9 (4)S6—C56—H56108.00
C45—C46—C47115.4 (5)C57—C56—H56108.00
N9—C47—C48102.5 (5)C58—C57—H57111.00
N9—C47—C46113.5 (5)N11—C57—H57111.00
C46—C47—C48110.1 (5)C56—C57—H57111.00
C47—C48—C49109.5 (5)C59—C58—H58111.00
N10—C48—C49112.3 (5)N12—C58—H58111.00
N10—C48—C47101.8 (5)C57—C58—H58111.00
S5—C49—C48104.9 (4)H59A—C59—H59B109.00
N9—C50—N10108.4 (5)S6—C59—H59A110.00
O15—C50—N9126.1 (6)S6—C59—H59B111.00
O15—C50—N10125.5 (6)C58—C59—H59A110.00
O17—C51—C52111.6 (6)C58—C59—H59B110.00
O16—C51—O17123.8 (6)
S2—Ag1—S1—C634.8 (3)C47—N9—C50—O15178.8 (6)
S2—Ag1—S1—C9129.7 (2)C47—N9—C50—N100.7 (7)
O16—Ag1—S1—C6114.7 (3)C50—N10—C48—C4715.2 (7)
O16—Ag1—S1—C919.8 (3)C50—N10—C48—C49132.2 (5)
S1—Ag1—S2—C1643.1 (3)C48—N10—C50—O15170.7 (6)
S1—Ag1—S2—C19138.1 (3)C48—N10—C50—N99.8 (7)
O16—Ag1—S2—C16161.9 (3)C60—N11—C57—C56120.8 (5)
O16—Ag1—S2—C1966.9 (3)C60—N11—C57—C584.0 (6)
S1—Ag1—O16—C5193.9 (10)C57—N11—C60—O18176.8 (6)
S2—Ag1—O16—C5171.9 (10)C57—N11—C60—N122.9 (7)
S4—Ag2—S3—C2644.2 (2)C60—N12—C58—C572.0 (7)
S4—Ag2—S3—C29137.4 (2)C60—N12—C58—C59115.9 (6)
O1—Ag2—S3—C26160.7 (2)C58—N12—C60—O18179.3 (6)
O1—Ag2—S3—C2967.6 (2)C58—N12—C60—N110.4 (7)
O4—Ag2—S3—C26107.1 (3)O1—C1—C2—C312.5 (9)
O4—Ag2—S3—C2913.9 (3)O2—C1—C2—C3166.1 (5)
S3—Ag2—S4—C3639.8 (3)C1—C2—C3—C4175.0 (5)
S3—Ag2—S4—C39134.0 (3)C2—C3—C4—C5178.7 (5)
O1—Ag2—S4—C36108.0 (3)C3—C4—C5—C6170.9 (5)
O1—Ag2—S4—C3913.8 (3)C4—C5—C6—S155.7 (6)
O4—Ag2—S4—C36161.8 (3)C4—C5—C6—C7177.3 (5)
O4—Ag2—S4—C3967.6 (3)S1—C6—C7—N189.7 (5)
S3—Ag2—O1—C132.2 (7)S1—C6—C7—C826.1 (6)
S4—Ag2—O1—C1130.9 (7)C5—C6—C7—N136.8 (7)
O4—Ag2—O1—C1172.4 (8)C5—C6—C7—C8152.5 (5)
S3—Ag2—O4—C11117.5 (9)N1—C7—C8—N25.9 (7)
S4—Ag2—O4—C1147.2 (9)N1—C7—C8—C9124.6 (5)
O1—Ag2—O4—C11174.6 (9)C6—C7—C8—N2116.6 (6)
S6—Ag3—S5—C4644.0 (3)C6—C7—C8—C92.1 (7)
S6—Ag3—S5—C49137.9 (2)N2—C8—C9—S183.5 (5)
O7i—Ag3—S5—C46158.3 (2)C7—C8—C9—S130.0 (6)
O7i—Ag3—S5—C4964.3 (2)O4—C11—C12—C13107.8 (8)
S5—Ag3—S6—C5641.8 (3)O5—C11—C12—C1369.7 (7)
S5—Ag3—S6—C59136.3 (2)C11—C12—C13—C1462.1 (8)
O7i—Ag3—S6—C56113.2 (2)C12—C13—C14—C1565.0 (7)
O7i—Ag3—S6—C5918.7 (3)C13—C14—C15—C1665.4 (7)
S5—Ag3—O7i—C21i30.9 (7)C14—C15—C16—S258.6 (6)
S6—Ag3—O7i—C21i139.7 (6)C14—C15—C16—C17179.6 (5)
Ag1—S1—C6—C560.1 (5)S2—C16—C17—N393.9 (5)
Ag1—S1—C6—C767.5 (4)S2—C16—C17—C1819.9 (6)
C9—S1—C6—C5165.4 (5)C15—C16—C17—N331.4 (7)
C9—S1—C6—C737.7 (4)C15—C16—C17—C18145.1 (6)
Ag1—S1—C9—C868.6 (4)N3—C17—C18—N48.1 (7)
C6—S1—C9—C839.6 (4)N3—C17—C18—C19130.4 (6)
Ag1—S2—C16—C1558.5 (5)C16—C17—C18—N4112.4 (6)
Ag1—S2—C16—C1767.8 (4)C16—C17—C18—C199.9 (7)
C19—S2—C16—C15161.6 (5)N4—C18—C19—S279.5 (7)
C19—S2—C16—C1735.2 (4)C17—C18—C19—S236.0 (6)
Ag1—S2—C19—C1869.9 (5)O7—C21—C22—C2315.9 (9)
C16—S2—C19—C1841.6 (5)O8—C21—C22—C23166.1 (5)
Ag2—S3—C26—C2564.5 (4)C21—C22—C23—C24171.4 (5)
Ag2—S3—C26—C2763.4 (4)C22—C23—C24—C25179.9 (5)
C29—S3—C26—C25167.1 (5)C23—C24—C25—C26168.4 (5)
C29—S3—C26—C2739.2 (4)C24—C25—C26—S354.3 (6)
Ag2—S3—C29—C2867.8 (4)C24—C25—C26—C27177.3 (5)
C26—S3—C29—C2842.2 (4)S3—C26—C27—N587.8 (5)
Ag2—S4—C36—C3557.8 (6)S3—C26—C27—C2825.5 (5)
Ag2—S4—C36—C3769.3 (5)C25—C26—C27—N538.8 (7)
C39—S4—C36—C35161.7 (6)C25—C26—C27—C28152.1 (5)
C39—S4—C36—C3734.6 (5)N5—C27—C28—N67.5 (6)
Ag2—S4—C39—C3868.1 (6)N5—C27—C28—C29126.6 (5)
C36—S4—C39—C3839.4 (6)C26—C27—C28—N6114.2 (5)
Ag3—S5—C46—C4561.5 (5)C26—C27—C28—C294.9 (7)
Ag3—S5—C46—C4765.8 (4)N6—C28—C29—S379.1 (5)
C49—S5—C46—C45161.3 (5)C27—C28—C29—S333.6 (6)
C49—S5—C46—C4734.0 (4)O10—C31—C32—C337.2 (11)
Ag3—S5—C49—C4869.0 (4)O11—C31—C32—C33176.1 (6)
C46—S5—C49—C4841.1 (4)C31—C32—C33—C3476.4 (8)
Ag3—S6—C56—C5561.1 (5)C32—C33—C34—C35163.8 (6)
Ag3—S6—C56—C5764.4 (4)C33—C34—C35—C3664.8 (8)
C59—S6—C56—C55166.1 (5)C34—C35—C36—S465.1 (7)
C59—S6—C56—C5740.6 (4)C34—C35—C36—C37173.4 (6)
Ag3—S6—C59—C5871.6 (4)S4—C36—C37—N792.1 (7)
C56—S6—C59—C5838.3 (5)S4—C36—C37—C3821.4 (7)
Ag2—O1—C1—O239.3 (11)C35—C36—C37—N733.1 (9)
Ag2—O1—C1—C2139.2 (6)C35—C36—C37—C38146.7 (6)
Ag2—O4—C11—O538.1 (13)N7—C37—C38—N87.6 (7)
Ag2—O4—C11—C12144.6 (6)N7—C37—C38—C39127.2 (6)
Ag3ii—O7—C21—O838.7 (10)C36—C37—C38—N8113.4 (6)
Ag3ii—O7—C21—C22143.5 (5)C36—C37—C38—C396.1 (8)
Ag1—O16—C51—O171.0 (15)N8—C38—C39—S480.4 (7)
Ag1—O16—C51—C52178.0 (7)C37—C38—C39—S432.4 (7)
C10—N1—C7—C6116.8 (6)O13—C41—C42—C43177.3 (6)
C10—N1—C7—C83.1 (7)O14—C41—C42—C435.0 (10)
C7—N1—C10—O3179.0 (6)C41—C42—C43—C44174.5 (6)
C7—N1—C10—N21.4 (7)C42—C43—C44—C45169.2 (6)
C10—N2—C8—C77.3 (8)C43—C44—C45—C46172.3 (6)
C10—N2—C8—C9125.1 (6)C44—C45—C46—S561.4 (6)
C8—N2—C10—O3174.6 (6)C44—C45—C46—C47176.5 (5)
C8—N2—C10—N15.7 (8)S5—C46—C47—N996.6 (5)
C20—N3—C17—C16111.9 (6)S5—C46—C47—C4817.6 (6)
C20—N3—C17—C185.9 (8)C45—C46—C47—N929.4 (7)
C17—N3—C20—O6178.6 (6)C45—C46—C47—C48143.6 (5)
C17—N3—C20—N40.9 (8)N9—C47—C48—N1014.1 (6)
C20—N4—C18—C178.4 (8)N9—C47—C48—C49133.2 (5)
C20—N4—C18—C19127.9 (7)C46—C47—C48—N10106.9 (5)
C18—N4—C20—O6175.4 (7)C46—C47—C48—C4912.1 (7)
C18—N4—C20—N35.1 (8)N10—C48—C49—S575.6 (5)
C30—N5—C27—C26114.3 (6)C47—C48—C49—S536.7 (6)
C30—N5—C27—C282.9 (6)O16—C51—C52—C536.8 (10)
C27—N5—C30—O9178.2 (6)O17—C51—C52—C53174.0 (6)
C27—N5—C30—N63.3 (7)C51—C52—C53—C54176.9 (6)
C30—N6—C28—C2710.4 (7)C52—C53—C54—C55179.2 (6)
C30—N6—C28—C29127.2 (6)C53—C54—C55—C56168.5 (5)
C28—N6—C30—O9172.5 (6)C54—C55—C56—S659.7 (6)
C28—N6—C30—N59.0 (7)C54—C55—C56—C57178.6 (5)
C40—N7—C37—C36113.3 (7)S6—C56—C57—N1182.8 (5)
C40—N7—C37—C384.9 (7)S6—C56—C57—C5831.5 (5)
C37—N7—C40—O12177.9 (6)C55—C56—C57—N1143.4 (7)
C37—N7—C40—N80.5 (7)C55—C56—C57—C58157.7 (5)
C40—N8—C38—C378.8 (8)N11—C57—C58—N123.4 (6)
C40—N8—C38—C39125.9 (7)N11—C57—C58—C59116.4 (5)
C38—N8—C40—O12172.1 (6)C56—C57—C58—N12123.5 (5)
C38—N8—C40—N76.2 (8)C56—C57—C58—C593.7 (7)
C50—N9—C47—C46108.8 (6)N12—C58—C59—S687.0 (5)
C50—N9—C47—C489.9 (6)C57—C58—C59—S625.6 (6)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···F170.88 (5)2.47 (5)3.211 (8)144 (5)
N1—H1N···F180.88 (5)2.38 (5)3.231 (8)163 (6)
N2—H2N···F4iii0.90 (5)2.45 (6)3.222 (9)144 (7)
N2—H2N···F6iii0.90 (5)2.33 (4)3.100 (8)144 (7)
O2—H2O···O120.841.842.672 (7)173
N3—H3N···F13iv0.88 (5)2.26 (5)2.960 (8)137 (5)
N4—H4N···O140.87 (3)2.38 (7)2.978 (8)127 (6)
N5—H5N···F120.88 (4)2.26 (4)3.119 (8)165 (5)
O5—H5O···O90.841.842.655 (7)163
N6—H6N···F160.89 (3)2.23 (4)3.051 (7)154 (7)
N7—H7N···F7iv0.87 (4)2.40 (4)3.138 (8)144 (5)
N8—H8N···F14iv0.88 (4)2.52 (6)3.359 (9)159 (7)
N8—H8N···F15iv0.88 (4)2.40 (6)3.169 (8)146 (7)
O8—H8O···O18ii0.841.832.644 (6)163
N9—H9N···F1iii0.88 (4)2.46 (5)3.210 (8)143 (6)
N10—H10N···F10i0.88 (3)2.34 (3)3.179 (8)159 (6)
N11—H11N···F3v0.86 (5)2.31 (5)3.076 (7)148 (5)
O11—H11O···O15ii0.841.762.578 (7)162
N12—H12N···F8vi0.87 (5)2.46 (6)3.252 (9)151 (5)
N12—H12N···F9vi0.87 (5)2.49 (6)3.082 (8)126 (4)
O13—H13O···O60.841.782.606 (7)168
O17—H17O···O30.841.802.630 (7)167
C4—H4A···O13vii0.992.553.291 (8)131
C6—H6···O13vii1.002.383.221 (8)141
C16—H16···O17iii1.002.353.270 (8)153
C24—H24B···O8viii0.992.543.155 (8)120
C26—H26···O18vii1.002.563.478 (8)152
C35—H35B···F7iv0.992.333.230 (11)151
C36—H36···O11ix1.002.213.197 (9)167
C38—H38···O9iv1.002.603.390 (9)136
C44—H44B···O2vii0.992.563.309 (8)132
C45—H45A···F2iii0.992.483.365 (9)149
C46—H46···O12vii1.002.493.431 (8)157
C56—H56···O5iii1.002.593.319 (8)130
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x+1, y1/2, z+1; (iv) x, y1, z; (v) x+1, y3/2, z+1; (vi) x, y1, z+1; (vii) x+2, y+1/2, z+1; (viii) x+2, y+1/2, z; (ix) x+1, y1/2, z.
(V) catena-poly[[[{5-[(3aS,4S,6aR)- 2-oxohexahydro-1H-thieno[3,4-d]imidazol-4- yl]pentanoato}silver(I)]-µ2-{5-[(3aS,4S,6aR)- 2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanoato}] hexafluoridoantimonate] top
Crystal data top
[Ag(C10H16N2O3S)2](SbF6)F(000) = 824
Mr = 832.24Dx = 1.976 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 11317 reflections
a = 9.6902 (11) Åθ = 1.4–27.3°
b = 14.6452 (12) ŵ = 1.90 mm1
c = 9.8604 (12) ÅT = 173 K
β = 91.167 (10)°Block, colourless
V = 1399.0 (3) Å30.35 × 0.15 × 0.09 mm
Z = 2
Data collection top
Stoe IPDS 2
diffractometer
5915 independent reflections
Radiation source: fine-focus sealed tube5659 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 26.8°, θmin = 2.1°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 1112
Tmin = 0.821, Tmax = 1.000k = 1818
9320 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.3385P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.064(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.77 e Å3
5915 reflectionsΔρmin = 0.56 e Å3
376 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.0010 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 2830 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.003 (17)
Crystal data top
[Ag(C10H16N2O3S)2](SbF6)V = 1399.0 (3) Å3
Mr = 832.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.6902 (11) ŵ = 1.90 mm1
b = 14.6452 (12) ÅT = 173 K
c = 9.8604 (12) Å0.35 × 0.15 × 0.09 mm
β = 91.167 (10)°
Data collection top
Stoe IPDS 2
diffractometer
5915 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
5659 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 1.000Rint = 0.023
9320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064Δρmax = 0.77 e Å3
S = 1.04Δρmin = 0.56 e Å3
5915 reflectionsAbsolute structure: Flack (1983), with 2830 Friedel pairs
376 parametersAbsolute structure parameter: 0.003 (17)
5 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.71563 (3)0.77119 (2)0.40629 (3)0.0224 (1)
S10.79490 (10)0.92598 (6)0.46075 (10)0.0205 (2)
S20.66482 (10)0.61176 (6)0.44562 (10)0.0206 (3)
O10.4859 (4)0.9333 (2)1.1870 (3)0.0365 (10)
O20.6475 (3)0.8251 (2)1.1806 (3)0.0337 (10)
O31.0287 (3)0.64141 (19)0.4025 (3)0.0283 (9)
O40.8733 (4)0.6267 (2)1.1764 (3)0.0360 (10)
O50.8199 (4)0.4812 (2)1.2018 (3)0.0373 (10)
O60.4002 (3)0.8781 (2)0.4265 (3)0.0264 (9)
N11.0625 (3)0.7718 (3)0.5315 (3)0.0236 (9)
N21.0067 (4)0.7881 (2)0.3161 (3)0.0253 (10)
N30.4285 (3)0.7537 (2)0.5671 (3)0.0191 (9)
N40.3818 (4)0.7300 (3)0.3499 (3)0.0274 (9)
C10.5866 (4)0.8888 (3)1.1291 (4)0.0239 (11)
C20.6163 (5)0.9244 (3)0.9903 (4)0.0280 (12)
C30.7385 (4)0.8791 (3)0.9227 (4)0.0259 (11)
C40.7673 (4)0.9182 (3)0.7841 (4)0.0263 (12)
C50.8888 (4)0.8692 (3)0.7176 (4)0.0212 (10)
C60.9340 (4)0.9158 (3)0.5878 (4)0.0200 (10)
C71.0567 (4)0.8694 (3)0.5177 (4)0.0227 (11)
C81.0388 (4)0.8814 (3)0.3603 (4)0.0233 (11)
C90.9208 (5)0.9473 (3)0.3308 (4)0.0264 (11)
C101.0332 (4)0.7265 (3)0.4154 (4)0.0209 (9)
C110.8145 (4)0.5507 (3)1.1357 (4)0.0277 (12)
C120.7393 (5)0.5596 (4)1.0013 (5)0.0354 (14)
C130.8287 (4)0.6011 (3)0.8925 (4)0.0287 (12)
C140.7671 (4)0.5898 (3)0.7501 (4)0.0264 (12)
C150.6326 (4)0.6418 (3)0.7223 (4)0.0228 (11)
C160.5578 (4)0.6067 (3)0.5965 (4)0.0205 (10)
C170.4202 (4)0.6544 (3)0.5556 (4)0.0194 (10)
C180.3928 (4)0.6386 (3)0.4023 (4)0.0230 (11)
C190.5134 (4)0.5853 (3)0.3416 (4)0.0280 (12)
C200.4025 (4)0.7945 (3)0.4469 (4)0.0206 (11)
Sb10.23151 (3)0.72837 (2)0.94080 (3)0.0276 (1)
F10.0963 (4)0.6951 (3)0.8087 (4)0.0756 (14)
F20.3037 (4)0.8165 (2)0.8203 (3)0.0574 (11)
F30.3660 (6)0.7517 (6)1.0715 (4)0.150 (3)
F40.1645 (4)0.6392 (3)1.0583 (4)0.0623 (12)
F50.1067 (6)0.8090 (3)1.0187 (5)0.1075 (19)
F60.3428 (5)0.6371 (3)0.8630 (5)0.0905 (19)
H1N1.086 (5)0.743 (3)0.609 (3)0.0280*
H2A0.634100.990800.996800.0340*
H2B0.533100.915800.931700.0340*
H2N1.017 (5)0.772 (4)0.232 (3)0.0300*
H2O0.456900.902701.252600.0550*
H3A0.821700.886600.981600.0310*
H3B0.720100.812900.913600.0310*
H3N0.411 (5)0.783 (3)0.643 (3)0.0230*
H4A0.788800.984100.793000.0310*
H4B0.683800.912100.725300.0310*
H4N0.360 (5)0.745 (3)0.269 (3)0.0330*
H4O0.946800.614601.219500.0540*
H5A0.967900.867100.782700.0250*
H5B0.861600.805500.696600.0250*
H60.963800.979100.612700.0240*
H71.145700.897400.549900.0270*
H81.126300.903400.319300.0280*
H9A0.880100.936000.239400.0320*
H9B0.953801.011200.335300.0320*
H12A0.656600.598401.012900.0420*
H12B0.707600.498500.971100.0420*
H13A0.920800.571800.896500.0340*
H13B0.841500.666900.911600.0340*
H14A0.750100.524100.733700.0320*
H14B0.836200.610400.684000.0320*
H15A0.571800.635400.801300.0270*
H15B0.653300.707500.710800.0270*
H160.536200.540900.612800.0250*
H170.342400.630000.609900.0230*
H180.304100.604900.387200.0280*
H19A0.527700.604200.246500.0330*
H19B0.494400.518900.343300.0330*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0195 (1)0.0212 (1)0.0264 (1)0.0034 (1)0.0006 (1)0.0042 (1)
S10.0211 (4)0.0193 (4)0.0211 (4)0.0012 (4)0.0001 (4)0.0008 (3)
S20.0202 (4)0.0202 (4)0.0214 (5)0.0002 (4)0.0038 (4)0.0026 (3)
O10.051 (2)0.0298 (16)0.0295 (16)0.0164 (15)0.0182 (15)0.0088 (13)
O20.0339 (16)0.0432 (19)0.0239 (15)0.0151 (14)0.0009 (13)0.0097 (14)
O30.0306 (15)0.0195 (14)0.0346 (17)0.0031 (12)0.0009 (13)0.0043 (12)
O40.0406 (18)0.0329 (16)0.0337 (17)0.0079 (14)0.0153 (14)0.0012 (13)
O50.051 (2)0.0288 (16)0.0316 (17)0.0018 (15)0.0105 (15)0.0001 (13)
O60.0298 (15)0.0217 (15)0.0279 (15)0.0065 (12)0.0068 (12)0.0049 (11)
N10.0269 (16)0.0218 (15)0.0221 (15)0.0051 (16)0.0014 (12)0.0005 (15)
N20.0322 (17)0.0236 (18)0.0200 (16)0.0015 (13)0.0007 (14)0.0039 (13)
N30.0233 (15)0.0145 (17)0.0197 (15)0.0028 (11)0.0022 (12)0.0008 (11)
N40.0375 (18)0.0247 (16)0.0200 (15)0.0020 (18)0.0023 (13)0.0003 (17)
C10.025 (2)0.0227 (19)0.024 (2)0.0023 (16)0.0001 (16)0.0018 (15)
C20.036 (2)0.025 (2)0.023 (2)0.0042 (18)0.0043 (17)0.0033 (16)
C30.032 (2)0.028 (2)0.0179 (19)0.0078 (17)0.0034 (16)0.0022 (15)
C40.027 (2)0.028 (2)0.024 (2)0.0099 (17)0.0070 (16)0.0041 (17)
C50.0215 (18)0.0210 (18)0.0212 (18)0.0003 (15)0.0036 (15)0.0026 (15)
C60.0204 (18)0.0151 (17)0.0245 (19)0.0002 (14)0.0008 (15)0.0023 (14)
C70.0199 (18)0.0223 (19)0.026 (2)0.0023 (16)0.0002 (15)0.0029 (16)
C80.024 (2)0.0230 (19)0.023 (2)0.0059 (16)0.0038 (16)0.0012 (16)
C90.034 (2)0.0194 (19)0.026 (2)0.0024 (16)0.0062 (17)0.0072 (15)
C100.0155 (15)0.0212 (17)0.0261 (17)0.0031 (17)0.0035 (13)0.0005 (19)
C110.027 (2)0.031 (2)0.025 (2)0.0028 (17)0.0007 (16)0.0022 (17)
C120.030 (2)0.050 (3)0.026 (2)0.008 (2)0.0062 (18)0.003 (2)
C130.025 (2)0.030 (2)0.031 (2)0.0006 (18)0.0006 (17)0.0023 (17)
C140.027 (2)0.029 (2)0.023 (2)0.0040 (17)0.0014 (16)0.0072 (16)
C150.0231 (18)0.025 (2)0.0202 (18)0.0015 (16)0.0016 (15)0.0024 (15)
C160.0225 (18)0.0182 (17)0.0210 (18)0.0005 (15)0.0025 (15)0.0017 (14)
C170.0174 (17)0.0176 (18)0.0233 (19)0.0027 (15)0.0028 (14)0.0019 (15)
C180.0248 (19)0.0212 (19)0.023 (2)0.0052 (16)0.0023 (16)0.0030 (16)
C190.030 (2)0.026 (2)0.028 (2)0.0031 (17)0.0019 (17)0.0102 (16)
C200.0142 (16)0.026 (2)0.0216 (19)0.0036 (14)0.0039 (14)0.0002 (14)
Sb10.0244 (1)0.0385 (2)0.0200 (1)0.0030 (1)0.0041 (1)0.0065 (1)
F10.066 (2)0.110 (3)0.050 (2)0.047 (2)0.0189 (17)0.021 (2)
F20.081 (2)0.0474 (19)0.0443 (18)0.0003 (18)0.0156 (17)0.0043 (15)
F30.146 (4)0.259 (9)0.043 (2)0.130 (6)0.054 (3)0.065 (4)
F40.057 (2)0.071 (2)0.060 (2)0.0077 (18)0.0270 (18)0.0360 (19)
F50.150 (4)0.089 (3)0.087 (3)0.063 (3)0.091 (3)0.033 (3)
F60.085 (3)0.080 (3)0.109 (4)0.047 (2)0.062 (3)0.049 (3)
Geometric parameters (Å, º) top
Sb1—F21.898 (3)C6—C71.545 (6)
Sb1—F31.846 (5)C7—C81.568 (6)
Sb1—F41.871 (4)C8—C91.520 (6)
Sb1—F51.867 (5)C11—C121.505 (6)
Sb1—F61.890 (5)C12—C131.519 (6)
Sb1—F11.892 (4)C13—C141.524 (6)
Ag1—S22.4192 (10)C14—C151.530 (6)
Ag1—S12.4496 (10)C15—C161.514 (6)
Ag1—O2i2.440 (3)C16—C171.551 (6)
S1—C91.814 (5)C17—C181.547 (6)
S1—C61.828 (4)C18—C191.537 (6)
S2—C161.832 (4)C2—H2A0.9900
S2—C191.815 (4)C2—H2B0.9900
O1—C11.314 (5)C3—H3B0.9900
O2—C11.210 (5)C3—H3A0.9900
O3—C101.253 (5)C4—H4A0.9900
O4—C111.310 (5)C4—H4B0.9900
O5—C111.209 (5)C5—H5A0.9900
O6—C201.241 (5)C5—H5B0.9900
O1—H2O0.8400C6—H61.0000
O4—H4O0.8400C7—H71.0000
N1—C101.348 (5)C8—H81.0000
N1—C71.437 (6)C9—H9B0.9900
N2—C101.352 (5)C9—H9A0.9900
N2—C81.466 (5)C12—H12A0.9900
N3—C171.461 (5)C12—H12B0.9900
N3—C201.347 (5)C13—H13B0.9900
N4—C201.356 (6)C13—H13A0.9900
N4—C181.438 (6)C14—H14B0.9900
N1—H1N0.90 (3)C14—H14A0.9900
N2—H2N0.87 (3)C15—H15A0.9900
N3—H3N0.88 (3)C15—H15B0.9900
N4—H4N0.85 (3)C16—H161.0000
C1—C21.498 (6)C17—H171.0000
C2—C31.523 (6)C18—H181.0000
C3—C41.513 (6)C19—H19B0.9900
C4—C51.537 (6)C19—H19A0.9900
C5—C61.523 (6)
F3—Sb1—F592.9 (3)N4—C18—C17102.8 (3)
F3—Sb1—F690.8 (3)S2—C19—C18106.5 (3)
F4—Sb1—F587.18 (19)N3—C20—N4109.5 (4)
F4—Sb1—F688.04 (19)O6—C20—N3125.7 (4)
F5—Sb1—F6173.8 (2)O6—C20—N4124.8 (4)
F1—Sb1—F290.17 (16)C1—C2—H2A109.00
F1—Sb1—F3175.7 (3)C1—C2—H2B109.00
F1—Sb1—F490.14 (18)C3—C2—H2A109.00
F1—Sb1—F590.1 (2)C3—C2—H2B109.00
F1—Sb1—F686.06 (19)H2A—C2—H2B108.00
F2—Sb1—F392.7 (2)C2—C3—H3B109.00
F2—Sb1—F4178.34 (16)C4—C3—H3A109.00
F2—Sb1—F594.45 (18)C2—C3—H3A109.00
F2—Sb1—F690.36 (17)H3A—C3—H3B108.00
F3—Sb1—F486.9 (2)C4—C3—H3B109.00
S1—Ag1—S2157.22 (4)C3—C4—H4B109.00
S1—Ag1—O2i88.76 (7)C3—C4—H4A109.00
S2—Ag1—O2i113.98 (7)C5—C4—H4B109.00
Ag1—S1—C6107.36 (14)H4A—C4—H4B108.00
Ag1—S1—C9102.52 (14)C5—C4—H4A109.00
C6—S1—C990.06 (19)H5A—C5—H5B108.00
Ag1—S2—C16106.83 (14)C6—C5—H5B109.00
Ag1—S2—C19106.28 (14)C4—C5—H5A109.00
C16—S2—C1989.19 (18)C4—C5—H5B109.00
Ag1ii—O2—C1138.8 (3)C6—C5—H5A109.00
C1—O1—H2O109.00C5—C6—H6107.00
C11—O4—H4O110.00S1—C6—H6107.00
C7—N1—C10113.7 (3)C7—C6—H6107.00
C8—N2—C10111.8 (3)N1—C7—H7110.00
C17—N3—C20111.4 (3)C6—C7—H7110.00
C18—N4—C20112.7 (3)C8—C7—H7110.00
C10—N1—H1N123 (3)N2—C8—H8111.00
C7—N1—H1N124 (3)C7—C8—H8111.00
C8—N2—H2N121 (4)C9—C8—H8111.00
C10—N2—H2N119 (4)S1—C9—H9A111.00
C17—N3—H3N123 (3)S1—C9—H9B111.00
C20—N3—H3N120 (3)C8—C9—H9A111.00
C18—N4—H4N126 (3)C8—C9—H9B111.00
C20—N4—H4N121 (3)H9A—C9—H9B109.00
O1—C1—O2124.1 (4)C11—C12—H12A109.00
O2—C1—C2123.4 (4)C11—C12—H12B109.00
O1—C1—C2112.5 (4)C13—C12—H12A109.00
C1—C2—C3114.5 (4)C13—C12—H12B109.00
C2—C3—C4113.0 (3)H12A—C12—H12B108.00
C3—C4—C5111.5 (3)H13A—C13—H13B108.00
C4—C5—C6112.7 (3)C12—C13—H13A109.00
S1—C6—C7107.0 (3)C12—C13—H13B109.00
S1—C6—C5113.1 (3)C14—C13—H13A109.00
C5—C6—C7114.6 (3)C14—C13—H13B109.00
N1—C7—C8102.0 (3)C15—C14—H14A108.00
C6—C7—C8108.8 (3)C13—C14—H14A108.00
N1—C7—C6115.1 (3)C13—C14—H14B108.00
N2—C8—C9112.4 (3)C15—C14—H14B108.00
C7—C8—C9109.2 (3)H14A—C14—H14B108.00
N2—C8—C7102.0 (3)C16—C15—H15B109.00
S1—C9—C8105.6 (3)C14—C15—H15A109.00
O3—C10—N2125.8 (4)C14—C15—H15B109.00
N1—C10—N2108.7 (4)C16—C15—H15A109.00
O3—C10—N1125.6 (4)H15A—C15—H15B108.00
O4—C11—C12113.3 (4)S2—C16—H16107.00
O4—C11—O5122.4 (4)C15—C16—H16107.00
O5—C11—C12124.2 (4)C17—C16—H16107.00
C11—C12—C13112.6 (4)N3—C17—H17111.00
C12—C13—C14112.9 (3)C16—C17—H17111.00
C13—C14—C15115.3 (3)C18—C17—H17111.00
C14—C15—C16111.7 (3)N4—C18—H18110.00
S2—C16—C15112.5 (3)C17—C18—H18110.00
C15—C16—C17117.1 (3)C19—C18—H18110.00
S2—C16—C17105.6 (3)S2—C19—H19A110.00
N3—C17—C16112.5 (3)S2—C19—H19B110.00
N3—C17—C18103.5 (3)C18—C19—H19A110.00
C16—C17—C18108.4 (3)C18—C19—H19B110.00
C17—C18—C19109.9 (3)H19A—C19—H19B109.00
N4—C18—C19112.6 (3)
S2—Ag1—S1—C631.81 (17)C20—N4—C18—C19116.3 (4)
S2—Ag1—S1—C9125.86 (17)C18—N4—C20—O6179.0 (4)
O2i—Ag1—S1—C6151.72 (15)C18—N4—C20—N30.2 (5)
O2i—Ag1—S1—C957.68 (16)O1—C1—C2—C3176.2 (4)
S1—Ag1—S2—C1652.15 (17)O2—C1—C2—C35.0 (6)
S1—Ag1—S2—C19146.33 (15)C1—C2—C3—C4178.7 (4)
O2i—Ag1—S2—C16123.99 (15)C2—C3—C4—C5178.6 (3)
O2i—Ag1—S2—C1929.81 (16)C3—C4—C5—C6171.5 (3)
S1—Ag1—O2i—C1i46.0 (4)C4—C5—C6—S157.4 (4)
S2—Ag1—O2i—C1i132.5 (4)C4—C5—C6—C7179.6 (3)
Ag1—S1—C6—C559.8 (3)S1—C6—C7—N193.2 (3)
Ag1—S1—C6—C767.3 (3)S1—C6—C7—C820.6 (4)
C9—S1—C6—C5162.9 (3)C5—C6—C7—N133.0 (5)
C9—S1—C6—C735.8 (3)C5—C6—C7—C8146.8 (3)
Ag1—S1—C9—C866.6 (3)N1—C7—C8—N212.2 (4)
C6—S1—C9—C841.2 (3)N1—C7—C8—C9131.3 (3)
Ag1—S2—C16—C1562.9 (3)C6—C7—C8—N2109.9 (4)
Ag1—S2—C16—C1765.8 (3)C6—C7—C8—C99.2 (5)
C19—S2—C16—C15169.7 (3)N2—C8—C9—S177.4 (3)
C19—S2—C16—C1740.9 (3)C7—C8—C9—S135.1 (4)
Ag1—S2—C19—C1867.8 (3)O4—C11—C12—C1351.6 (5)
C16—S2—C19—C1839.6 (3)O5—C11—C12—C13129.2 (5)
Ag1ii—O2—C1—O130.8 (7)C11—C12—C13—C14166.3 (4)
Ag1ii—O2—C1—C2150.5 (3)C12—C13—C14—C1566.2 (5)
C10—N1—C7—C6109.4 (4)C13—C14—C15—C16163.7 (3)
C10—N1—C7—C88.3 (4)C14—C15—C16—S256.8 (4)
C7—N1—C10—O3178.4 (4)C14—C15—C16—C17179.3 (3)
C7—N1—C10—N20.4 (4)S2—C16—C17—N382.8 (3)
C10—N2—C8—C713.2 (4)S2—C16—C17—C1831.0 (4)
C10—N2—C8—C9130.0 (4)C15—C16—C17—N343.2 (5)
C8—N2—C10—O3172.5 (4)C15—C16—C17—C18157.0 (4)
C8—N2—C10—N18.8 (5)N3—C17—C18—N43.1 (4)
C20—N3—C17—C16120.3 (3)N3—C17—C18—C19117.0 (3)
C20—N3—C17—C183.5 (4)C16—C17—C18—N4122.7 (4)
C17—N3—C20—O6178.8 (4)C16—C17—C18—C192.6 (5)
C17—N3—C20—N42.5 (4)N4—C18—C19—S286.7 (3)
C20—N4—C18—C171.9 (4)C17—C18—C19—S227.3 (4)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2O···O6ii0.841.852.646 (4)158
O4—H4O···O3ii0.842.002.674 (4)137
N1—H1N···F1iii0.90 (3)2.09 (3)2.967 (5)165 (4)
N2—H2N···F5iv0.87 (3)2.36 (3)3.122 (6)147 (5)
N2—H2N···O4i0.87 (3)2.60 (6)3.014 (4)111 (4)
N3—H3N···F20.88 (3)2.11 (4)2.944 (4)157 (4)
N4—H4N···F3i0.85 (3)1.95 (3)2.765 (5)160 (4)
C6—H6···O3v1.002.383.325 (5)157
C12—H12B···O1vi0.992.603.386 (6)137
C15—H15A···F60.992.313.158 (6)143
C16—H16···O1vi1.002.543.350 (5)138
C16—H16···O6vii1.002.493.381 (5)147
C17—H17···F61.002.503.148 (6)122
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+1, y, z1; (v) x+2, y+1/2, z+1; (vi) x+1, y1/2, z+2; (vii) x+1, y1/2, z+1.

Experimental details

(HL)(I)(II)(IV)
Crystal data
Chemical formulaC10H16N2O3S[Ag(C10H15N2O3S)]·3H2O[Ag2(NO3)2(C10H16N2O3S)2]·H2O[Ag(C10H16N2O3S)2](PF6)
Mr244.31405.22846.39741.46
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21Monoclinic, C2Monoclinic, P21
Temperature (K)173173173173
a, b, c (Å)5.1955 (6), 10.3017 (17), 20.943 (2)8.7869 (8), 8.2847 (10), 9.8588 (10)21.8568 (12), 8.0321 (4), 16.8886 (9)15.1130 (7), 9.6028 (3), 28.6670 (13)
α, β, γ (°)90, 90, 9090, 95.718 (8), 9090, 99.337 (4), 9090, 90.946 (4), 90
V3)1120.9 (2)714.12 (13)2925.6 (3)4159.8 (3)
Z4246
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.281.581.561.02
Crystal size (mm)0.50 × 0.13 × 0.130.40 × 0.40 × 0.150.29 × 0.27 × 0.220.37 × 0.25 × 0.24
Data collection
DiffractometerStoe IPDS 2
diffractometer
Stoe IPDS 2
diffractometer
Stoe IPDS 2
diffractometer
Stoe IPDS 2
diffractometer
Absorption correctionMulti-scan
(MULABS in PLATON; Spek, 2009)
Multi-scan
(MULABS in PLATON; Spek, 2009)
Multi-scan
(MULABS in PLATON; Spek, 2009)
Multi-scan
(MULABS in PLATON; Spek, 2009)
Tmin, Tmax0.841, 1.0000.574, 0.8100.878, 1.0000.718, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
3715, 2102, 1871 8354, 3827, 3718 21197, 7861, 7163 43114, 14703, 13212
Rint0.0470.0240.0240.038
(sin θ/λ)max1)0.6090.6860.6870.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 0.99 0.023, 0.061, 1.07 0.019, 0.041, 0.97 0.044, 0.109, 1.04
No. of reflections21023827786114703
No. of parameters1522154101123
No. of restraints218713
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.250.43, 0.520.43, 0.501.54, 0.76
Absolute structureFlack (1983), with 837 Friedel pairsFlack (1983), with 1776 Friedel pairsFlack (1983), with 3655 Friedel pairsFlack (1983), with 6357 Friedel pairs
Absolute structure parameter0.03 (9)0.00 (2)0.017 (10)0.02 (2)


(V)
Crystal data
Chemical formula[Ag(C10H16N2O3S)2](SbF6)
Mr832.24
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)9.6902 (11), 14.6452 (12), 9.8604 (12)
α, β, γ (°)90, 91.167 (10), 90
V3)1399.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.90
Crystal size (mm)0.35 × 0.15 × 0.09
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionMulti-scan
(MULABS in PLATON; Spek, 2009)
Tmin, Tmax0.821, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9320, 5915, 5659
Rint0.023
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.04
No. of reflections5915
No. of parameters376
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.56
Absolute structureFlack (1983), with 2830 Friedel pairs
Absolute structure parameter0.003 (17)

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected torsion angles (º) for (HL) top
C1—C2—C3—C4175.51 (19)C3—C4—C5—C673.2 (3)
C2—C3—C4—C5168.35 (19)
Hydrogen-bond geometry (Å, º) for (HL) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (2)2.24 (2)3.044 (3)158 (2)
O1—H1O···O3ii0.841.722.544 (3)167
N2—H2N···O2iii0.86 (2)2.03 (2)2.881 (3)169 (2)
C3—H3B···S10.992.743.328 (2)119
C6—H6···S1iv1.002.873.689 (2)139
C8—H8···O1v1.002.533.340 (3)138
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y+3/2, z; (iv) x+1, y, z; (v) x+1/2, y+1/2, z.
Selected geometric parameters (Å, º) for (I) top
Ag1—S12.5642 (7)Ag1—S1iii2.5154 (7)
Ag1—O3i2.5148 (18)Ag1—O1Aii2.895 (4)
Ag1—O2ii2.299 (2)
S1—Ag1—O3i100.66 (4)S1iii—Ag1—O3i82.03 (4)
S1—Ag1—O2ii101.16 (8)S1iii—Ag1—O2ii118.01 (9)
S1—Ag1—S1iii130.36 (2)Ag1—S1—Ag1iv130.04 (2)
O2ii—Ag1—O3i124.54 (10)
C1—C2—C3—C4178.9 (3)C3—C4—C5—C6175.7 (2)
C2—C3—C4—C5179.9 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y, z1; (iii) x+2, y1/2, z; (iv) x+2, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1Wv0.86 (3)2.06 (3)2.925 (4)179 (6)
N2—H2N···O1Avi0.87 (3)2.09 (3)2.946 (6)166 (4)
O1W—H1WA···O3W0.87 (4)1.88 (4)2.723 (6)163 (4)
O1W—H1WB···O1A0.87 (5)1.98 (5)2.786 (6)153 (4)
O2W—H2WA···O1W0.89 (3)2.27 (6)2.823 (5)120 (5)
O2W—H2WA···O3W0.89 (3)2.45 (5)3.137 (7)135 (4)
O2W—H2WB···O2vii0.89 (5)2.40 (7)2.935 (6)119 (6)
O3W—H3WA···O1Av0.87 (5)2.24 (6)2.828 (7)125 (5)
O3W—H3WB···O2Wv0.88 (3)2.27 (6)2.901 (7)128 (5)
C4—H4A···O3i0.992.433.309 (3)148
C7—H7···O3viii1.002.383.325 (3)157
C8—H8···O3Wii1.002.523.397 (6)146
Symmetry codes: (i) x, y1, z; (ii) x, y, z1; (v) x+1, y+1/2, z+1; (vi) x, y+1, z1; (vii) x1, y, z; (viii) x+1, y1/2, z.
Selected geometric parameters (Å, º) for (II) top
Ag1—S12.4851 (5)Ag2—S12.4395 (4)
Ag1—S22.4695 (5)Ag2—S2i2.4638 (5)
Ag1—O112.4529 (15)Ag2—O212.3959 (15)
Ag1—O122.6679 (15)Ag2—O222.8007 (14)
Ag1—O6i2.5243 (14)Ag2—O3i2.5295 (14)
S1—Ag1—S2149.08 (2)O6i—Ag1—O12139.61 (5)
S1—Ag1—O11112.34 (4)S1—Ag2—O21105.35 (4)
S1—Ag1—O1291.72 (4)S1—Ag2—S2i143.62 (2)
S1—Ag1—O6i89.10 (3)S1—Ag2—O3i98.66 (3)
S2—Ag1—O1196.79 (4)S2i—Ag2—O21109.39 (4)
S2—Ag1—O1299.78 (5)O3i—Ag2—O2189.23 (5)
S2—Ag1—O6i99.92 (3)S2i—Ag2—O3i92.34 (4)
O11—Ag1—O1249.89 (5)Ag1—S1—Ag2119.56 (2)
O6i—Ag1—O1192.93 (5)Ag1—S2—Ag2ii116.09 (2)
C1—C2—C3—C4169.81 (18)C11—C12—C13—C14159.81 (18)
C2—C3—C4—C5171.54 (15)C12—C13—C14—C1574.6 (3)
C3—C4—C5—C6161.69 (14)C13—C14—C15—C16173.55 (17)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O6i0.87 (3)2.13 (3)2.980 (2)166 (3)
N1—H1N···O21ii0.84 (2)2.09 (2)2.899 (2)163 (2)
O1—H1O···O5iii0.841.782.609 (2)167
O2W—H1W2···O3iv0.84 (3)2.06 (3)2.885 (2)168 (4)
N2—H2N···O12iv0.872 (17)2.236 (18)3.026 (2)151 (2)
N3—H3N···O22v0.863 (19)2.313 (19)3.103 (2)152 (2)
N4—H4N···O11ii0.85 (2)2.15 (2)2.975 (2)164 (2)
O4—H4O···O2vi0.841.792.619 (2)167
C2—H2B···O23vii0.992.453.384 (3)157
C8—H8···O13iv1.002.413.145 (2)130
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1/2, y+1/2, z+1; (iv) x+2, y, z+1; (v) x+2, y1, z+2; (vi) x1/2, y1/2, z1; (vii) x+5/2, y1/2, z+2.
Selected geometric parameters (Å, º) for (IV) top
Ag1—S12.4232 (16)Ag2—O12.517 (4)
Ag1—S22.4524 (16)Ag2—O42.623 (6)
Ag1—O162.518 (5)Ag3—S52.4752 (16)
Ag1—O142.753 (5)Ag3—S62.4270 (16)
Ag2—S32.4655 (15)Ag3—O7i2.491 (4)
Ag2—S42.4600 (17)Ag3—O10i2.981 (5)
S1—Ag1—S2151.54 (6)S4—Ag2—O1128.67 (11)
S1—Ag1—O16124.92 (14)S4—Ag2—O478.40 (13)
S2—Ag1—O1680.41 (14)O1—Ag2—O470.97 (16)
S3—Ag2—S4147.51 (6)S5—Ag3—S6157.56 (6)
S3—Ag2—O180.10 (11)S5—Ag3—O7i83.88 (11)
S3—Ag2—O4131.20 (13)S6—Ag3—O7i116.73 (11)
C1—C2—C3—C4175.0 (5)C31—C32—C33—C3476.4 (8)
C2—C3—C4—C5178.7 (5)C32—C33—C34—C35163.8 (6)
C3—C4—C5—C6170.9 (5)C33—C34—C35—C3664.8 (8)
C11—C12—C13—C1462.1 (8)C41—C42—C43—C44174.5 (6)
C12—C13—C14—C1565.0 (7)C42—C43—C44—C45169.2 (6)
C13—C14—C15—C1665.4 (7)C43—C44—C45—C46172.3 (6)
C21—C22—C23—C24171.4 (5)C51—C52—C53—C54176.9 (6)
C22—C23—C24—C25179.9 (5)C52—C53—C54—C55179.2 (6)
C23—C24—C25—C26168.4 (5)C53—C54—C55—C56168.5 (5)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···F170.88 (5)2.47 (5)3.211 (8)144 (5)
N1—H1N···F180.88 (5)2.38 (5)3.231 (8)163 (6)
N2—H2N···F4ii0.90 (5)2.45 (6)3.222 (9)144 (7)
N2—H2N···F6ii0.90 (5)2.33 (4)3.100 (8)144 (7)
O2—H2O···O120.841.842.672 (7)173
N3—H3N···F13iii0.88 (5)2.26 (5)2.960 (8)137 (5)
N4—H4N···O140.87 (3)2.38 (7)2.978 (8)127 (6)
N5—H5N···F120.88 (4)2.26 (4)3.119 (8)165 (5)
O5—H5O···O90.841.842.655 (7)163
N6—H6N···F160.89 (3)2.23 (4)3.051 (7)154 (7)
N7—H7N···F7iii0.87 (4)2.40 (4)3.138 (8)144 (5)
N8—H8N···F14iii0.88 (4)2.52 (6)3.359 (9)159 (7)
N8—H8N···F15iii0.88 (4)2.40 (6)3.169 (8)146 (7)
O8—H8O···O18iv0.841.832.644 (6)163
N9—H9N···F1ii0.88 (4)2.46 (5)3.210 (8)143 (6)
N10—H10N···F10i0.88 (3)2.34 (3)3.179 (8)159 (6)
N11—H11N···F3v0.86 (5)2.31 (5)3.076 (7)148 (5)
O11—H11O···O15iv0.841.762.578 (7)162
N12—H12N···F8vi0.87 (5)2.46 (6)3.252 (9)151 (5)
N12—H12N···F9vi0.87 (5)2.49 (6)3.082 (8)126 (4)
O13—H13O···O60.841.782.606 (7)168
O17—H17O···O30.841.802.630 (7)167
C4—H4A···O13vii0.992.553.291 (8)131
C6—H6···O13vii1.002.383.221 (8)141
C16—H16···O17ii1.002.353.270 (8)153
C24—H24B···O8viii0.992.543.155 (8)120
C26—H26···O18vii1.002.563.478 (8)152
C35—H35B···F7iii0.992.333.230 (11)151
C36—H36···O11ix1.002.213.197 (9)167
C38—H38···O9iii1.002.603.390 (9)136
C44—H44B···O2vii0.992.563.309 (8)132
C45—H45A···F2ii0.992.483.365 (9)149
C46—H46···O12vii1.002.493.431 (8)157
C56—H56···O5ii1.002.593.319 (8)130
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+1; (iii) x, y1, z; (iv) x, y, z1; (v) x+1, y3/2, z+1; (vi) x, y1, z+1; (vii) x+2, y+1/2, z+1; (viii) x+2, y+1/2, z; (ix) x+1, y1/2, z.
Selected geometric parameters (Å, º) for (V) top
Ag1—S22.4192 (10)Ag1—O2i2.440 (3)
Ag1—S12.4496 (10)
S1—Ag1—S2157.22 (4)S2—Ag1—O2i113.98 (7)
S1—Ag1—O2i88.76 (7)
C1—C2—C3—C4178.7 (4)C11—C12—C13—C14166.3 (4)
C2—C3—C4—C5178.6 (3)C12—C13—C14—C1566.2 (5)
C3—C4—C5—C6171.5 (3)C13—C14—C15—C16163.7 (3)
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
O1—H2O···O6ii0.841.852.646 (4)158
O4—H4O···O3ii0.842.002.674 (4)137
N1—H1N···F1iii0.90 (3)2.09 (3)2.967 (5)165 (4)
N2—H2N···F5iv0.87 (3)2.36 (3)3.122 (6)147 (5)
N2—H2N···O4i0.87 (3)2.60 (6)3.014 (4)111 (4)
N3—H3N···F20.88 (3)2.11 (4)2.944 (4)157 (4)
N4—H4N···F3i0.85 (3)1.95 (3)2.765 (5)160 (4)
C6—H6···O3v1.002.383.325 (5)157
C12—H12B···O1vi0.992.603.386 (6)137
C15—H15A···F60.992.313.158 (6)143
C16—H16···O1vi1.002.543.350 (5)138
C16—H16···O6vii1.002.493.381 (5)147
C17—H17···F61.002.503.148 (6)122
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+1, y, z1; (v) x+2, y+1/2, z+1; (vi) x+1, y1/2, z+2; (vii) x+1, y1/2, z+1.
A comparison of crystallographic details and packing indices for (I) and (VI), (II) and (VII), and (IV) and (VIII) top
Compound(I)(VI)(II)(VII)(IV)(VIII)
Molecular formulaC10H15AgN2O3S.3H2OC10H15AgN2O3S.1.5H2OC20H32Ag2N6O12S2.H2OC10H16AgN3O6S.0.5H2OC60H96Ag3N12O18S63+.3PF6-C20H32AgN4O6S2+.PF6-
Mr405.22378.22846.39423.202224.37741.46
SystemMonoclinicOrthorhombicMonoclinicMonoclinicMonoclinicOrthorhombic
Space groupP21I222C2C2P21P21212
a (Å)8.7869 (8)17.586 (9)21.8568 (12)17.113 (6)15.1130 (7)15.136 (2)
b (Å)8.2847 (10)21.245 (5)8.0321 (4)8.020 (2)9.6028 (3)9.744 (3)
c (Å)9.8588 (10)8.019 (4)16.8886 (9)12.761 (4)28.6670 (13)9.719 (2)
α (°)909090909090
β (°)95.718 (8)9099.337 (4)121.39 (3)90.946 (4)90
γ (°)909090909090
V3)714.12 (13)2996.02925.6 (3)1495.14159.8 (3)1433.4
Z284422
Dcalc (Mg m-3)1.8851.721.5551.881.7761.72
Ratio biotin:silver1:11:12:2; 1:11:16:3; 2:12:1
Volume (Å3)/Molecular unit357.1374.5731.4; 365.7373.82079.9; 693.3716.7
KPI (%)74.372.168.470.0
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds