Download citation
Download citation
link to html
The title compounds, C66H46, (I), and C66H42F4, (II), are polyphenyl­ated aryl­enes synthesized by one-step Diels–Alder cyclo­addition reactions. In both structures, all mol­ecules lie on crystallographic inversion centers. In the case of (I), there are two half-mol­ecules present in the asymmetric unit, (IA) and (IB); the geometry of each half-mol­ecule differs principally in the magnitudes of the dihedral angles between mean planes fitted through the central aryl ring and the pendant phenyl rings. The crystal used was a non-merohedral twin, with a refined twin scale factor of 0.460 (8). The dihedral angle between the plane of the central tetra­fluorinated ring and the adjacent tetra­phenyl­ated ring in (II) is 83.87 (4)°, significantly greater than the dihedral angles of 49.89 (12) and 54.38 (10)° found in the two half-mol­ecules in (IA) and (IB), respectively, and attributed to inter­molecular C—H...F hydrogen bonding in (II). Inter­molecular C—H...π bonding is found in (I). Two inter­actions have the C—H bond oriented towards the centroid (Cg) of a butadiene fragment of a phenyl ring; both H...Cg distances are approximately 2.68 Å and the inter­actions connect adjacent mol­ecules into stacks in the c-axis direction. The composition of the stacks alternates, i.e. (IA)–(IB)–(IA)–(IB) etc. A third, weaker, C—H...π inter­action and a phen­yl–phenyl close contact connect each end of the long mol­ecular axes of (IB) with an adjacent mol­ecule of (IA) into chains which run perpendicular to the (140) and (\overline{1}40) planes. C—H...F inter­actions in (II) have the most profound influence on the mol­ecular and crystal structure, the main effect of which is the above-mentioned increase in the dihedral angle between the plane of the central tetra­fluorinated ring and the adjacent tetra­phenyl­ated ring. C—H...F inter­actions have refined H...F distances of 2.572 (15) and 2.642 (16) Å, with approximate C—H...F angles of 123 and 157°, respectively. These form a hydrogen-bonded ribbon structure which propagates in the b-axis direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111051900/eg3079sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111051900/eg3079Isup2.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S0108270111051900/eg3079Isup4.cdx
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111051900/eg3079IIsup3.hkl
Contains datablock II

cdx

Chemdraw file https://doi.org/10.1107/S0108270111051900/eg3079IIsup5.cdx
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111051900/eg3079Isup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111051900/eg3079IIsup7.cml
Supplementary material

CCDC references: 866758; 866759

Comment top

Polyphenylated aromatic molecules are of interest as building blocks in high-performance polymers, such as polyimides, poly(aryl ether)s, poly(ether ketone)s and polysulfones, which possess high glass transition (Tg) temperatures, high thermal stability and good mechanical properties and, therefore, have been identified for a variety of applications in government, industry and academia (Yates & Hayes, 2004; Chae & Kumar, 2006). The steric bulk of the phenyl substituents forces the polyphenylene backbone out of conjugation making these materials insulating and soluble in organic solvents (Berresheim et al., 1999). The addition of fluorine onto the aromatic molecules increases their oxidative stability (Drobny, 2001). The Diels–Alder cycloaddition of biscyclopentadienones with acetylenes has been widely used to produce polyphenylated aromatics and polyarylenes (Stille et al., 1966; Rusanov et al., 2006), including those used as polymer electrolytes for fuel cells (Fujimoto et al., 2005). The former have often been used as model compounds to help understand the regiochemistry in the polymeric forms (Gagnon, Halperin et al., 2010; Gagnon, Maris et al., 2010).

As part of our research we reinvestigated 2,2'',3,3'',4,4'',5,5''-octaphenyl-1,1':4'1''-terphenyl, (I), which was previously reported (Ried & Bönnighausen, 1960) but without a crystal structure, while 2',3',5',6'-tetrafluoro-2,2'',3,3'',4,4'',5,5''-octaphenyl-1,1':4',1''-terphenyl, (II), has not been previously reported. The molecular structures of the Diels–Alder adducts (I) and (II) are presented here.

The asymmetric unit of (I) contains two half-molecules; consequently, there are two crystallographically unique molecules, (IA) and (IB), that are generated from these half-molecules by inversion symmetry. Both of these are shown in Fig. 1. An overlay of (IA) with (IB), showing the relative orientations of the various pendant and central phenyl rings, is given in Fig. 2. Selected dihedral angles for (IA) and (IB), and for related compounds in the Cambridge Structural Database (CSD; Version 5.21, plus four updates; Allen, 2002), are provided in Table 3. Comparison of the dihedral angles for (IA) to PUNVOK in Table 3 reveals that those for (IA) and (IB) are relatively typical except for the 1/4 and 1/5 angles for (IA), both of which are noticeably elevated. The large difference between 1 and 4 is likely the result of the role of ring 4 in (IA) as an acceptor in a C—H···π interaction, whereas ring 4 in (IB) is not involved in a similar interaction. Similarly, in (IA), ring 5 is involved in C—H···π interactions with (IB). In the case of ring 6 in (II), this is involved in hydrogen bonding (discussed later). The values for PUNVEA are included in Table 3 for the purpose of contrast, since in this case C6 of the terphenyl core is substituted (i.e. C6-phenyl). All of the dihedral angles in PUNVEA are elevated relative to the rest of Table 3 owing to the presence of additional intramolecular steric crowding by the extra phenyl ring. It should also be noted that several of the literature structures are solvates, contain structural disorder, or are charged species with bulky counter-ions; the presence of such additional species in the asymmetric unit can make rationalization of molecular conformation on the basis of intermolecular interactions between chemically equivalent molecules rather difficult. However, in this case, the analysis in Table 3 shows a reasonable degree of consistency between the dihedral angles.

Three unique intermolecular C—H···π interactions are observed in (I) (Table 1). Two of these, C27—H27···CgA and C79—H79···CgB, are best described as having the C—H bond oriented towards the centroid of a butadiene fragment of an adjacent phenyl ring. The H27···CgA and H79···CgB distances are both approximately 2.68 Å, where CgA and CgB are centroids defined in Table 1. These interactions connect adjacent molecules into stacks in the c-axis direction; the composition of the stacks alternates, i.e. (IA)–(IB)–(IA)–(IB) etc., and in alternate layers the long molecular axis is rotated by approximately 71° (Fig. 3).

The third interaction is between C66—H66 and the π-electron density above C23i [symmetry code: (i) x+1, -y+1/2, z+1/2] and is much weaker than the previous two interactions with an H66···C23i distance of 2.85 Å. In addition, there is an intermolecular close contact between adjacent phenyl rings at the ends of the molecules. The C66···C16i distance is 3.255 (3) Å, shorter than the van der Waals sum of 3.40 Å for two C atoms. The marked increase in the 1/4 dihedral angle in (IA) is attributed to these two interactions. These two interactions also connect each end of the long molecular axes of (IB) with an adjacent molecule of (IA) into (IA)–(IB)–(IA)–(IB) etc. chains oriented perpendicular to the (140) and (140) planes (an example of one such chain is given in Fig. 4). The complete description of the crystal structure of (I) is a combination of one-dimensional stacks and one-dimensional chains, which combine to give two sets of interpenetrated three-dimensional networks of intermolecularly associated molecules.

The asymmetric unit of (II) contains just one half-molecule of the tetrafluorinated adduct. A whole molecule of (II), consisting of two asymmetric units related by crystallographic inversion symmetry, is shown in Fig. 5 and selected dihedral angles are given in Table 3. The 1/6 dihedral angle in (II) is 83.87 (4)°, while the corresponding angles in (IA), (IB) and perfluorobiphenyl (Naae, 1979) are 49.89 (12), 54.38 (3) and 59.6°, respectively. As shown in Fig. 6, larger 1/6 values correspond to a more twisted and less planar terphenyl core. A broader survey of related compounds (Table 3) shows that the 1/6 angle for (II) is unusual, over 20° greater than all others. This can be attributed to the participation of the F atoms in C—H···F hydrogen bonding as discussed below. The aromatic C—F bond distances are consistent with typical values for ortho-F atoms, approximately 0.02 Å shorter than other types of Ar—F bond (Allen et al., 1987). The tetrafluorinated terphenyl model system has no crystal structure [with which] to compare [it], and the tetrafluorinated pentaphenylated version has not been synthesized or reported in the literature.

The presence of C—H···F interactions in (II) is a notable feature (Fig. 7 and Table 2). All F atoms are involved in these interactions, which form a hydrogen-bonded ribbon structure which propagates in the b-axis direction. The shortest F···F distance (3.19 Å) is longer than the van der Waals sum for two F atoms (2.91 Å) and so F···F close contacts are unlikely in this structure. Therefore, the formation of C—H···F interactions in (II) is the main driving force behind the significant nonplanar topology of the terphenyl core, as evidenced by the magnitude of the 1/6 angle in (II). By contrast, C—H···π interactions are hindered. The only exception to this is a long H27···C16iii interaction (Table 2) which is between adjacent ribbons in the crystal packing and has no role in the topology of the terphenyl core.

It is well known that meta- and para-substituted biphenyls and biphenyl itself have a planar configuration (Trotter, 1961), whereas extensive studies on terphenyl show it to be nonplanar at low temperature (Baudour et al., 1977, 1986). For polyphenylated terphenyl and similar compounds, Gagnon, Maris et al. (2010) noted that such compounds generally lack aromatic interactions, attributed to the nonplanar topology of the molecules, which hinders close packing. Here we show that close packing interactions indeed do exist between aromatic rings in this type of compound, although they are few in number when compared with the number of aromatic rings present. Indeed, quite dramatic changes in both molecular conformation and three-dimensional structure can be effected by fluorine substitution at the central aryl ring, which result in newly formed C—H···F intermolecular interactions, an entirely different molecular conformation and hence a quite different crystal structure.

Related literature top

For related literature, see: Allen (2002); Allen et al. (1987); Baudour et al. (1977, 1986); Berresheim et al. (1999); Bruker (2007); Chae & Kumar (2006); Drobny (2001); Fujimoto et al. (2005); Gagnon, Halperin et al. (2010); Gagnon, Maris et al. (2010); Johnson & Grummitt (1943); Naae (1979); Neenan & Whitesides (1988); Ried & Bönnighausen (1960); Rusanov et al. (2006); Sheldrick (2004, 2008a); Stille et al. (1966); Trotter (1961); Yates & Hayes (2004).

Experimental top

1,4-Diethynylbenzene was obtained from Aldrich and purified by sublimation before use. 2,3,4,5-Tetraphenylcyclopentadienone (tetracyclone) was synthesized according to published methods (Johnson & Grummitt, 1943) and crystallized from a mixture of ethanol and benzene. 1,4-Diethynyl-2,3,5,6-tetrafluorobenzene was synthesized according to previous methods and sublimed before use (Neenan & Whitesides, 1988). Diels–Alder adducts (I) and (II) were obtained by the reaction between 1,4-diethynylbenzene (57 mg, 0.455 mmol) or 1,4-diethynyl-2,3,5,6-tetrafluorobenzene (90 mg, 0.455 mmol), respectively, with tetracyclone (350 mg, 0.910 mmol) under argon in diphenyl ether (5 ml) in a round-bottom flask at 423 K for 24 h or until the colour changed from dark purple to yellow or pink, respectively. The products were cooled to room temperature, precipitated with acetone (100 ml) and vacuum filtered; the solid was washed with acetone (10 ml) and dried in a vacuum oven at 333 K for 24 h, affording white solids in yields of 78 and 84%, respectively. In both cases, crystals suitable for X-ray analysis were grown from solutions (10–20 mg) in deuterated dimethyl sulfoxide (DMSO-d6, 5–10 ml). Details of nuclear magnetic resonance assignments and highresolution mass spectrometry are given in the archived CIF.

Refinement top

For (I), the crystal used was found to exhibit twinning, handled by a combination of CELL_NOW (Sheldrick, 2004) and TWINABS (Sheldrick, 2008a), with successive refinement of the unit-cell parameters by SAINT (Bruker, 2007). The twin law is 100/010/001 and the refined twin scale factor is 0.460 (8). Diffraction was only observed to a resolution of 0.89 Å and so the data set was truncated at this limit. H atoms were initially located from a difference Fourier map, but were then constrained to ride on their parent atoms, with a C—H distance of 0.95 Å and Uiso(H) = 1.2Ueq(C). For (II), all H atoms were located in a difference map and were freely refined. C—H distances lie in the range 0.962 (16)–1.015 (14) Å. The largest residual peak is 0.69 Å from atom C33.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2007). Cell refinement: CELL_NOW (Sheldrick, 2004) and SAINT (Bruker, 2007) for (I); SAINT (Bruker, 2007) for (II). For both compounds, data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXTL (Sheldrick, 2008b); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b), publCIF (Westrip, 2010) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structures of (IA) (top) and (IB) (bottom), with displacement ellipsoids at the 50% probability level. Unlabelled atoms are related to labelled atoms by crystallographic inversion symmetry.
[Figure 2] Fig. 2. An overlay of molecule A (grey; orange in the electronic version of the paper) with molecule B (black) in (I), formed by a least-squares fit of the six C atoms of ring 1, with an r.m.s. deviation of 0.0377 Å. The ring-numbering system is used to identify angles between least-squares planes.
[Figure 3] Fig. 3. C—H···π interactions, which are shown as dashed lines, in (I). The colour scheme is the same as used in Fig. 2. The long b axis has been truncated.
[Figure 4] Fig. 4. The C—H···π bonded chain in (I). C—H···π interactions are shown as dashed lines. The color scheme is the same as used in Fig. 2. The long b axis has been truncated.
[Figure 5] Fig. 5. Twice the asymmetric unit of (II), with displacement ellipsoids at the 70% probability level. Unlabelled atoms are related to labelled atoms by crystallographic inversion symmetry.
[Figure 6] Fig. 6. An overlay of (IB) and (II), fitted in the same way as for Fig. 2, with an r.m.s. deviation of 0.0278 Å. (II) is shown in grey (green in the electronic version of the paper).
[Figure 7] Fig. 7. C—H···F and ππ interactions (dotted lines) in (II). The a axis has been truncated.
(I) 2,2'',3,3'',4,4'',5,5''-Octaphenyl-1,1':4',1''-terphenyl top
Crystal data top
C66H46F(000) = 1768
Mr = 839.03Dx = 1.212 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1620 reflections
a = 11.674 (2) Åθ = 2.4–23.5°
b = 33.336 (6) ŵ = 0.07 mm1
c = 11.816 (2) ÅT = 100 K
β = 91.479 (3)°Rod, colourless
V = 4597.1 (14) Å30.35 × 0.09 × 0.08 mm
Z = 4
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
11292 independent reflections
Radiation source: fine-focus sealed tube with Miracol optics8284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 23.6°, θmin = 1.2°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2008a)
h = 1313
Tmin = 0.977, Tmax = 0.995k = 037
40040 measured reflectionsl = 013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.107H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.7543P]
where P = (Fo2 + 2Fc2)/3
11292 reflections(Δ/σ)max < 0.001
596 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C66H46V = 4597.1 (14) Å3
Mr = 839.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.674 (2) ŵ = 0.07 mm1
b = 33.336 (6) ÅT = 100 K
c = 11.816 (2) Å0.35 × 0.09 × 0.08 mm
β = 91.479 (3)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
11292 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2008a)
8284 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.995Rint = 0.068
40040 measured reflectionsθmax = 23.6°
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
11292 reflectionsΔρmin = 0.22 e Å3
596 parameters
Special details top

Experimental. The crystal used was found to exhibit non-merohedral twinning. This was handled by a combination of CELL_NOW and TWINABS with successive refinement of the unit-cell parameters by SAINT. The refined twin scale factor is 0.460 (8). Diffraction was only observed to a resolution of 0.89Å and so the data set was truncated at this limit.

For (I) no melting point was observed up to 350 °C (623 K) (lit 408–409 °C) (Ried & Bönnighausen, 1960); 1H NMR (DMSO-d6): δ 7.54 (s, 2H), 7.44–7.42 (m, 5H), 7.35–7.33 (m, 6H), 7.96 (s, 8H), 7.01 (d, 1H), 6.93–6.90 (m, 10H), 6.86–6.85 (m, 4H), 6.83–6.81 (m, 4H), 6.79–6.75 (m, 6H); 13C NMR (DMSO-d6): δ 141.9, 141.8, 140.9, 140.6, 140.5, 140.13, 140.0, 139.67, 139.39, 135.9, 132.4, 131.7, 131.7, 131.6, 131.4, 130.1, 129.9, 129.6, 129.4, 127.7, 127.1, 127.0, 126.7, 126.4, 125.7, 125.7, 125.4, 123.4, 123.4, 121.7, 119.0; HR—MS (m/z): calcd for C66H46, 838.360; found 838.359.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12877 (15)0.08161 (6)0.03878 (17)0.0195 (5)
C20.14850 (15)0.11927 (6)0.00996 (17)0.0191 (5)
C30.25730 (15)0.12843 (6)0.05748 (18)0.0188 (5)
C40.34619 (15)0.09984 (6)0.05675 (17)0.0185 (5)
C50.32496 (15)0.06176 (6)0.01069 (17)0.0184 (5)
C60.21666 (15)0.05322 (6)0.03616 (17)0.0197 (5)
H60.20240.02730.06710.024*
C70.01798 (16)0.07052 (6)0.09720 (19)0.0207 (5)
C80.01734 (17)0.05854 (7)0.21022 (19)0.0266 (5)
H80.08740.05790.24930.032*
C90.08322 (18)0.04761 (7)0.2667 (2)0.0325 (6)
H90.08210.04010.34420.039*
C100.18537 (18)0.04771 (7)0.2101 (2)0.0335 (6)
H100.25450.04010.24840.040*
C110.18666 (17)0.05895 (7)0.0977 (2)0.0329 (6)
H110.25670.05860.05850.039*
C120.08604 (16)0.07077 (7)0.0416 (2)0.0260 (5)
H120.08810.07910.03530.031*
C130.05761 (15)0.15099 (6)0.00532 (18)0.0186 (5)
C140.02235 (15)0.16678 (6)0.09828 (18)0.0221 (5)
H140.05610.15730.16550.026*
C150.06135 (16)0.19618 (6)0.10528 (19)0.0238 (5)
H150.08480.20670.17690.029*
C160.11067 (16)0.21020 (6)0.00762 (19)0.0237 (5)
H160.16790.23050.01200.028*
C170.07663 (15)0.19471 (6)0.09579 (19)0.0231 (5)
H170.11030.20440.16290.028*
C180.00666 (15)0.16505 (6)0.10250 (19)0.0221 (5)
H180.02900.15430.17420.027*
C190.28472 (15)0.16960 (6)0.10056 (18)0.0198 (5)
C200.26568 (16)0.18067 (7)0.2121 (2)0.0265 (5)
H200.23180.16200.26210.032*
C210.29559 (17)0.21857 (7)0.2510 (2)0.0318 (6)
H210.28200.22580.32730.038*
C220.34522 (16)0.24591 (7)0.1792 (2)0.0325 (6)
H220.36570.27190.20590.039*
C230.36480 (17)0.23533 (7)0.0687 (2)0.0301 (6)
H230.39950.25400.01940.036*
C240.33400 (16)0.19760 (6)0.02939 (19)0.0245 (5)
H240.34670.19080.04730.029*
C250.46426 (15)0.11180 (6)0.09722 (18)0.0185 (5)
C260.49078 (16)0.11686 (6)0.21188 (18)0.0216 (5)
H260.43300.11300.26600.026*
C270.60024 (16)0.12742 (7)0.24787 (19)0.0266 (5)
H270.61780.13000.32650.032*
C280.68402 (16)0.13425 (7)0.17007 (19)0.0272 (5)
H280.75920.14150.19490.033*
C290.65840 (16)0.13047 (7)0.05631 (19)0.0255 (5)
H290.71560.13570.00250.031*
C300.54913 (15)0.11905 (6)0.01968 (18)0.0226 (5)
H300.53240.11620.05900.027*
C310.41525 (15)0.03006 (6)0.00640 (18)0.0188 (5)
C320.48037 (15)0.01911 (6)0.10168 (19)0.0226 (5)
H320.46790.03200.17190.027*
C330.43641 (16)0.01059 (6)0.09509 (18)0.0213 (5)
H330.39310.01770.16120.026*
C510.84424 (15)0.09214 (6)0.45538 (17)0.0192 (5)
C520.82111 (15)0.12905 (6)0.50651 (17)0.0183 (5)
C530.71452 (15)0.13535 (6)0.55767 (17)0.0182 (5)
C540.62987 (15)0.10518 (6)0.55332 (17)0.0179 (5)
C550.65494 (15)0.06796 (6)0.50527 (17)0.0185 (5)
C560.76152 (15)0.06202 (6)0.45783 (17)0.0189 (5)
H560.77850.03660.42610.023*
C570.95497 (15)0.08275 (6)0.40007 (18)0.0200 (5)
C580.95401 (17)0.06518 (7)0.29348 (19)0.0247 (5)
H580.88290.06010.25530.030*
C591.05509 (17)0.05505 (7)0.2421 (2)0.0282 (5)
H591.05290.04320.16900.034*
C601.15894 (17)0.06214 (7)0.2965 (2)0.0299 (6)
H601.22830.05520.26100.036*
C611.16184 (16)0.07924 (7)0.4026 (2)0.0293 (6)
H611.23340.08430.44000.035*
C621.06080 (16)0.08917 (6)0.4553 (2)0.0248 (5)
H621.06350.10040.52920.030*
C630.90934 (15)0.16178 (6)0.50598 (18)0.0177 (5)
C640.94331 (15)0.17797 (6)0.40392 (18)0.0221 (5)
H640.90760.16930.33500.026*
C651.02910 (16)0.20665 (7)0.40207 (19)0.0254 (5)
H651.05160.21770.33200.031*
C661.08194 (16)0.21919 (7)0.5015 (2)0.0249 (5)
H661.14120.23870.49970.030*
C671.04892 (16)0.20347 (6)0.60354 (19)0.0242 (5)
H671.08480.21230.67220.029*
C680.96290 (15)0.17467 (6)0.60547 (18)0.0215 (5)
H680.94060.16370.67580.026*
C690.68996 (14)0.17338 (6)0.61952 (17)0.0185 (5)
C700.68000 (15)0.21026 (6)0.56543 (19)0.0222 (5)
H700.69190.21190.48630.027*
C710.65306 (16)0.24471 (7)0.6247 (2)0.0266 (5)
H710.64680.26970.58640.032*
C720.63538 (16)0.24269 (7)0.7398 (2)0.0292 (6)
H720.61640.26620.78060.035*
C730.64537 (16)0.20616 (7)0.7955 (2)0.0277 (5)
H730.63370.20460.87460.033*
C740.67235 (15)0.17201 (7)0.73564 (18)0.0228 (5)
H740.67900.14710.77440.027*
C750.51249 (15)0.11396 (6)0.59604 (17)0.0182 (5)
C760.44364 (15)0.14222 (6)0.53870 (18)0.0205 (5)
H760.47240.15580.47470.025*
C770.33408 (16)0.15056 (6)0.57449 (18)0.0241 (5)
H770.28740.16930.53410.029*
C780.29293 (16)0.13157 (7)0.66898 (19)0.0281 (6)
H780.21820.13750.69420.034*
C790.36055 (16)0.10396 (7)0.72685 (19)0.0277 (5)
H790.33240.09100.79200.033*
C800.46952 (16)0.09522 (7)0.68986 (18)0.0234 (5)
H800.51520.07600.72980.028*
C810.57350 (15)0.03349 (6)0.50297 (17)0.0182 (5)
C820.46277 (15)0.03662 (6)0.45743 (18)0.0213 (5)
H820.43640.06150.42780.026*
C830.60948 (15)0.00343 (6)0.54501 (18)0.0215 (5)
H830.68500.00610.57610.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0182 (10)0.0226 (13)0.0178 (12)0.0015 (9)0.0015 (8)0.0022 (10)
C20.0187 (10)0.0225 (13)0.0164 (11)0.0023 (9)0.0027 (8)0.0027 (10)
C30.0201 (10)0.0193 (12)0.0171 (12)0.0025 (9)0.0027 (8)0.0005 (10)
C40.0200 (10)0.0204 (13)0.0150 (11)0.0018 (9)0.0007 (8)0.0029 (9)
C50.0200 (10)0.0194 (12)0.0160 (11)0.0033 (9)0.0026 (8)0.0036 (10)
C60.0230 (11)0.0168 (12)0.0192 (12)0.0002 (9)0.0012 (8)0.0006 (10)
C70.0233 (11)0.0118 (11)0.0267 (13)0.0031 (8)0.0026 (9)0.0016 (10)
C80.0295 (11)0.0234 (13)0.0269 (14)0.0022 (9)0.0018 (9)0.0023 (11)
C90.0395 (13)0.0257 (14)0.0319 (14)0.0016 (10)0.0097 (11)0.0053 (11)
C100.0304 (12)0.0244 (14)0.0450 (17)0.0019 (10)0.0147 (11)0.0069 (12)
C110.0225 (11)0.0300 (15)0.0459 (16)0.0022 (10)0.0051 (10)0.0062 (12)
C120.0243 (11)0.0250 (14)0.0286 (13)0.0029 (9)0.0018 (9)0.0026 (11)
C130.0144 (9)0.0173 (12)0.0240 (12)0.0019 (8)0.0006 (8)0.0021 (10)
C140.0218 (10)0.0241 (13)0.0203 (12)0.0037 (9)0.0010 (9)0.0034 (10)
C150.0248 (11)0.0232 (13)0.0233 (13)0.0031 (9)0.0033 (9)0.0022 (10)
C160.0188 (10)0.0207 (13)0.0315 (14)0.0020 (9)0.0023 (9)0.0012 (11)
C170.0223 (11)0.0213 (13)0.0258 (13)0.0009 (9)0.0052 (9)0.0005 (10)
C180.0209 (10)0.0225 (13)0.0228 (12)0.0001 (9)0.0005 (9)0.0028 (10)
C190.0152 (10)0.0177 (12)0.0263 (13)0.0040 (8)0.0019 (8)0.0001 (10)
C200.0232 (11)0.0252 (14)0.0312 (14)0.0000 (9)0.0025 (9)0.0036 (11)
C210.0272 (12)0.0323 (15)0.0357 (15)0.0026 (10)0.0017 (10)0.0140 (12)
C220.0238 (11)0.0210 (14)0.0522 (18)0.0018 (10)0.0094 (11)0.0060 (12)
C230.0255 (11)0.0235 (14)0.0410 (16)0.0008 (9)0.0057 (10)0.0050 (12)
C240.0216 (11)0.0220 (13)0.0298 (13)0.0026 (9)0.0031 (9)0.0015 (11)
C250.0197 (10)0.0133 (11)0.0224 (12)0.0037 (8)0.0002 (9)0.0007 (10)
C260.0225 (11)0.0226 (13)0.0196 (12)0.0015 (9)0.0014 (9)0.0016 (10)
C270.0270 (11)0.0300 (14)0.0225 (13)0.0013 (10)0.0052 (9)0.0007 (11)
C280.0206 (11)0.0290 (14)0.0319 (14)0.0004 (9)0.0042 (10)0.0012 (11)
C290.0230 (11)0.0265 (14)0.0272 (13)0.0006 (9)0.0053 (9)0.0014 (11)
C300.0232 (11)0.0225 (13)0.0220 (13)0.0017 (9)0.0008 (9)0.0027 (10)
C310.0184 (10)0.0152 (12)0.0230 (12)0.0005 (8)0.0021 (8)0.0002 (10)
C320.0221 (10)0.0223 (13)0.0235 (12)0.0030 (9)0.0031 (9)0.0021 (10)
C330.0230 (10)0.0196 (12)0.0212 (12)0.0012 (9)0.0032 (9)0.0012 (10)
C510.0169 (10)0.0215 (13)0.0193 (11)0.0013 (9)0.0004 (8)0.0018 (10)
C520.0189 (10)0.0203 (13)0.0157 (11)0.0017 (8)0.0021 (8)0.0014 (10)
C530.0187 (10)0.0197 (12)0.0161 (11)0.0000 (9)0.0016 (8)0.0024 (10)
C540.0183 (10)0.0194 (12)0.0159 (11)0.0009 (8)0.0001 (8)0.0040 (10)
C550.0189 (10)0.0184 (12)0.0181 (11)0.0017 (8)0.0013 (8)0.0018 (10)
C560.0215 (10)0.0160 (12)0.0191 (12)0.0013 (8)0.0006 (8)0.0014 (10)
C570.0199 (10)0.0143 (12)0.0259 (13)0.0009 (8)0.0024 (9)0.0038 (10)
C580.0261 (11)0.0219 (13)0.0260 (13)0.0005 (9)0.0023 (9)0.0019 (11)
C590.0321 (12)0.0280 (14)0.0248 (13)0.0053 (10)0.0085 (10)0.0054 (11)
C600.0261 (12)0.0220 (13)0.0424 (16)0.0044 (9)0.0138 (10)0.0055 (12)
C610.0183 (11)0.0219 (13)0.0477 (16)0.0008 (9)0.0032 (10)0.0010 (12)
C620.0228 (11)0.0189 (13)0.0327 (14)0.0003 (9)0.0016 (9)0.0019 (11)
C630.0155 (10)0.0147 (12)0.0229 (12)0.0010 (8)0.0021 (8)0.0003 (10)
C640.0211 (10)0.0237 (13)0.0214 (13)0.0010 (9)0.0013 (9)0.0021 (10)
C650.0236 (11)0.0251 (13)0.0279 (13)0.0020 (9)0.0070 (9)0.0019 (11)
C660.0181 (10)0.0192 (12)0.0373 (14)0.0024 (9)0.0014 (9)0.0002 (11)
C670.0199 (10)0.0240 (13)0.0284 (14)0.0001 (9)0.0040 (9)0.0049 (11)
C680.0202 (10)0.0232 (13)0.0212 (12)0.0002 (9)0.0005 (9)0.0016 (10)
C690.0120 (9)0.0222 (13)0.0212 (12)0.0029 (8)0.0016 (8)0.0015 (10)
C700.0194 (10)0.0224 (13)0.0251 (12)0.0028 (9)0.0032 (9)0.0008 (10)
C710.0234 (11)0.0197 (13)0.0367 (15)0.0003 (9)0.0018 (10)0.0002 (11)
C720.0220 (11)0.0279 (15)0.0377 (15)0.0019 (9)0.0001 (10)0.0130 (12)
C730.0253 (11)0.0335 (15)0.0244 (13)0.0020 (10)0.0002 (9)0.0079 (12)
C740.0227 (10)0.0223 (13)0.0233 (13)0.0005 (9)0.0017 (9)0.0006 (10)
C750.0200 (10)0.0148 (12)0.0197 (12)0.0029 (8)0.0000 (9)0.0026 (10)
C760.0241 (10)0.0166 (12)0.0210 (12)0.0030 (9)0.0013 (9)0.0009 (10)
C770.0224 (11)0.0192 (13)0.0305 (14)0.0019 (9)0.0024 (9)0.0027 (10)
C780.0184 (10)0.0326 (14)0.0338 (14)0.0003 (10)0.0073 (9)0.0034 (12)
C790.0266 (11)0.0319 (14)0.0250 (13)0.0046 (10)0.0065 (9)0.0023 (11)
C800.0220 (11)0.0250 (13)0.0233 (12)0.0015 (9)0.0000 (9)0.0028 (10)
C810.0202 (10)0.0178 (12)0.0167 (11)0.0000 (8)0.0026 (8)0.0008 (10)
C820.0214 (10)0.0178 (12)0.0248 (12)0.0002 (9)0.0004 (9)0.0015 (10)
C830.0167 (10)0.0239 (13)0.0238 (12)0.0006 (9)0.0003 (8)0.0025 (10)
Geometric parameters (Å, º) top
C1—C21.398 (3)C51—C521.400 (3)
C1—C61.396 (3)C51—C561.394 (3)
C1—C71.497 (3)C51—C571.497 (3)
C2—C31.409 (3)C52—C531.413 (3)
C2—C131.498 (3)C52—C631.501 (3)
C3—C41.409 (3)C53—C541.410 (3)
C3—C191.496 (3)C53—C691.495 (3)
C4—C51.401 (3)C54—C551.399 (3)
C4—C251.501 (3)C54—C751.501 (3)
C5—C61.396 (3)C55—C561.392 (3)
C5—C311.494 (3)C55—C811.491 (3)
C6—H60.950C56—H560.950
C7—C81.394 (3)C57—C581.389 (3)
C7—C121.396 (3)C57—C621.399 (3)
C8—H80.950C58—H580.950
C8—C91.384 (3)C58—C591.383 (3)
C9—H90.950C59—H590.950
C9—C101.383 (3)C59—C601.378 (3)
C10—H100.950C60—H600.950
C10—C111.380 (3)C60—C611.377 (3)
C11—H110.950C61—H610.950
C11—C121.391 (3)C61—C621.388 (3)
C12—H120.950C62—H620.950
C13—C141.385 (3)C63—C641.388 (3)
C13—C181.388 (3)C63—C681.385 (3)
C14—H140.950C64—H640.950
C14—C151.385 (3)C64—C651.385 (3)
C15—H150.950C65—H650.950
C15—C161.384 (3)C65—C661.378 (3)
C16—H160.950C66—H660.950
C16—C171.376 (3)C66—C671.379 (3)
C17—H170.950C67—H670.950
C17—C181.388 (3)C67—C681.390 (3)
C18—H180.950C68—H680.950
C19—C201.392 (3)C69—C701.389 (3)
C19—C241.391 (3)C69—C741.393 (3)
C20—H200.950C70—H700.950
C20—C211.386 (3)C70—C711.386 (3)
C21—H210.950C71—H710.950
C21—C221.383 (3)C71—C721.382 (3)
C22—H220.950C72—H720.950
C22—C231.376 (3)C72—C731.388 (3)
C23—H230.950C73—H730.950
C23—C241.385 (3)C73—C741.381 (3)
C24—H240.950C74—H740.950
C25—C261.392 (3)C75—C761.401 (3)
C25—C301.388 (3)C75—C801.378 (3)
C26—H260.950C76—H760.950
C26—C271.382 (3)C76—C771.386 (3)
C27—H270.950C77—H770.950
C27—C281.378 (3)C77—C781.381 (3)
C28—H280.950C78—H780.950
C28—C291.375 (3)C78—C791.382 (3)
C29—H290.950C79—H790.950
C29—C301.390 (3)C79—C801.387 (3)
C30—H300.950C80—H800.950
C31—C321.391 (3)C81—C821.391 (3)
C31—C331.391 (3)C81—C831.388 (3)
C32—H320.950C82—H820.950
C32—C33i1.391 (3)C82—C83ii1.391 (3)
C33—C32i1.391 (3)C83—C82ii1.391 (3)
C33—H330.950C83—H830.950
C2—C1—C6119.12 (18)C52—C51—C56118.85 (17)
C2—C1—C7122.89 (17)C52—C51—C57123.41 (17)
C6—C1—C7117.97 (19)C56—C51—C57117.72 (18)
C1—C2—C3119.73 (17)C51—C52—C53119.80 (17)
C1—C2—C13120.65 (17)C51—C52—C63119.81 (16)
C3—C2—C13119.49 (18)C53—C52—C63120.38 (18)
C2—C3—C4120.51 (19)C52—C53—C54120.15 (19)
C2—C3—C19121.14 (17)C52—C53—C69121.16 (17)
C4—C3—C19118.13 (17)C54—C53—C69118.67 (16)
C3—C4—C5119.49 (17)C53—C54—C55119.60 (17)
C3—C4—C25119.27 (18)C53—C54—C75119.56 (18)
C5—C4—C25121.08 (16)C55—C54—C75120.79 (17)
C4—C5—C6119.22 (17)C54—C55—C56119.22 (17)
C4—C5—C31122.42 (17)C54—C55—C81123.43 (16)
C6—C5—C31118.34 (18)C56—C55—C81117.34 (18)
C1—C6—C5121.9 (2)C51—C56—C55122.2 (2)
C1—C6—H6119.1C51—C56—H56118.9
C5—C6—H6119.1C55—C56—H56118.9
C1—C7—C8119.73 (17)C51—C57—C58119.83 (17)
C1—C7—C12122.24 (19)C51—C57—C62121.79 (18)
C8—C7—C12118.01 (19)C58—C57—C62118.30 (18)
C7—C8—H8119.3C57—C58—H58119.5
C7—C8—C9121.4 (2)C57—C58—C59120.96 (19)
H8—C8—C9119.3H58—C58—C59119.5
C8—C9—H9120.1C58—C59—H59119.9
C8—C9—C10119.8 (2)C58—C59—C60120.2 (2)
H9—C9—C10120.1H59—C59—C60119.9
C9—C10—H10120.1C59—C60—H60120.1
C9—C10—C11119.8 (2)C59—C60—C61119.79 (19)
H10—C10—C11120.1H60—C60—C61120.1
C10—C11—H11119.8C60—C61—H61119.8
C10—C11—C12120.4 (2)C60—C61—C62120.4 (2)
H11—C11—C12119.8H61—C61—C62119.8
C7—C12—C11120.5 (2)C57—C62—C61120.3 (2)
C7—C12—H12119.7C57—C62—H62119.8
C11—C12—H12119.7C61—C62—H62119.8
C2—C13—C14119.65 (18)C52—C63—C64119.85 (18)
C2—C13—C18121.75 (18)C52—C63—C68121.11 (18)
C14—C13—C18118.60 (18)C64—C63—C68118.92 (18)
C13—C14—H14119.5C63—C64—H64119.8
C13—C14—C15120.98 (19)C63—C64—C65120.3 (2)
H14—C14—C15119.5H64—C64—C65119.8
C14—C15—H15120.1C64—C65—H65119.9
C14—C15—C16119.8 (2)C64—C65—C66120.3 (2)
H15—C15—C16120.1H65—C65—C66119.9
C15—C16—H16120.1C65—C66—H66120.0
C15—C16—C17119.80 (19)C65—C66—C67120.08 (19)
H16—C16—C17120.1H66—C66—C67120.0
C16—C17—H17119.9C66—C67—H67120.2
C16—C17—C18120.3 (2)C66—C67—C68119.7 (2)
H17—C17—C18119.9H67—C67—C68120.2
C13—C18—C17120.5 (2)C63—C68—C67120.7 (2)
C13—C18—H18119.7C63—C68—H68119.6
C17—C18—H18119.7C67—C68—H68119.6
C3—C19—C20121.8 (2)C53—C69—C70122.71 (19)
C3—C19—C24119.9 (2)C53—C69—C74119.26 (19)
C20—C19—C24118.2 (2)C70—C69—C74118.0 (2)
C19—C20—H20119.6C69—C70—H70119.4
C19—C20—C21120.7 (2)C69—C70—C71121.2 (2)
H20—C20—C21119.6H70—C70—C71119.4
C20—C21—H21119.9C70—C71—H71120.0
C20—C21—C22120.2 (2)C70—C71—C72119.9 (2)
H21—C21—C22119.9H71—C71—C72120.0
C21—C22—H22120.1C71—C72—H72120.1
C21—C22—C23119.7 (2)C71—C72—C73119.8 (2)
H22—C22—C23120.1H72—C72—C73120.1
C22—C23—H23119.9C72—C73—H73120.1
C22—C23—C24120.2 (2)C72—C73—C74119.9 (2)
H23—C23—C24119.9H73—C73—C74120.1
C19—C24—C23120.9 (2)C69—C74—C73121.2 (2)
C19—C24—H24119.5C69—C74—H74119.4
C23—C24—H24119.5C73—C74—H74119.4
C4—C25—C26121.43 (17)C54—C75—C76119.06 (18)
C4—C25—C30120.07 (19)C54—C75—C80122.43 (18)
C26—C25—C30118.48 (18)C76—C75—C80118.51 (18)
C25—C26—H26119.6C75—C76—H76119.7
C25—C26—C27120.73 (19)C75—C76—C77120.65 (19)
H26—C26—C27119.6H76—C76—C77119.7
C26—C27—H27119.9C76—C77—H77120.1
C26—C27—C28120.2 (2)C76—C77—C78119.9 (2)
H27—C27—C28119.9H77—C77—C78120.1
C27—C28—H28120.1C77—C78—H78120.0
C27—C28—C29119.77 (19)C77—C78—C79119.96 (19)
H28—C28—C29120.1H78—C78—C79120.0
C28—C29—H29119.9C78—C79—H79120.0
C28—C29—C30120.28 (19)C78—C79—C80120.1 (2)
H29—C29—C30119.9H79—C79—C80120.0
C25—C30—C29120.5 (2)C75—C80—C79120.9 (2)
C25—C30—H30119.8C75—C80—H80119.5
C29—C30—H30119.8C79—C80—H80119.5
C5—C31—C32121.97 (19)C55—C81—C82122.34 (19)
C5—C31—C33120.01 (18)C55—C81—C83119.32 (17)
C32—C31—C33118.02 (18)C82—C81—C83118.32 (18)
C31—C32—H32119.7C81—C82—H82119.8
C31—C32—C33i120.6 (2)C81—C82—C83ii120.4 (2)
H32—C32—C33i119.7H82—C82—C83ii119.8
C31—C33—C32i121.35 (19)C81—C83—C82ii121.33 (18)
C31—C33—H33119.3C81—C83—H83119.3
C32i—C33—H33119.3C82ii—C83—H83119.3
C6—C1—C2—C32.0 (3)C56—C51—C52—C531.0 (3)
C6—C1—C2—C13177.90 (18)C56—C51—C52—C63179.37 (18)
C7—C1—C2—C3176.12 (18)C57—C51—C52—C53179.52 (18)
C7—C1—C2—C130.3 (3)C57—C51—C52—C630.9 (3)
C1—C2—C3—C40.3 (3)C51—C52—C53—C542.6 (3)
C1—C2—C3—C19174.24 (19)C51—C52—C53—C69175.95 (19)
C13—C2—C3—C4176.23 (18)C63—C52—C53—C54177.04 (18)
C13—C2—C3—C191.7 (3)C63—C52—C53—C694.4 (3)
C2—C3—C4—C51.5 (3)C52—C53—C54—C554.6 (3)
C2—C3—C4—C25173.84 (18)C52—C53—C54—C75172.97 (18)
C19—C3—C4—C5176.22 (19)C69—C53—C54—C55173.99 (19)
C19—C3—C4—C250.9 (3)C69—C53—C54—C758.5 (3)
C3—C4—C5—C61.6 (3)C53—C54—C55—C562.9 (3)
C3—C4—C5—C31179.61 (19)C53—C54—C55—C81176.29 (19)
C25—C4—C5—C6173.70 (18)C75—C54—C55—C56174.56 (18)
C25—C4—C5—C314.3 (3)C75—C54—C55—C816.2 (3)
C2—C1—C6—C52.0 (3)C54—C55—C56—C510.7 (3)
C7—C1—C6—C5176.25 (18)C81—C55—C56—C51179.97 (19)
C4—C5—C6—C10.2 (3)C52—C51—C56—C552.7 (3)
C31—C5—C6—C1177.94 (19)C57—C51—C56—C55178.73 (18)
C2—C1—C7—C8121.4 (2)C52—C51—C57—C58132.7 (2)
C2—C1—C7—C1260.2 (3)C52—C51—C57—C6250.9 (3)
C6—C1—C7—C856.8 (3)C56—C51—C57—C5848.8 (3)
C6—C1—C7—C12121.6 (2)C56—C51—C57—C62127.7 (2)
C1—C7—C8—C9179.2 (2)C51—C57—C58—C59177.94 (19)
C12—C7—C8—C90.7 (3)C62—C57—C58—C591.3 (3)
C7—C8—C9—C101.3 (3)C57—C58—C59—C600.3 (3)
C8—C9—C10—C110.4 (3)C58—C59—C60—C610.2 (3)
C9—C10—C11—C121.0 (4)C59—C60—C61—C620.4 (3)
C10—C11—C12—C71.5 (3)C60—C61—C62—C571.5 (3)
C1—C7—C12—C11177.8 (2)C51—C57—C62—C61178.4 (2)
C8—C7—C12—C110.7 (3)C58—C57—C62—C611.9 (3)
C1—C2—C13—C1464.9 (3)C51—C52—C63—C6462.9 (3)
C1—C2—C13—C18114.7 (2)C51—C52—C63—C68113.3 (2)
C3—C2—C13—C14111.0 (2)C53—C52—C63—C64116.7 (2)
C3—C2—C13—C1869.4 (3)C53—C52—C63—C6867.1 (3)
C2—C13—C14—C15179.89 (19)C52—C63—C64—C65176.51 (18)
C18—C13—C14—C150.4 (3)C68—C63—C64—C650.3 (3)
C13—C14—C15—C160.2 (3)C63—C64—C65—C660.4 (3)
C14—C15—C16—C170.3 (3)C64—C65—C66—C670.6 (3)
C15—C16—C17—C180.2 (3)C65—C66—C67—C680.6 (3)
C16—C17—C18—C130.8 (3)C52—C63—C68—C67176.51 (18)
C2—C13—C18—C17179.43 (18)C64—C63—C68—C670.3 (3)
C14—C13—C18—C170.9 (3)C66—C67—C68—C630.5 (3)
C2—C3—C19—C2089.8 (2)C52—C53—C69—C7067.1 (3)
C2—C3—C19—C2492.3 (2)C52—C53—C69—C74115.2 (2)
C4—C3—C19—C2095.5 (2)C54—C53—C69—C70114.4 (2)
C4—C3—C19—C2482.4 (2)C54—C53—C69—C7463.4 (2)
C3—C19—C20—C21177.69 (18)C53—C69—C70—C71177.63 (17)
C24—C19—C20—C210.3 (3)C74—C69—C70—C710.2 (3)
C19—C20—C21—C220.2 (3)C69—C70—C71—C720.1 (3)
C20—C21—C22—C230.0 (3)C70—C71—C72—C730.4 (3)
C21—C22—C23—C240.6 (3)C71—C72—C73—C740.3 (3)
C22—C23—C24—C191.0 (3)C72—C73—C74—C690.0 (3)
C3—C19—C24—C23177.13 (17)C53—C69—C74—C73177.65 (17)
C20—C19—C24—C230.9 (3)C70—C69—C74—C730.2 (3)
C3—C4—C25—C2674.6 (3)C53—C54—C75—C7666.0 (3)
C3—C4—C25—C30103.8 (2)C53—C54—C75—C80114.0 (2)
C5—C4—C25—C26110.1 (2)C55—C54—C75—C76111.5 (2)
C5—C4—C25—C3071.5 (3)C55—C54—C75—C8068.5 (3)
C4—C25—C26—C27179.2 (2)C54—C75—C76—C77178.84 (18)
C30—C25—C26—C272.4 (3)C80—C75—C76—C771.1 (3)
C25—C26—C27—C281.9 (3)C75—C76—C77—C781.4 (3)
C26—C27—C28—C290.1 (3)C76—C77—C78—C790.7 (3)
C27—C28—C29—C301.3 (3)C77—C78—C79—C800.2 (3)
C4—C25—C30—C29179.43 (19)C54—C75—C80—C79179.81 (19)
C26—C25—C30—C291.0 (3)C76—C75—C80—C790.1 (3)
C28—C29—C30—C250.8 (3)C78—C79—C80—C750.5 (3)
C4—C5—C31—C3251.3 (3)C54—C55—C81—C8254.8 (3)
C4—C5—C31—C33128.6 (2)C54—C55—C81—C83126.8 (2)
C6—C5—C31—C32130.7 (2)C56—C55—C81—C82125.9 (2)
C6—C5—C31—C3349.5 (3)C56—C55—C81—C8352.4 (3)
C5—C31—C32—C33i179.81 (18)C55—C81—C82—C83ii178.67 (19)
C33—C31—C32—C33i0.3 (3)C83—C81—C82—C83ii0.3 (3)
C5—C31—C33—C32i179.81 (18)C55—C81—C83—C82ii178.72 (19)
C32—C31—C33—C32i0.3 (3)C82—C81—C83—C82ii0.3 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
CgA = centroid of atoms C52 C53 C54 and C55; CgB = centroid of atoms C1ii, C4ii, C5ii and C6ii.
D—H···AD—HH···AD···AD—H···A
C27—H27···CgA0.952.683.58157
C66—H66···C23iii0.952.853.701 (3)150
C79—H79···CgBiv0.952.683.61165
Symmetry codes: (iii) x+1, y+1/2, z+1/2; (iv) x, y, z+1.
(II) 2',3',5',6'-tetrafluoro-2,2'',3,3'',4,4'',5,5''-octaphenyl-1,1':4',1''-terphenyl top
Crystal data top
C66H42F4F(000) = 948
Mr = 911.00Dx = 1.299 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9776 reflections
a = 19.7494 (9) Åθ = 3.0–30.0°
b = 6.1217 (3) ŵ = 0.09 mm1
c = 20.4762 (10) ÅT = 100 K
β = 109.754 (2)°Prism, colourless
V = 2329.89 (19) Å30.31 × 0.19 × 0.16 mm
Z = 2
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
6808 independent reflections
Radiation source: fine-focus sealed tube with Miracol optics5932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 2727
Tmin = 0.974, Tmax = 0.986k = 88
55308 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.112All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.8093P]
where P = (Fo2 + 2Fc2)/3
6808 reflections(Δ/σ)max = 0.001
400 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C66H42F4V = 2329.89 (19) Å3
Mr = 911.00Z = 2
Monoclinic, P21/nMo Kα radiation
a = 19.7494 (9) ŵ = 0.09 mm1
b = 6.1217 (3) ÅT = 100 K
c = 20.4762 (10) Å0.31 × 0.19 × 0.16 mm
β = 109.754 (2)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
6808 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
5932 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.986Rint = 0.026
55308 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112All H-atom parameters refined
S = 1.04Δρmax = 0.44 e Å3
6808 reflectionsΔρmin = 0.21 e Å3
400 parameters
Special details top

Experimental. For (II) no melting point was observed up to 350 °C (623 K); 1H NMR (DMSO-d6): δ 7.44–7.40 (m, 10H), 7.35–7.32 (m, 9H), 7.16–7.13 (m, 5H), 6.98–6.96 (m, 2H), 6.93–6.89 (m, 5H), 6.87–6.85 (m, 7H), 6.79–6.75 (m, 4H); 13C NMR (DMSO-d6): δ 141.3, 140.9, 140.8, 140.1, 140.0, 139.9, 139.7, 139.6, 139.4, 139.3, 135.9, 132.4, 131.5, 131.5, 131.5, 131.4, 131.4, 130.1, 129.9, 129.6, 127.8, 127.8, 127.2, 127.1, 127.1, 127.1, 127.1, 126.8, 124.6, 124.5, 121.7; 19F NMR (DMSO-d6): δ -131.51, -131.67; HR—MS (m/z): calcd for C66H42F4, 910.322, found 910.322.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.02634 (3)0.12160 (10)0.44405 (3)0.02347 (14)
F20.10792 (3)0.78082 (11)0.56439 (3)0.02356 (14)
C10.26119 (5)0.23661 (16)0.58691 (5)0.01513 (17)
C20.29220 (5)0.28232 (15)0.53577 (5)0.01332 (16)
C30.25000 (5)0.37847 (14)0.47251 (5)0.01286 (16)
C40.17731 (5)0.43276 (15)0.46086 (5)0.01344 (16)
C50.14790 (5)0.38988 (15)0.51298 (5)0.01484 (17)
C60.18934 (5)0.29011 (17)0.57442 (5)0.01717 (18)
H60.1691 (7)0.260 (2)0.6102 (7)0.021 (3)*
C70.30248 (5)0.13939 (17)0.65558 (5)0.01641 (18)
C80.28208 (6)0.06171 (19)0.67481 (5)0.0220 (2)
H80.2425 (8)0.141 (3)0.6425 (8)0.030 (4)*
C90.31961 (6)0.1510 (2)0.73962 (6)0.0273 (2)
H90.3042 (9)0.296 (3)0.7506 (9)0.041 (4)*
C100.37718 (6)0.0383 (2)0.78550 (6)0.0293 (3)
H100.4042 (9)0.101 (3)0.8308 (9)0.037 (4)*
C110.39655 (6)0.1638 (2)0.76722 (6)0.0284 (2)
H110.4371 (9)0.240 (3)0.7999 (9)0.040 (4)*
C120.35981 (5)0.25254 (19)0.70248 (5)0.0221 (2)
H120.3735 (8)0.397 (3)0.6891 (8)0.029 (4)*
C130.36974 (5)0.22899 (15)0.55018 (5)0.01321 (16)
C140.39448 (5)0.01479 (15)0.56475 (5)0.01527 (17)
H140.3605 (8)0.101 (2)0.5657 (7)0.022 (3)*
C150.46718 (5)0.03327 (16)0.57992 (5)0.01694 (18)
H150.4843 (8)0.186 (3)0.5895 (8)0.027 (4)*
C160.51587 (5)0.13202 (17)0.58159 (5)0.01707 (18)
H160.5674 (8)0.096 (2)0.5917 (7)0.024 (3)*
C170.49188 (5)0.34573 (17)0.56756 (5)0.01790 (18)
H170.5258 (8)0.460 (3)0.5690 (8)0.028 (4)*
C180.41899 (5)0.39338 (16)0.55123 (5)0.01696 (18)
H180.4014 (8)0.545 (2)0.5403 (7)0.024 (3)*
C190.28078 (4)0.42210 (15)0.41626 (5)0.01322 (16)
C200.31053 (5)0.25282 (15)0.38895 (5)0.01545 (17)
H200.3132 (8)0.107 (2)0.4096 (7)0.024 (3)*
C210.33559 (5)0.29092 (17)0.33406 (5)0.01821 (18)
H210.3549 (8)0.168 (2)0.3146 (8)0.025 (3)*
C220.33104 (5)0.49907 (17)0.30557 (5)0.01907 (19)
H220.3477 (8)0.526 (2)0.2665 (8)0.028 (4)*
C230.30225 (5)0.66903 (16)0.33273 (5)0.01822 (18)
H230.2987 (8)0.813 (2)0.3122 (8)0.025 (3)*
C240.27770 (5)0.63110 (15)0.38798 (5)0.01595 (17)
H240.2566 (8)0.753 (2)0.4062 (8)0.025 (3)*
C250.13026 (5)0.52311 (15)0.39309 (5)0.01405 (16)
C260.11375 (5)0.39533 (16)0.33317 (5)0.01729 (18)
H260.1345 (8)0.242 (2)0.3362 (7)0.022 (3)*
C270.06877 (5)0.47492 (19)0.26970 (5)0.0220 (2)
H270.0561 (8)0.379 (3)0.2277 (8)0.030 (4)*
C280.03999 (6)0.6838 (2)0.26539 (5)0.0235 (2)
H280.0074 (8)0.739 (3)0.2211 (8)0.031 (4)*
C290.05619 (5)0.81230 (18)0.32458 (6)0.0215 (2)
H290.0371 (8)0.959 (3)0.3221 (8)0.028 (4)*
C300.10112 (5)0.73276 (16)0.38825 (5)0.01754 (18)
H300.1125 (8)0.825 (3)0.4297 (8)0.028 (4)*
C310.07193 (5)0.44738 (16)0.50483 (5)0.01459 (17)
C320.01451 (5)0.31029 (16)0.47207 (5)0.01596 (17)
C330.05533 (5)0.63842 (16)0.53260 (5)0.01591 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0188 (3)0.0209 (3)0.0323 (3)0.0029 (2)0.0106 (2)0.0098 (2)
F20.0133 (3)0.0245 (3)0.0321 (3)0.0037 (2)0.0065 (2)0.0091 (3)
C10.0122 (4)0.0182 (4)0.0155 (4)0.0018 (3)0.0052 (3)0.0011 (3)
C20.0104 (3)0.0138 (4)0.0164 (4)0.0011 (3)0.0054 (3)0.0002 (3)
C30.0110 (4)0.0131 (4)0.0156 (4)0.0006 (3)0.0060 (3)0.0003 (3)
C40.0116 (4)0.0138 (4)0.0153 (4)0.0012 (3)0.0051 (3)0.0008 (3)
C50.0102 (4)0.0182 (4)0.0172 (4)0.0026 (3)0.0060 (3)0.0003 (3)
C60.0134 (4)0.0235 (5)0.0166 (4)0.0033 (3)0.0076 (3)0.0021 (3)
C70.0123 (4)0.0232 (5)0.0153 (4)0.0038 (3)0.0068 (3)0.0021 (3)
C80.0196 (4)0.0271 (5)0.0200 (4)0.0003 (4)0.0076 (4)0.0040 (4)
C90.0269 (5)0.0325 (6)0.0245 (5)0.0028 (4)0.0113 (4)0.0104 (4)
C100.0214 (5)0.0483 (7)0.0184 (5)0.0054 (5)0.0073 (4)0.0109 (5)
C110.0187 (5)0.0479 (7)0.0171 (4)0.0033 (5)0.0040 (4)0.0013 (4)
C120.0187 (4)0.0292 (5)0.0185 (4)0.0017 (4)0.0067 (4)0.0007 (4)
C130.0105 (4)0.0155 (4)0.0142 (4)0.0014 (3)0.0050 (3)0.0005 (3)
C140.0130 (4)0.0150 (4)0.0183 (4)0.0007 (3)0.0059 (3)0.0003 (3)
C150.0141 (4)0.0166 (4)0.0195 (4)0.0036 (3)0.0048 (3)0.0001 (3)
C160.0113 (4)0.0221 (4)0.0174 (4)0.0023 (3)0.0044 (3)0.0001 (3)
C170.0121 (4)0.0200 (4)0.0213 (4)0.0016 (3)0.0053 (3)0.0015 (3)
C180.0133 (4)0.0149 (4)0.0225 (4)0.0005 (3)0.0058 (3)0.0016 (3)
C190.0095 (3)0.0151 (4)0.0155 (4)0.0004 (3)0.0048 (3)0.0006 (3)
C200.0147 (4)0.0150 (4)0.0182 (4)0.0006 (3)0.0076 (3)0.0004 (3)
C210.0179 (4)0.0203 (4)0.0191 (4)0.0002 (3)0.0099 (3)0.0021 (3)
C220.0175 (4)0.0240 (5)0.0172 (4)0.0033 (3)0.0078 (3)0.0014 (3)
C230.0158 (4)0.0179 (4)0.0203 (4)0.0021 (3)0.0054 (3)0.0043 (3)
C240.0129 (4)0.0147 (4)0.0206 (4)0.0003 (3)0.0063 (3)0.0013 (3)
C250.0100 (3)0.0173 (4)0.0157 (4)0.0010 (3)0.0054 (3)0.0011 (3)
C260.0149 (4)0.0191 (4)0.0182 (4)0.0005 (3)0.0059 (3)0.0016 (3)
C270.0191 (4)0.0291 (5)0.0171 (4)0.0021 (4)0.0053 (4)0.0012 (4)
C280.0177 (4)0.0322 (6)0.0191 (4)0.0021 (4)0.0045 (4)0.0069 (4)
C290.0179 (4)0.0221 (5)0.0252 (5)0.0053 (4)0.0080 (4)0.0064 (4)
C300.0155 (4)0.0181 (4)0.0200 (4)0.0030 (3)0.0073 (3)0.0006 (3)
C310.0107 (4)0.0194 (4)0.0150 (4)0.0033 (3)0.0060 (3)0.0008 (3)
C320.0141 (4)0.0172 (4)0.0177 (4)0.0033 (3)0.0070 (3)0.0023 (3)
C330.0113 (4)0.0190 (4)0.0178 (4)0.0006 (3)0.0053 (3)0.0021 (3)
Geometric parameters (Å, º) top
F1—C321.3449 (11)C16—H160.991 (14)
F2—C331.3437 (11)C16—C171.3880 (14)
C1—C21.4082 (12)C17—H170.962 (16)
C1—C61.3931 (12)C17—C181.3942 (13)
C1—C71.4905 (13)C18—H180.989 (15)
C2—C31.4104 (12)C19—C201.3979 (12)
C2—C131.4944 (12)C19—C241.3972 (13)
C3—C41.4130 (11)C20—H200.983 (15)
C3—C191.4969 (12)C20—C211.3922 (13)
C4—C51.4014 (12)C21—H210.986 (15)
C4—C251.4911 (12)C21—C221.3915 (14)
C5—C61.3891 (13)C22—H220.976 (15)
C5—C311.4946 (12)C22—C231.3887 (14)
C6—H60.964 (14)C23—H230.970 (15)
C7—C81.3929 (14)C23—C241.3927 (13)
C7—C121.3961 (14)C24—H240.987 (15)
C8—H80.967 (16)C25—C261.3976 (13)
C8—C91.3946 (15)C25—C301.3962 (13)
C9—H90.986 (18)C26—H261.015 (14)
C9—C101.3892 (18)C26—C271.3911 (14)
C10—H100.979 (17)C27—H271.000 (16)
C10—C111.3833 (19)C27—C281.3900 (16)
C11—H110.971 (18)C28—H280.978 (16)
C11—C121.3887 (15)C28—C291.3885 (16)
C12—H120.988 (16)C29—H290.970 (16)
C13—C141.3960 (13)C29—C301.3936 (14)
C13—C181.3947 (13)C30—H300.981 (16)
C14—H140.983 (14)C31—C321.3879 (13)
C14—C151.3939 (12)C31—C331.3872 (13)
C15—H150.990 (15)C32—C33i1.3858 (12)
C15—C161.3884 (14)C33—C32i1.3859 (12)
C2—C1—C6119.26 (8)H17—C17—C18120.5 (9)
C2—C1—C7122.96 (8)C13—C18—C17120.73 (9)
C6—C1—C7117.75 (8)C13—C18—H18118.9 (8)
C1—C2—C3119.69 (8)C17—C18—H18120.4 (8)
C1—C2—C13118.94 (8)C3—C19—C20120.70 (8)
C3—C2—C13121.37 (8)C3—C19—C24120.67 (8)
C2—C3—C4120.29 (8)C20—C19—C24118.58 (8)
C2—C3—C19120.90 (8)C19—C20—H20118.1 (8)
C4—C3—C19118.80 (8)C19—C20—C21120.73 (9)
C3—C4—C5119.10 (8)H20—C20—C21121.2 (8)
C3—C4—C25121.49 (8)C20—C21—H21119.3 (9)
C5—C4—C25119.32 (8)C20—C21—C22120.10 (9)
C4—C5—C6120.20 (8)H21—C21—C22120.6 (9)
C4—C5—C31121.99 (8)C21—C22—H22120.5 (9)
C6—C5—C31117.81 (8)C21—C22—C23119.69 (9)
C1—C6—C5121.42 (8)H22—C22—C23119.8 (9)
C1—C6—H6118.3 (8)C22—C23—H23119.2 (9)
C5—C6—H6120.2 (8)C22—C23—C24120.16 (9)
C1—C7—C8120.08 (9)H23—C23—C24120.6 (9)
C1—C7—C12120.59 (9)C19—C24—C23120.73 (9)
C8—C7—C12119.27 (9)C19—C24—H24119.9 (9)
C7—C8—H8119.6 (9)C23—C24—H24119.3 (9)
C7—C8—C9120.27 (10)C4—C25—C26119.77 (8)
H8—C8—C9120.1 (9)C4—C25—C30121.29 (8)
C8—C9—H9117.6 (10)C26—C25—C30118.93 (9)
C8—C9—C10119.93 (11)C25—C26—H26119.5 (8)
H9—C9—C10122.4 (10)C25—C26—C27120.67 (9)
C9—C10—H10120.4 (10)H26—C26—C27119.8 (8)
C9—C10—C11119.95 (10)C26—C27—H27119.5 (9)
H10—C10—C11119.6 (10)C26—C27—C28119.98 (10)
C10—C11—H11118.7 (10)H27—C27—C28120.4 (9)
C10—C11—C12120.34 (11)C27—C28—H28120.3 (9)
H11—C11—C12120.9 (10)C27—C28—C29119.81 (9)
C7—C12—C11120.20 (10)H28—C28—C29119.8 (9)
C7—C12—H12119.1 (9)C28—C29—H29120.6 (9)
C11—C12—H12120.7 (9)C28—C29—C30120.30 (10)
C2—C13—C14120.58 (8)H29—C29—C30119.1 (9)
C2—C13—C18120.55 (8)C25—C30—C29120.30 (9)
C14—C13—C18118.85 (8)C25—C30—H30120.0 (9)
C13—C14—H14119.5 (8)C29—C30—H30119.7 (9)
C13—C14—C15120.38 (9)C5—C31—C32122.48 (8)
H14—C14—C15120.1 (8)C5—C31—C33121.35 (8)
C14—C15—H15120.0 (9)C32—C31—C33116.11 (8)
C14—C15—C16120.28 (9)F1—C32—C31119.61 (8)
H15—C15—C16119.7 (9)F1—C32—C33i118.52 (8)
C15—C16—H16119.8 (9)C31—C32—C33i121.86 (8)
C15—C16—C17119.79 (8)F2—C33—C31119.63 (8)
H16—C16—C17120.4 (9)F2—C33—C32i118.34 (8)
C16—C17—H17119.6 (9)C31—C33—C32i122.03 (8)
C16—C17—C18119.96 (9)
C6—C1—C2—C30.86 (14)C15—C16—C17—C180.60 (15)
C6—C1—C2—C13178.65 (9)C16—C17—C18—C131.34 (15)
C7—C1—C2—C3178.74 (9)C2—C13—C18—C17177.25 (9)
C7—C1—C2—C130.77 (14)C14—C13—C18—C170.98 (14)
C1—C2—C3—C41.22 (14)C2—C3—C19—C2057.00 (12)
C1—C2—C3—C19177.95 (8)C2—C3—C19—C24125.67 (10)
C13—C2—C3—C4178.28 (8)C4—C3—C19—C20122.18 (10)
C13—C2—C3—C192.55 (13)C4—C3—C19—C2455.16 (12)
C2—C3—C4—C50.04 (13)C3—C19—C20—C21176.46 (8)
C2—C3—C4—C25176.56 (8)C24—C19—C20—C210.93 (14)
C19—C3—C4—C5179.22 (8)C19—C20—C21—C220.18 (14)
C19—C3—C4—C252.62 (13)C20—C21—C22—C230.83 (15)
C3—C4—C5—C61.66 (14)C21—C22—C23—C240.35 (15)
C3—C4—C5—C31178.65 (8)C22—C23—C24—C190.79 (14)
C25—C4—C5—C6175.02 (9)C3—C19—C24—C23175.97 (8)
C25—C4—C5—C314.67 (14)C20—C19—C24—C231.42 (14)
C4—C5—C6—C12.06 (15)C3—C4—C25—C2664.34 (12)
C31—C5—C6—C1178.24 (9)C3—C4—C25—C30116.72 (10)
C2—C1—C6—C50.77 (15)C5—C4—C25—C26112.26 (10)
C7—C1—C6—C5177.22 (9)C5—C4—C25—C3066.68 (12)
C2—C1—C7—C8119.10 (11)C4—C25—C26—C27178.69 (9)
C2—C1—C7—C1263.77 (13)C30—C25—C26—C270.27 (14)
C6—C1—C7—C862.99 (13)C25—C26—C27—C280.24 (15)
C6—C1—C7—C12114.14 (11)C26—C27—C28—C290.08 (15)
C1—C7—C8—C9178.60 (9)C27—C28—C29—C300.03 (16)
C12—C7—C8—C91.44 (15)C28—C29—C30—C250.00 (15)
C7—C8—C9—C100.59 (17)C4—C25—C30—C29178.79 (9)
C8—C9—C10—C110.91 (18)C26—C25—C30—C290.15 (14)
C9—C10—C11—C121.55 (18)C4—C5—C31—C3285.36 (12)
C10—C11—C12—C70.68 (17)C4—C5—C31—C3397.51 (11)
C1—C7—C12—C11177.96 (9)C6—C5—C31—C3294.34 (11)
C8—C7—C12—C110.81 (15)C6—C5—C31—C3382.79 (12)
C1—C2—C13—C1459.46 (12)C5—C31—C32—F12.52 (14)
C1—C2—C13—C18118.73 (10)C5—C31—C32—C33i177.29 (9)
C3—C2—C13—C14121.03 (10)C33—C31—C32—F1179.79 (8)
C3—C2—C13—C1860.77 (12)C33—C31—C32—C33i0.02 (15)
C2—C13—C14—C15178.33 (8)C5—C31—C33—F23.51 (14)
C18—C13—C14—C150.11 (14)C5—C31—C33—C32i177.32 (9)
C13—C14—C15—C160.84 (14)C32—C31—C33—F2179.19 (8)
C14—C15—C16—C170.48 (14)C32—C31—C33—C32i0.01 (15)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30···F1ii0.981 (16)2.572 (15)3.2084 (11)122.6 (11)
C8—H8···F2iii0.967 (16)2.642 (16)3.5517 (12)157.0 (12)
C27—H27···C16iv1.000 (16)2.825 (16)3.6927 (14)145.5 (12)
Symmetry codes: (ii) x, y+1, z; (iii) x, y1, z; (iv) x1/2, y+1/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC66H46C66H42F4
Mr839.03911.00
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)100100
a, b, c (Å)11.674 (2), 33.336 (6), 11.816 (2)19.7494 (9), 6.1217 (3), 20.4762 (10)
β (°) 91.479 (3) 109.754 (2)
V3)4597.1 (14)2329.89 (19)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.070.09
Crystal size (mm)0.35 × 0.09 × 0.080.31 × 0.19 × 0.16
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
diffractometer
Bruker Kappa APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(TWINABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.977, 0.9950.974, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
40040, 11292, 8284 55308, 6808, 5932
Rint0.0680.026
θmax (°)23.630.1
(sin θ/λ)max1)0.5620.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.107, 1.04 0.039, 0.112, 1.04
No. of reflections112926808
No. of parameters596400
H-atom treatmentH-atom parameters constrainedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.16, 0.220.44, 0.21

Computer programs: APEX2 (Bruker, 2007), CELL_NOW (Sheldrick, 2004) and SAINT (Bruker, 2007), SAINT (Bruker, 2007), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008b), publCIF (Westrip, 2010) and local programs.

Hydrogen-bond geometry (Å, º) for (I) top
CgA = centroid of atoms C52 C53 C54 and C55; CgB = centroid of atoms C1ii, C4ii, C5ii and C6ii.
D—H···AD—HH···AD···AD—H···A
C27—H27···CgA0.952.683.58157
C66—H66···C23i0.952.853.701 (3)150
C79—H79···CgBii0.952.683.61165
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y, z+1.
Table 3. Selected dihedral angles (°) in (I), (II) and related compounds top
Compound1/21/31/41/51/6
(IA)58.66 (8)67.55 (7)86.08 (6)73.56 (7)49.89 (12)
(IB)49.24 (8)65.82 (7)64.44 (6)67.21 (6)54.38 (10)
(II)64.10 (3)60.42 (4)55.83 (4)66.17 (3)83.87 (4)
BIJBECa61.53 (17)56.17 (15)67.30 (16)67.56 (16)51.33 (15)
45.63 (17)62.99 (15)65.35 (16)64.22 (17)53.07 (15)
EGIKUA*b55.0 (3)55.9 (3)64.3 (3)54.4 (3)46.7 (3)
55.6 (3)66.6 (3)63.3 (3)60.1 (3)48.3 (3)
56.5 (4)61.1 (3)66.4 (3)61.1 (3)44.9 (3)
60.7 (4)61.4 (3)64.1 (4)57.2 (4)38.7 (3)
62.2 (3)60.2 (4)68.0 (4)54.2 (4)42.3 (3)
55.0 (3)55.9 (3)64.3 (3)54.4 (3)46.7 (3)
IQESIH*c50.76 (4)54.20 (4)71.12 (4)63.68 (3)47.59 (3)
49.17 (3)58.47 (3)63.13 (3)57.10 (4)50.46 (3)
NILQABd48.63 (17)64.88 (15)66.37 (15)67.75 (15)50.16 (14)
PUNVIEe56.09 (7)58.12 (7)72.92 (7)58.13 (7)57.18 (7)
PUNVOKe49.83 (8)63.93 (8)62.78 (9)61.33 (9)60.35 (8)
PUNVEAe69.19 (6)77.36 (6)80.79 (8)85.67 (6)61.26 (5)
Dihedral angles are between least-squares planes fitted through all non-H atoms of the pendant phenyl rings and the central aryl ring; rings are numbered according to the system described in Fig. 2. Compounds with multiple entries contain more than one pentaphenylated component. Dihedral angles for (IA), (IB) and (II) were calculated using SHELXTL (Sheldrick, 2008b); all other dihedral angles were determined using PLATON (Spek, 2009). Ring 6 of PUNVEA contains an extra phenyl ring, 7; the dihedral angle 6/7 in PUNVEA is 85.59 (6)°. Note: (*) structure contains solvent or counter-ion. References for CSD refcodes: (a) Grebel-Koehler et al. (2003); (b) Bauer et al. (2002); (c) Türp et al. (2011); (d) Chen et al. (2007); Gagnon, Maris et al. (2010).
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C30—H30···F1i0.981 (16)2.572 (15)3.2084 (11)122.6 (11)
C8—H8···F2ii0.967 (16)2.642 (16)3.5517 (12)157.0 (12)
C27—H27···C16iii1.000 (16)2.825 (16)3.6927 (14)145.5 (12)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x1/2, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds