Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Diels–Alder reaction between maleimides featuring 3,5-di-, 2,4,6-tri- and penta­fluorinated N-phenyl substituents and anthracene yields the corresponding penta­cyclic ethano­anthracenedicarboximide compounds, namely N-(3,5-di­fluoro­phen­yl)-9,10-dihydro-9,10-ethano­anthracene-11,12-di­carboximide, C24H15F2NO2, (IIa), N-(2,4,6-trifluoro­phen­yl)-9,10-dihydro-9,10-ethano­anthracene-11,12-dicarboximide, C24H14F3NO2, (IIb), N-(2,3,4,5,6-penta­fluoro­phen­yl)-9,10-dihydro-9,10-ethano­anthracene-11,12-dicarboximide, C24H12F5NO2, (IIc). The crystal structures of (IIa)–(IIc) reveal an expected mol­ecular geometry with a `V'-shape of the anthracene-derived tricyclic moiety. The crystal packings of (IIa) and (IIb) are dominated by π–π and C—H...O/F inter­actions, while F...F and C—H...π contacts are absent. In contrast, (IIc) shows F...F and C—H...O/F contacts, but no π-involved contacts of relevance.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111042454/eg3076sup1.cif
Contains datablocks IIa, IIb, IIc, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111042454/eg3076IIasup2.hkl
Contains datablock IIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111042454/eg3076IIbsup3.hkl
Contains datablock IIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111042454/eg3076IIcsup4.hkl
Contains datablock IIc

CCDC references: 855972; 855973; 855974

Comment top

N-Phenyl-substituted ethanoanthracenedicarboximides with different substituents at the phenyl unit are known to form crystalline inclusion compounds with a variety of solvents (Weber et al., 1991). On the other hand, the efficiency of the photoreaction of anthracene and differently substituted maleimides as a function of the dienophile concentration has been reported (Sun et al., 1999). Moreover, anthracene-2,6-dicarboxylate derivatives modified with maleimides have been used in poly(ethylene terephthalate) copolymers (Jones et al. 1999). Investigations of the conformational environment of the selected derivatives were described by Csöregh et al. (2003), while Grossmann et al. (2003) reported NMR spectroscopic analysis of the geometric features of the ortho-substituted molecules. Verma and co-workers reported on several detailed studies on the analysis of the rotation around the Caryl—N bond in, for example, o-OMe-, o-Me-, o-Cl- and o-Br-substituted N-arylimides with dynamic and temperature-dependent NMR spectroscopy (Verma & Singh, 1976, 1978; Srivastava et al., 1991). A detailed analysis of the conformational influence of the imide ring in fluorinated N-phenylmaleimides has recently been reported by Schwarzer & Weber (2008).

We describe here the preparation of three new ethanoanthracenedicarboximides, (IIa)–(IIc), having N-phenyl substitutents with different modes of fluorine substitution (see Scheme) and report on their single-crystal X-ray structures. These pentacyclic dicarboximides were synthesized analogously to the bridged fulvene adducts described by Schwarzer et al. (2010). Attempts to achieve inclusion compounds from crystallization using different solvents were unsuccessful. Single crystals suitable for X-ray crystallography in the present study were grown from benzene solution.

Remarkably, (IIa) and (IIb) are isomorphous. Only minor differences between their packing arise due to the differences in fluorine substitution in the C1–C6 ring. Even the C—H···F contacts are comparable [C5—H5···F2 = 2.56 Å in (IIa) and C4—H4···F3 = 2.51 Å in (IIb), both along (-x+1, -y+1, -z+1)]. Similar structures with related cell parameters were also reported by Kishikawa et al. (1997), Grossmann et al. (2003) and Goh & White (2009).

The semi-rigid ethanoanthracenedicarboximido moiety of the title compounds (Fig. 1) shows the typical geometry observed in earlier studies (Weber et al., 1991; Csöregh et al., 2003) confirming the expected bond lengths and angles. The `V' shape of the dihydroanthracene moiety is a structural property best described by the angle between the phenylene rings [49.43 (8)° in (IIa), 53.24 (4)° in (IIb) and 51.47 (10)° in (IIc)]. Another feature is the angle between the imide unit and the benzene ring, describing the intramolecular attractive and repulsive forces between the carbonyl O atoms and the ortho-phenyl H or F atoms. While N-phenylmaleimides (Ia) and (Ib), as the starting compounds of the synthesis (see Scheme), show torsion angles of 52.3 (Ia) and 66.5° (Ib) according to Schwarzer & Weber (2008), the dihydroanthracene derivatives (IIa)–(IIc) exhibit torsion angles of 57.83 (7), 60.88 (4) and 66.25 (13)°, respectively.

The closest centre-to-centre distance between adjacent aryl units is 4.0871 (15) Å for (IIa) and 4.0533 (8) Å for (IIb). Hence, in (IIa) and (IIb), weak stacking interactions form zigzag chains (Fig. 2) extending along the crystallographic c axis. The angles between the stacks are 25.14° (IIa) and 24.53° (IIb). On the other hand, a centre-to-centre distance greater than 5.4 Å in the crystal packing of (IIc) indicates no relevant stacking interactions.

Several C—H···O and C—H···F contacts are found in the packings. In (IIa), two C—H···O contacts complete the chain generated by the π-stacking interactions, while one C—H···F contact forms dimers. As in the case of (IIa), the trifluorinated derivative (IIb) also does not show F···F contacts, but a bifurcated C—H···O and two C—H···F interactions generate a network structure instead of a single or zigzag chain. In contrast, in (IIc), with the maximum number of F atoms on the phenyl ring, F···F contacts [2.811 (3) Å, Θ1 = 114.9 (2)° and Θ2 = 111.2 (2)°] occur, giving rise to zigzag chains. These chains are parallel to the zigzag chain along the crystallographic c axis formed by the bifurcated C—H···O contact. In conclusion, (IIa) and (IIb) show a similar crystal packing, while differences are seen in the crystal packing of (IIc), owing to the perfluorinated N-phenyl ring.

Related literature top

For related literature, see: Grossmann et al. (2003); Jones et al. (1999); Kishikawa et al. (1997); Schwarzer & Weber (2008); Schwarzer et al. (2010); Srivastava et al. (1991); Sun et al. (1999); Verma & Singh (1976, 1978); Weber et al. (1991).

Experimental top

The starting N-phenylmaleimides (Ia)–(Ic) (see Scheme) were prepared as described by Schwarzer & Weber (2008). The title compounds (IIa)–(IIc) were synthesized in a similiar manner to the fulvene adducts described by Schwarzer et al. (2010). To a stirred solution of the respective N-phenylmaleimide (Ia)–(Ic) (10 mmol) in benzene (25 ml), a solution of anthracene (10 mmol) in benzene (25 ml) was added. The mixture was heated to reflux for 5 h and allowed to cool to room temperature. The solid precipitate that formed was collected and dried in vacuum. Recrystallization of the crude products from acetone yielded the pure compounds as colourless solids. Single crystals of compounds (IIa)–(IIc) were obtained from benzene solutions.

Data for (IIa): yield 2.46 g (63%). Analysis calculated for C24H15F2NO2: C 74.41, H 3.90, N 3.62%; found: C 74.52, H 4.17, N 3.67%. IR (KBr): νmax (cm-1) 3076 (CHAr), 1781, 1709 (CO), 1621, 1610 (CCAr), 1372, 1181 (C—N—C), 1285 (CArF). 1H NMR (CDCl3): δ 7.44–7.21 (m, 8H, Ar—H), 6.74 (m, 1H, H-1), 6.14 (m, 2H, Ar—H), 4.88 (s, 2H, H-6), 3.38 (s, 2H, H-5); 13C NMR (CDCl3): δ 175.27 (CO), 163.93, 161.45 (d, 1JC–F = -249.5 Hz, C-2), 141.04, 138.60 (C-7a, C-7b), 133.25 (C-4), 127.33, 126.98 (C-9a, C-9b), 125.12, 124.38 (C-8a, C-8b), 110.12 (d, 2JC–F = 27.8 Hz, C-3), 104.42 (t, 2JC–F = 25.4 Hz, C-1), 47.04 (C-6), 45.91 (C-5). MS: m/e 387 [M]+, 209, 178 (100), 101.

Data for (IIb): yield 2.93 g (72%). Analysis calculated for C24H14F3NO2: C 71.11, H 3.48, N 3.46%; found: C 71.40, H 3.72, N 3.37%. IR (KBr): νmax (cm-1) 3068 (CHAr), 1786, 1722 (CO), 1608, 1522 (CCAr), 1357, 1186 (C—N—C), 1205 (CArF). 1H NMR (CDCl3): δ 7.47–7.16 (m, 8H, Ar—H), 6.68, 6.56 (s, 2H, H-2, H-2'), 6.14 (m, 2H, Ar—H), 4.87 (s, 2H, H-6), 3.43 (s, 2H, H-5); 13C NMR (CDCl3): δ 174.25 (CO), 164.13, 161.61 (d, 1JC–F = -253.5 Hz, C-1), 159.67, 157.10 (d, 1JC–F = -258.5 Hz, C-3), 141.45, 138.29 (C-7a, C-7b), 127.29, 126.83 (C-9a, C-9b), 125.12, 124.25 (C-8a, C-8b), 105.44 (t, 2JC–F = 17.5, C-4), 100.98 (m, C-2), 47.38 (C-6), 45.34 (C-5). MS: m/e 405 [M]+, 202, 178 (100), 101.

Data for (IIc): yield 2.81 g (64%). Analysis calculated for C24H12F5NO2: C 65.31, H 2.74, N 3.17%; found: C 65.49, H 2.96, N 3.03%. IR (KBr): νmax (cm-1) 3079 (CHAr), 1797, 1729 (CO), 1626, 1528 (CCAr), 1372, 1186 (C—N—C), 1259 (CArF). 1H NMR (CDCl3): δ 7.41–7.18 (m, 8H, Ar—H), 4.87 (s, 2H, H-6, s), 3.45 (s, 2H, H-5); 13C NMR (CDCl3): δ 173.95 (CO), 144.56, 141.99 (d, 1JC–F = - 258.5 Hz, C-3), 143.42, 140.86 (d, 1JC–F = -257.5 Hz, C-1), 141.30, 138.21 (C-7a, C-7b), 139.02, 136.51 (t, 1JC—F = -252.5 Hz, C-2), 127.56, 127.03 (C-9a, C-9b), 125.21, 124.37 (C-8a, C-8b), 106.66 (t, 2JC–F = 16.1 Hz, C-4), 47.63 (C-6), 45.62 (C-5). MS: m/e 441 [M]+, 202, 178 (100), 101.

Refinement top

For compounds (IIa)–(IIc), H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2–1.5 Ueq(parent atom). The inferior crystal quality for compound (IIc) is also reflected in a high Rint value.

Computing details top

For all compounds, data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) (IIa), (b) (IIb) and (c) (IIc), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing structure of (IIb) representative for (IIa) and (IIb), viewed down the c axis, showing the stackings and the C—H···F contacts connecting the zigzag chains. Dashed lines indicate C—H···F contacts. [Symmetry code: (i) -x+1, -y+1, -z+1.]
[Figure 3] Fig. 3. The packing structure of (IIc) viewed along the a axis. Dashed lines indicate C—H···O contacts. [Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+1, -z+1.]
(IIa) N-(3,5-Difluorophenyl)-9,10-dihydro-9,10- ethanoanthracene-11,12-dicarboximide top
Crystal data top
C24H15F2NO2F(000) = 800
Mr = 387.37Dx = 1.475 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.229 (2) ÅCell parameters from 5782 reflections
b = 11.7659 (13) Åθ = 2.2–31.4°
c = 8.1599 (10) ŵ = 0.11 mm1
β = 94.852 (4)°T = 93 K
V = 1743.9 (4) Å3Splitter, colourless
Z = 40.40 × 0.23 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2714 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ϕ and ω scansh = 2121
16554 measured reflectionsk = 1313
3043 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0212P)2 + 2.9969P]
where P = (Fo2 + 2Fc2)/3
3043 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C24H15F2NO2V = 1743.9 (4) Å3
Mr = 387.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.229 (2) ŵ = 0.11 mm1
b = 11.7659 (13) ÅT = 93 K
c = 8.1599 (10) Å0.40 × 0.23 × 0.23 mm
β = 94.852 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2714 reflections with I > 2σ(I)
16554 measured reflectionsRint = 0.032
3043 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.18Δρmax = 0.27 e Å3
3043 reflectionsΔρmin = 0.21 e Å3
262 parameters
Special details top

Experimental. Data for (IIa): yield 2.46 g (63%). Analysis calculated for C24H15F2NO2: C 74.41, H 3.90, N 3.62%; found: C 74.52, H 4.17, N 3.67%. IR (KBr): νmax (cm-1) 3076 (CHAr), 1781, 1709 (CO), 1621, 1610 (CCAr), 1372, 1181 (C—N—C), 1285 (CArF). 1H NMR (CDCl3): δ 7.44–7.21 (m, 8H, Ar—H), 6.74 (m, 1H, H-1), 6.14 (m, 2H, Ar—H), 4.88 (s, 2H, H-6), 3.38 (s, 2H, H-5); 13C NMR (CDCl3): δ 175.27 (CO), 163.93, 161.45 (d, 1JC–F = -249.5 Hz, C-2), 141.04, 138.60 (C-7a, C-7b), 133.25 (C-4), 127.33, 126.98 (C-9a, C-9b), 125.12, 124.38 (C-8a, C-8b), 110.12 (d, 2JC–F = 27.8 Hz, C-3), 104.42 (t, 2JC–F = 25.4 Hz, C-1), 47.04 (C-6), 45.91 (C-5). MS: m/e 387 [M]+, 209, 178 (100), 101.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.98 Å and Uiso(H) = 1.2–1.5 Ueq(parent atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22080 (9)0.23466 (14)0.4012 (2)0.0188 (4)
O20.34559 (9)0.48851 (14)0.1009 (2)0.0187 (4)
N10.29850 (10)0.34778 (17)0.2611 (2)0.0142 (4)
F10.44912 (8)0.01525 (12)0.3063 (2)0.0284 (4)
F20.54170 (8)0.35828 (13)0.53401 (19)0.0275 (4)
C10.37474 (13)0.1780 (2)0.2833 (3)0.0177 (5)
H10.33630.13590.22570.021*
C20.44046 (13)0.1271 (2)0.3382 (3)0.0193 (5)
C30.49801 (13)0.1849 (2)0.4217 (3)0.0209 (5)
H30.54280.14810.45810.025*
C40.48682 (13)0.2988 (2)0.4492 (3)0.0196 (5)
C50.42280 (13)0.3561 (2)0.3980 (3)0.0184 (5)
H50.41730.43500.41860.022*
C60.36683 (12)0.2932 (2)0.3150 (3)0.0142 (5)
C70.23006 (12)0.3128 (2)0.3080 (3)0.0144 (5)
C80.17085 (12)0.3902 (2)0.2262 (3)0.0145 (5)
H80.13560.34500.15150.017*
C90.21323 (12)0.47515 (19)0.1256 (3)0.0138 (5)
H90.19630.46920.00610.017*
C100.29345 (12)0.4418 (2)0.1540 (3)0.0136 (5)
C110.12817 (12)0.4557 (2)0.3567 (3)0.0146 (5)
H110.09940.40330.42330.018*
C120.07913 (13)0.5402 (2)0.2585 (3)0.0151 (5)
C130.00274 (13)0.5441 (2)0.2488 (3)0.0170 (5)
H130.02420.49170.30890.020*
C140.03395 (13)0.6267 (2)0.1491 (3)0.0191 (5)
H140.08620.63070.14230.023*
C150.00538 (13)0.7027 (2)0.0600 (3)0.0193 (5)
H150.02020.75800.00760.023*
C160.08209 (13)0.6985 (2)0.0689 (3)0.0170 (5)
H160.10890.75020.00740.020*
C170.11857 (13)0.6176 (2)0.1689 (3)0.0144 (5)
C180.20136 (12)0.5988 (2)0.1886 (3)0.0142 (5)
H180.22860.65660.12740.017*
C190.22644 (13)0.59681 (19)0.3713 (3)0.0145 (5)
C200.28687 (12)0.6542 (2)0.4460 (3)0.0152 (5)
H200.31500.70350.38370.018*
C210.30578 (13)0.6385 (2)0.6141 (3)0.0181 (5)
H210.34720.67720.66610.022*
C220.26451 (13)0.5669 (2)0.7059 (3)0.0182 (5)
H220.27670.55880.82080.022*
C230.20508 (13)0.5067 (2)0.6292 (3)0.0168 (5)
H230.17760.45620.69120.020*
C240.18627 (12)0.5211 (2)0.4619 (3)0.0142 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0173 (9)0.0177 (9)0.0218 (9)0.0009 (7)0.0028 (7)0.0058 (7)
O20.0164 (9)0.0201 (9)0.0204 (9)0.0004 (7)0.0055 (7)0.0027 (7)
N10.0123 (10)0.0143 (10)0.0157 (10)0.0008 (8)0.0009 (8)0.0000 (8)
F10.0268 (8)0.0179 (8)0.0407 (9)0.0073 (6)0.0035 (7)0.0005 (7)
F20.0153 (7)0.0337 (9)0.0324 (9)0.0035 (6)0.0053 (6)0.0024 (7)
C10.0163 (12)0.0195 (13)0.0176 (12)0.0014 (10)0.0031 (9)0.0010 (10)
C20.0204 (13)0.0151 (13)0.0231 (13)0.0031 (10)0.0061 (10)0.0041 (10)
C30.0144 (12)0.0266 (14)0.0218 (13)0.0044 (10)0.0028 (10)0.0050 (11)
C40.0129 (12)0.0278 (14)0.0179 (12)0.0042 (10)0.0003 (9)0.0003 (10)
C50.0186 (12)0.0179 (13)0.0192 (12)0.0001 (10)0.0038 (9)0.0001 (10)
C60.0125 (11)0.0161 (12)0.0146 (12)0.0010 (9)0.0039 (9)0.0031 (9)
C70.0123 (11)0.0145 (12)0.0162 (12)0.0005 (9)0.0015 (9)0.0021 (10)
C80.0132 (11)0.0154 (12)0.0149 (11)0.0017 (9)0.0017 (9)0.0003 (9)
C90.0137 (11)0.0154 (12)0.0123 (11)0.0014 (9)0.0008 (9)0.0004 (9)
C100.0154 (12)0.0153 (12)0.0099 (11)0.0009 (9)0.0004 (9)0.0035 (9)
C110.0127 (11)0.0166 (12)0.0149 (11)0.0014 (9)0.0034 (9)0.0027 (9)
C120.0153 (12)0.0168 (12)0.0133 (11)0.0003 (9)0.0015 (9)0.0024 (9)
C130.0141 (12)0.0206 (13)0.0168 (12)0.0008 (10)0.0039 (9)0.0021 (10)
C140.0134 (12)0.0253 (14)0.0184 (12)0.0031 (10)0.0004 (9)0.0015 (10)
C150.0199 (13)0.0199 (13)0.0174 (12)0.0050 (10)0.0018 (10)0.0006 (10)
C160.0192 (12)0.0167 (12)0.0151 (12)0.0000 (10)0.0011 (9)0.0001 (9)
C170.0146 (11)0.0153 (12)0.0132 (11)0.0017 (9)0.0001 (9)0.0013 (9)
C180.0142 (12)0.0144 (12)0.0140 (11)0.0003 (9)0.0017 (9)0.0032 (9)
C190.0153 (12)0.0126 (12)0.0157 (12)0.0042 (9)0.0026 (9)0.0007 (9)
C200.0137 (11)0.0150 (12)0.0172 (12)0.0017 (9)0.0026 (9)0.0006 (9)
C210.0162 (12)0.0177 (13)0.0202 (12)0.0023 (10)0.0006 (9)0.0042 (10)
C220.0208 (12)0.0216 (13)0.0123 (11)0.0042 (10)0.0013 (9)0.0006 (10)
C230.0165 (12)0.0178 (12)0.0166 (12)0.0041 (10)0.0049 (9)0.0029 (10)
C240.0120 (11)0.0150 (12)0.0158 (12)0.0027 (9)0.0028 (9)0.0013 (9)
Geometric parameters (Å, º) top
O1—C71.214 (3)C11—H111.0000
O2—C101.210 (3)C12—C131.389 (3)
N1—C71.398 (3)C12—C171.404 (3)
N1—C101.408 (3)C13—C141.400 (3)
N1—C61.437 (3)C13—H130.9500
F1—C21.353 (3)C14—C151.389 (4)
F2—C41.361 (3)C14—H140.9500
C1—C21.380 (3)C15—C161.395 (3)
C1—C61.389 (3)C15—H150.9500
C1—H10.9500C16—C171.386 (3)
C2—C31.380 (4)C16—H160.9500
C3—C41.377 (4)C17—C181.520 (3)
C3—H30.9500C18—C191.522 (3)
C4—C51.382 (3)C18—H181.0000
C5—C61.390 (3)C19—C201.388 (3)
C5—H50.9500C19—C241.403 (3)
C7—C81.522 (3)C20—C211.398 (3)
C8—C91.542 (3)C20—H200.9500
C8—C111.573 (3)C21—C221.390 (3)
C8—H81.0000C21—H210.9500
C9—C101.513 (3)C22—C231.397 (3)
C9—C181.564 (3)C22—H220.9500
C9—H91.0000C23—C241.389 (3)
C11—C241.516 (3)C23—H230.9500
C11—C121.519 (3)
C7—N1—C10112.86 (19)C8—C11—H11112.2
C7—N1—C6123.72 (19)C13—C12—C17120.3 (2)
C10—N1—C6123.41 (19)C13—C12—C11126.5 (2)
C2—C1—C6117.6 (2)C17—C12—C11113.3 (2)
C2—C1—H1121.2C12—C13—C14118.9 (2)
C6—C1—H1121.2C12—C13—H13120.5
F1—C2—C1118.2 (2)C14—C13—H13120.5
F1—C2—C3118.5 (2)C15—C14—C13120.5 (2)
C1—C2—C3123.3 (2)C15—C14—H14119.7
C4—C3—C2116.3 (2)C13—C14—H14119.7
C4—C3—H3121.9C14—C15—C16120.6 (2)
C2—C3—H3121.9C14—C15—H15119.7
F2—C4—C3118.1 (2)C16—C15—H15119.7
F2—C4—C5117.9 (2)C17—C16—C15118.9 (2)
C3—C4—C5124.0 (2)C17—C16—H16120.5
C4—C5—C6117.0 (2)C15—C16—H16120.5
C4—C5—H5121.5C16—C17—C12120.7 (2)
C6—C5—H5121.5C16—C17—C18125.8 (2)
C1—C6—C5121.8 (2)C12—C17—C18113.4 (2)
C1—C6—N1118.7 (2)C17—C18—C19108.62 (18)
C5—C6—N1119.5 (2)C17—C18—C9105.31 (18)
O1—C7—N1124.7 (2)C19—C18—C9105.61 (18)
O1—C7—C8126.6 (2)C17—C18—H18112.3
N1—C7—C8108.66 (19)C19—C18—H18112.3
C7—C8—C9104.64 (18)C9—C18—H18112.3
C7—C8—C11111.70 (18)C20—C19—C24120.5 (2)
C9—C8—C11109.95 (18)C20—C19—C18125.7 (2)
C7—C8—H8110.1C24—C19—C18113.5 (2)
C9—C8—H8110.1C19—C20—C21119.2 (2)
C11—C8—H8110.1C19—C20—H20120.4
C10—C9—C8105.75 (18)C21—C20—H20120.4
C10—C9—C18110.48 (18)C22—C21—C20120.6 (2)
C8—C9—C18109.80 (18)C22—C21—H21119.7
C10—C9—H9110.2C20—C21—H21119.7
C8—C9—H9110.2C21—C22—C23120.0 (2)
C18—C9—H9110.2C21—C22—H22120.0
O2—C10—N1124.6 (2)C23—C22—H22120.0
O2—C10—C9127.3 (2)C24—C23—C22119.7 (2)
N1—C10—C9108.09 (19)C24—C23—H23120.1
C24—C11—C12108.57 (19)C22—C23—H23120.1
C24—C11—C8105.69 (18)C23—C24—C19119.9 (2)
C12—C11—C8105.46 (18)C23—C24—C11126.7 (2)
C24—C11—H11112.2C19—C24—C11113.2 (2)
C12—C11—H11112.2
C6—C1—C2—F1179.2 (2)C8—C11—C12—C13118.6 (2)
C6—C1—C2—C30.3 (4)C24—C11—C12—C1753.0 (2)
F1—C2—C3—C4179.2 (2)C8—C11—C12—C1759.9 (2)
C1—C2—C3—C40.2 (4)C17—C12—C13—C140.2 (3)
C2—C3—C4—F2178.7 (2)C11—C12—C13—C14178.6 (2)
C2—C3—C4—C50.3 (4)C12—C13—C14—C150.6 (4)
F2—C4—C5—C6178.5 (2)C13—C14—C15—C160.3 (4)
C3—C4—C5—C60.5 (4)C14—C15—C16—C170.4 (4)
C2—C1—C6—C50.5 (4)C15—C16—C17—C120.7 (3)
C2—C1—C6—N1179.1 (2)C15—C16—C17—C18177.9 (2)
C4—C5—C6—C10.5 (3)C13—C12—C17—C160.4 (3)
C4—C5—C6—N1179.0 (2)C11—C12—C17—C16178.2 (2)
C7—N1—C6—C157.4 (3)C13—C12—C17—C18177.9 (2)
C10—N1—C6—C1122.0 (2)C11—C12—C17—C180.6 (3)
C7—N1—C6—C5122.2 (2)C16—C17—C18—C19129.6 (2)
C10—N1—C6—C558.4 (3)C12—C17—C18—C1953.0 (3)
C10—N1—C7—O1178.9 (2)C16—C17—C18—C9117.7 (2)
C6—N1—C7—O11.6 (4)C12—C17—C18—C959.7 (2)
C10—N1—C7—C80.3 (3)C10—C9—C18—C17174.61 (18)
C6—N1—C7—C8179.70 (19)C8—C9—C18—C1758.4 (2)
O1—C7—C8—C9178.6 (2)C10—C9—C18—C1959.8 (2)
N1—C7—C8—C90.1 (2)C8—C9—C18—C1956.5 (2)
O1—C7—C8—C1159.6 (3)C17—C18—C19—C20133.8 (2)
N1—C7—C8—C11119.0 (2)C9—C18—C19—C20113.6 (2)
C7—C8—C9—C100.3 (2)C17—C18—C19—C2451.8 (3)
C11—C8—C9—C10120.43 (19)C9—C18—C19—C2460.7 (2)
C7—C8—C9—C18118.87 (19)C24—C19—C20—C212.1 (3)
C11—C8—C9—C181.2 (2)C18—C19—C20—C21176.1 (2)
C7—N1—C10—O2178.0 (2)C19—C20—C21—C220.3 (3)
C6—N1—C10—O22.6 (3)C20—C21—C22—C232.2 (4)
C7—N1—C10—C90.5 (2)C21—C22—C23—C241.7 (4)
C6—N1—C10—C9179.93 (19)C22—C23—C24—C190.7 (3)
C8—C9—C10—O2177.9 (2)C22—C23—C24—C11174.3 (2)
C18—C9—C10—O259.1 (3)C20—C19—C24—C232.6 (3)
C8—C9—C10—N10.5 (2)C18—C19—C24—C23177.3 (2)
C18—C9—C10—N1118.3 (2)C20—C19—C24—C11173.0 (2)
C7—C8—C11—C2457.5 (2)C18—C19—C24—C111.6 (3)
C9—C8—C11—C2458.2 (2)C12—C11—C24—C23130.4 (2)
C7—C8—C11—C12172.43 (19)C8—C11—C24—C23116.8 (2)
C9—C8—C11—C1256.7 (2)C12—C11—C24—C1954.2 (2)
C24—C11—C12—C13128.5 (2)C8—C11—C24—C1958.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O2i0.952.653.552 (3)160
C5—H5···F2ii0.952.563.458 (3)157
C9—H9···O1iii1.002.603.084 (3)110
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2.
(IIb) N-(2,4,6-Trifluorophenyl)-9,10-dihydro-9,10- ethanoanthracene-11,12-dicarboximide top
Crystal data top
C24H14F3NO2F(000) = 832
Mr = 405.36Dx = 1.530 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.687 (2) ÅCell parameters from 7452 reflections
b = 12.3369 (14) Åθ = 2.3–33.3°
c = 8.1066 (9) ŵ = 0.12 mm1
β = 95.716 (7)°T = 90 K
V = 1760.1 (3) Å3Splitter, colourless
Z = 40.46 × 0.45 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4058 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 30.0°, θmin = 2.3°
ϕ and ω scansh = 2424
26961 measured reflectionsk = 1717
5138 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.7101P]
where P = (Fo2 + 2Fc2)/3
5138 reflections(Δ/σ)max = 0.002
271 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C24H14F3NO2V = 1760.1 (3) Å3
Mr = 405.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.687 (2) ŵ = 0.12 mm1
b = 12.3369 (14) ÅT = 90 K
c = 8.1066 (9) Å0.46 × 0.45 × 0.23 mm
β = 95.716 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4058 reflections with I > 2σ(I)
26961 measured reflectionsRint = 0.036
5138 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.02Δρmax = 0.46 e Å3
5138 reflectionsΔρmin = 0.24 e Å3
271 parameters
Special details top

Experimental. Data for (IIb): yield 2.93 g (72%). Analysis calculated for C24H14F3NO2: C 71.11, H 3.48, N 3.46%; found: C 71.40, H 3.72, N 3.37%. IR (KBr): νmax (cm-1) 3068 (CHAr), 1786, 1722 (CO), 1608, 1522 (CCAr), 1357, 1186 (C—N—C), 1205 (CArF). 1H NMR (CDCl3): δ 7.47–7.16 (m, 8H, Ar—H), 6.68, 6.56 (s, 2H, H-2, H-2'), 6.14 (m, 2H, Ar—H), 4.87 (s, 2H, H-6), 3.43 (s, 2H, H-5); 13C NMR (CDCl3): δ 174.25 (CO), 164.13, 161.61 (d, 1JC–F = -253.5 Hz, C-1), 159.67, 157.10 (d, 1JC–F = -258.5 Hz, C-3), 141.45, 138.29 (C-7a, C-7b), 127.29, 126.83 (C-9a, C-9b), 125.12, 124.25 (C-8a, C-8b), 105.44 (t, 2JC–F = 17.5, C-4), 100.98 (m, C-2), 47.38 (C-6), 45.34 (C-5). MS: m/e 405 [M]+, 202, 178 (100), 101.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C–H = 0.95–1.00 Å and Uiso(H) = 1.2–1.5 Ueq(parent atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21787 (5)0.25185 (7)0.44608 (11)0.01599 (18)
O20.35278 (5)0.47545 (8)0.13620 (11)0.01868 (19)
N10.30028 (5)0.35162 (8)0.30437 (12)0.01185 (19)
F10.32643 (4)0.13564 (6)0.25230 (10)0.02037 (17)
F20.56774 (4)0.15184 (7)0.54609 (11)0.02304 (18)
F30.41634 (4)0.46318 (6)0.48709 (11)0.02094 (17)
C10.38132 (7)0.19152 (10)0.34073 (15)0.0138 (2)
C20.44715 (7)0.13852 (10)0.39948 (15)0.0156 (2)
H20.45400.06320.38150.019*
C30.50249 (7)0.20079 (10)0.48582 (16)0.0157 (2)
C40.49521 (7)0.31036 (10)0.51512 (16)0.0165 (2)
H40.53500.35100.57330.020*
C50.42724 (7)0.35790 (10)0.45562 (15)0.0145 (2)
C60.36889 (7)0.30081 (9)0.36730 (14)0.0124 (2)
C70.22883 (6)0.32215 (9)0.34774 (14)0.0116 (2)
C80.17021 (6)0.39429 (9)0.25201 (14)0.0112 (2)
H80.13380.34930.17870.013*
C90.21589 (7)0.46906 (9)0.14649 (14)0.0116 (2)
H90.20010.45750.02580.014*
C100.29776 (7)0.43654 (10)0.18793 (14)0.0127 (2)
C110.12623 (6)0.46439 (9)0.37128 (14)0.0112 (2)
H110.09520.41910.44160.013*
C120.07775 (7)0.54213 (10)0.26103 (14)0.0124 (2)
C130.00074 (7)0.54978 (10)0.24810 (15)0.0152 (2)
H130.02970.50240.30960.018*
C140.03688 (7)0.62825 (11)0.14323 (16)0.0179 (2)
H140.09060.63500.13500.021*
C150.00515 (7)0.69606 (11)0.05135 (16)0.0186 (3)
H150.02000.74910.01920.022*
C160.08394 (7)0.68718 (10)0.06147 (15)0.0157 (2)
H160.11270.73300.00280.019*
C170.11979 (7)0.61020 (10)0.16702 (14)0.0124 (2)
C180.20417 (6)0.59010 (9)0.19432 (14)0.0110 (2)
H180.23350.64090.12870.013*
C190.22812 (6)0.59733 (9)0.37837 (14)0.0107 (2)
C200.28882 (7)0.65648 (9)0.45248 (14)0.0128 (2)
H200.31800.70090.38710.015*
C210.30678 (7)0.65045 (10)0.62331 (15)0.0143 (2)
H210.34860.69050.67440.017*
C220.26395 (7)0.58621 (10)0.71941 (15)0.0153 (2)
H220.27590.58360.83620.018*
C230.20338 (7)0.52543 (10)0.64443 (14)0.0134 (2)
H230.17440.48070.70970.016*
C240.18585 (6)0.53078 (9)0.47418 (14)0.0112 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0151 (4)0.0140 (4)0.0187 (4)0.0011 (3)0.0010 (3)0.0048 (3)
O20.0162 (4)0.0192 (5)0.0221 (5)0.0011 (3)0.0092 (3)0.0043 (3)
N10.0108 (4)0.0109 (4)0.0139 (5)0.0009 (3)0.0016 (3)0.0012 (3)
F10.0194 (4)0.0140 (4)0.0260 (4)0.0012 (3)0.0061 (3)0.0054 (3)
F20.0156 (4)0.0216 (4)0.0304 (4)0.0067 (3)0.0050 (3)0.0007 (3)
F30.0171 (4)0.0117 (4)0.0334 (4)0.0001 (3)0.0005 (3)0.0060 (3)
C10.0147 (5)0.0124 (5)0.0143 (5)0.0017 (4)0.0006 (4)0.0013 (4)
C20.0175 (6)0.0114 (5)0.0177 (6)0.0019 (4)0.0016 (4)0.0009 (4)
C30.0125 (5)0.0173 (6)0.0174 (6)0.0036 (4)0.0016 (4)0.0021 (4)
C40.0125 (5)0.0167 (6)0.0200 (6)0.0010 (4)0.0003 (4)0.0015 (4)
C50.0133 (5)0.0108 (5)0.0196 (6)0.0003 (4)0.0032 (4)0.0012 (4)
C60.0117 (5)0.0120 (5)0.0137 (5)0.0007 (4)0.0024 (4)0.0011 (4)
C70.0123 (5)0.0098 (5)0.0127 (5)0.0004 (4)0.0006 (4)0.0015 (4)
C80.0112 (5)0.0107 (5)0.0115 (5)0.0006 (4)0.0002 (4)0.0008 (4)
C90.0140 (5)0.0111 (5)0.0096 (5)0.0004 (4)0.0013 (4)0.0006 (4)
C100.0159 (5)0.0117 (5)0.0109 (5)0.0013 (4)0.0032 (4)0.0005 (4)
C110.0102 (5)0.0119 (5)0.0117 (5)0.0005 (4)0.0016 (4)0.0017 (4)
C120.0130 (5)0.0124 (5)0.0115 (5)0.0010 (4)0.0003 (4)0.0003 (4)
C130.0135 (5)0.0172 (6)0.0149 (5)0.0005 (4)0.0008 (4)0.0006 (4)
C140.0134 (5)0.0203 (6)0.0193 (6)0.0038 (5)0.0021 (4)0.0019 (5)
C150.0196 (6)0.0171 (6)0.0179 (6)0.0047 (5)0.0041 (5)0.0017 (4)
C160.0191 (6)0.0133 (5)0.0141 (5)0.0004 (4)0.0009 (4)0.0021 (4)
C170.0130 (5)0.0124 (5)0.0114 (5)0.0014 (4)0.0006 (4)0.0008 (4)
C180.0118 (5)0.0103 (5)0.0107 (5)0.0002 (4)0.0005 (4)0.0012 (4)
C190.0117 (5)0.0101 (5)0.0103 (5)0.0021 (4)0.0011 (4)0.0002 (4)
C200.0132 (5)0.0107 (5)0.0144 (5)0.0006 (4)0.0019 (4)0.0001 (4)
C210.0143 (5)0.0132 (5)0.0150 (6)0.0008 (4)0.0004 (4)0.0037 (4)
C220.0182 (6)0.0171 (6)0.0103 (5)0.0018 (5)0.0004 (4)0.0025 (4)
C230.0146 (5)0.0148 (5)0.0112 (5)0.0021 (4)0.0027 (4)0.0010 (4)
C240.0102 (5)0.0110 (5)0.0123 (5)0.0023 (4)0.0010 (4)0.0006 (4)
Geometric parameters (Å, º) top
O1—C71.2067 (15)C11—H111.0000
O2—C101.1977 (15)C12—C131.3849 (16)
N1—C71.3933 (15)C12—C171.3971 (17)
N1—C101.4079 (15)C13—C141.4002 (17)
N1—C61.4150 (14)C13—H130.9500
F1—C11.3390 (13)C14—C151.3847 (19)
F2—C31.3502 (14)C14—H140.9500
F3—C51.3413 (14)C15—C161.3921 (18)
C1—C21.3782 (16)C15—H150.9500
C1—C61.3864 (17)C16—C171.3885 (16)
C2—C31.3790 (17)C16—H160.9500
C2—H20.9500C17—C181.5073 (16)
C3—C41.3807 (18)C18—C191.5125 (15)
C4—C51.3806 (16)C18—H181.0000
C4—H40.9500C19—C201.3847 (15)
C5—C61.3881 (16)C19—C241.3971 (16)
C7—C81.5196 (15)C20—C211.3916 (16)
C8—C91.5404 (16)C20—H200.9500
C8—C111.5613 (16)C21—C221.3879 (18)
C8—H81.0000C21—H210.9500
C9—C101.5079 (16)C22—C231.3963 (16)
C9—C181.5618 (16)C22—H220.9500
C9—H91.0000C23—C241.3856 (16)
C11—C121.5170 (15)C23—H230.9500
C11—C241.5178 (15)
C7—N1—C10113.22 (10)C8—C11—H11112.3
C7—N1—C6124.07 (10)C13—C12—C17120.11 (11)
C10—N1—C6122.69 (10)C13—C12—C11126.24 (11)
F1—C1—C2118.89 (11)C17—C12—C11113.65 (10)
F1—C1—C6117.79 (10)C12—C13—C14119.12 (12)
C2—C1—C6123.32 (11)C12—C13—H13120.4
C1—C2—C3116.33 (11)C14—C13—H13120.4
C1—C2—H2121.8C15—C14—C13120.47 (11)
C3—C2—H2121.8C15—C14—H14119.8
F2—C3—C4117.81 (11)C13—C14—H14119.8
F2—C3—C2118.19 (11)C14—C15—C16120.58 (11)
C4—C3—C2123.99 (11)C14—C15—H15119.7
C3—C4—C5116.66 (11)C16—C15—H15119.7
C3—C4—H4121.7C17—C16—C15118.89 (12)
C5—C4—H4121.7C17—C16—H16120.6
F3—C5—C4118.79 (11)C15—C16—H16120.6
F3—C5—C6118.41 (10)C16—C17—C12120.80 (11)
C4—C5—C6122.79 (11)C16—C17—C18125.99 (11)
C1—C6—C5116.89 (10)C12—C17—C18113.20 (10)
C1—C6—N1121.22 (10)C17—C18—C19108.12 (9)
C5—C6—N1121.88 (10)C17—C18—C9105.95 (9)
O1—C7—N1124.31 (11)C19—C18—C9105.68 (9)
O1—C7—C8127.73 (11)C17—C18—H18112.2
N1—C7—C8107.95 (9)C19—C18—H18112.2
C7—C8—C9105.39 (9)C9—C18—H18112.2
C7—C8—C11111.40 (9)C20—C19—C24120.21 (10)
C9—C8—C11109.48 (9)C20—C19—C18126.01 (10)
C7—C8—H8110.2C24—C19—C18113.64 (10)
C9—C8—H8110.2C19—C20—C21119.60 (11)
C11—C8—H8110.2C19—C20—H20120.2
C10—C9—C8105.19 (9)C21—C20—H20120.2
C10—C9—C18110.32 (9)C22—C21—C20120.39 (11)
C8—C9—C18110.17 (9)C22—C21—H21119.8
C10—C9—H9110.4C20—C21—H21119.8
C8—C9—H9110.4C21—C22—C23120.01 (11)
C18—C9—H9110.4C21—C22—H22120.0
O2—C10—N1124.08 (11)C23—C22—H22120.0
O2—C10—C9127.66 (11)C24—C23—C22119.60 (11)
N1—C10—C9108.24 (10)C24—C23—H23120.2
C12—C11—C24107.68 (9)C22—C23—H23120.2
C12—C11—C8105.82 (9)C23—C24—C19120.18 (11)
C24—C11—C8106.11 (9)C23—C24—C11126.58 (11)
C12—C11—H11112.3C19—C24—C11113.11 (10)
C24—C11—H11112.3
F1—C1—C2—C3178.28 (11)C9—C8—C11—C2457.66 (11)
C6—C1—C2—C31.19 (19)C24—C11—C12—C13126.93 (12)
C1—C2—C3—F2179.73 (11)C8—C11—C12—C13119.93 (12)
C1—C2—C3—C40.03 (19)C24—C11—C12—C1753.04 (13)
F2—C3—C4—C5178.50 (12)C8—C11—C12—C1760.10 (12)
C2—C3—C4—C51.3 (2)C17—C12—C13—C141.66 (18)
C3—C4—C5—F3177.25 (11)C11—C12—C13—C14178.31 (11)
C3—C4—C5—C61.37 (19)C12—C13—C14—C151.15 (19)
F1—C1—C6—C5178.40 (11)C13—C14—C15—C160.1 (2)
C2—C1—C6—C51.08 (18)C14—C15—C16—C170.90 (19)
F1—C1—C6—N10.51 (17)C15—C16—C17—C120.38 (18)
C2—C1—C6—N1180.00 (11)C15—C16—C17—C18179.49 (11)
F3—C5—C6—C1178.36 (11)C13—C12—C17—C160.90 (18)
C4—C5—C6—C10.27 (18)C11—C12—C17—C16179.07 (10)
F3—C5—C6—N12.73 (18)C13—C12—C17—C18179.21 (10)
C4—C5—C6—N1178.64 (12)C11—C12—C17—C180.83 (14)
C7—N1—C6—C161.03 (16)C16—C17—C18—C19125.87 (12)
C10—N1—C6—C1117.69 (13)C12—C17—C18—C1954.01 (13)
C7—N1—C6—C5120.11 (13)C16—C17—C18—C9121.22 (12)
C10—N1—C6—C561.17 (16)C12—C17—C18—C958.90 (12)
C10—N1—C7—O1179.52 (11)C10—C9—C18—C17173.50 (9)
C6—N1—C7—O11.65 (18)C8—C9—C18—C1757.79 (11)
C10—N1—C7—C80.21 (13)C10—C9—C18—C1958.90 (12)
C6—N1—C7—C8179.04 (10)C8—C9—C18—C1956.80 (11)
O1—C7—C8—C9179.64 (12)C17—C18—C19—C20131.32 (12)
N1—C7—C8—C90.36 (12)C9—C18—C19—C20115.59 (12)
O1—C7—C8—C1161.00 (15)C17—C18—C19—C2453.06 (13)
N1—C7—C8—C11118.28 (10)C9—C18—C19—C2460.03 (12)
C7—C8—C9—C100.37 (11)C24—C19—C20—C210.92 (17)
C11—C8—C9—C10119.55 (10)C18—C19—C20—C21176.28 (11)
C7—C8—C9—C18119.26 (10)C19—C20—C21—C220.43 (18)
C11—C8—C9—C180.66 (12)C20—C21—C22—C231.29 (18)
C7—N1—C10—O2178.64 (11)C21—C22—C23—C240.78 (18)
C6—N1—C10—O22.52 (18)C22—C23—C24—C190.57 (17)
C7—N1—C10—C90.04 (13)C22—C23—C24—C11175.10 (11)
C6—N1—C10—C9178.81 (10)C20—C19—C24—C231.43 (17)
C8—C9—C10—O2178.35 (12)C18—C19—C24—C23177.33 (10)
C18—C9—C10—O259.57 (16)C20—C19—C24—C11174.79 (10)
C8—C9—C10—N10.26 (12)C18—C19—C24—C111.11 (14)
C18—C9—C10—N1119.05 (10)C12—C11—C24—C23130.14 (12)
C7—C8—C11—C12172.74 (9)C8—C11—C24—C23116.91 (12)
C9—C8—C11—C1256.57 (11)C12—C11—C24—C1953.94 (12)
C7—C8—C11—C2458.51 (11)C8—C11—C24—C1959.01 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···F3i0.952.513.2030 (15)130
C21—H21···F2ii0.952.623.3051 (14)129
C14—H14···O1iii0.952.703.5544 (15)150
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2.
(IIc) N-(2,3,4,5,6-Pentafluorophenyl)-9,10-dihydro-9,10- ethanoanthracene-11,12-dicarboximide top
Crystal data top
C24H12F5NO2Dx = 1.580 Mg m3
Mr = 441.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 808 reflections
a = 18.259 (4) Åθ = 2.2–19.9°
b = 24.104 (6) ŵ = 0.14 mm1
c = 8.4301 (18) ÅT = 93 K
V = 3710.1 (14) Å3Needle, colourless
Z = 80.49 × 0.07 × 0.05 mm
F(000) = 1792
Data collection top
Bruker SMART CCD area-detector
diffractometer
1997 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.152
Graphite monochromatorθmax = 26.0°, θmin = 1.4°
ϕ and ω scansh = 2222
20727 measured reflectionsk = 2924
3652 independent reflectionsl = 910
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0803P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3652 reflectionsΔρmax = 0.45 e Å3
290 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0130 (11)
Crystal data top
C24H12F5NO2V = 3710.1 (14) Å3
Mr = 441.35Z = 8
Orthorhombic, PccnMo Kα radiation
a = 18.259 (4) ŵ = 0.14 mm1
b = 24.104 (6) ÅT = 93 K
c = 8.4301 (18) Å0.49 × 0.07 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1997 reflections with I > 2σ(I)
20727 measured reflectionsRint = 0.152
3652 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.00Δρmax = 0.45 e Å3
3652 reflectionsΔρmin = 0.45 e Å3
290 parameters
Special details top

Experimental. Data for (IIc): yield 2.81 g (64%). Analysis calculated for C24H12F5NO2: C 65.31, H 2.74, N 3.17%; found: C 65.49, H 2.96, N 3.03%. IR (KBr): νmax (cm-1) 3079 (CHAr), 1797, 1729 (CO), 1626, 1528 (CCAr), 1372, 1186 (C—N—C), 1259 (CArF). 1H NMR (CDCl3): δ 7.41–7.18 (m, 8H, Ar—H), 4.87 (s, 2H, H-6, s), 3.45 (s, 2H, H-5); 13C NMR (CDCl3): δ 173.95 (CO), 144.56, 141.99 (d, 1JC–F = - 258.5 Hz, C-3), 143.42, 140.86 (d, 1JC–F = -257.5 Hz, C-1), 141.30, 138.21 (C-7a, C-7b), 139.02, 136.51 (t, 1JC—F = -252.5 Hz, C-2), 127.56, 127.03 (C-9a, C-9b), 125.21, 124.37 (C-8a, C-8b), 106.66 (t, 2JC–F = 16.1 Hz, C-4), 47.63 (C-6), 45.62 (C-5). MS: m/e 441 [M]+, 202, 178 (100), 101.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.98 and Uiso(H) = 1.2–1.5 Ueq(parent atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51398 (14)0.44263 (12)0.5471 (3)0.0250 (7)
O20.42128 (14)0.33349 (12)0.1505 (3)0.0237 (7)
N10.45758 (16)0.38258 (14)0.3737 (4)0.0187 (8)
F10.30567 (11)0.37739 (9)0.4140 (3)0.0260 (6)
F20.24363 (11)0.31724 (10)0.6489 (3)0.0299 (6)
F30.32951 (12)0.26414 (10)0.8658 (3)0.0294 (6)
F40.47869 (12)0.26691 (10)0.8363 (3)0.0278 (6)
F50.54000 (11)0.32218 (10)0.5905 (3)0.0263 (6)
C10.3490 (2)0.34867 (18)0.5142 (5)0.0201 (9)
C20.3174 (2)0.31911 (17)0.6367 (5)0.0215 (10)
C30.3605 (2)0.29201 (17)0.7452 (4)0.0221 (10)
C40.4358 (2)0.29375 (17)0.7297 (5)0.0217 (9)
C50.4666 (2)0.32155 (17)0.6050 (5)0.0214 (10)
C60.4242 (2)0.35059 (17)0.4956 (5)0.0208 (9)
C70.5015 (2)0.42842 (18)0.4111 (5)0.0200 (9)
C80.5291 (2)0.45356 (17)0.2590 (4)0.0196 (9)
H80.50820.49160.24500.023*
C90.50129 (19)0.41494 (17)0.1264 (4)0.0173 (9)
H90.47070.43630.04940.021*
C100.4547 (2)0.37121 (17)0.2100 (5)0.0186 (9)
C110.6150 (2)0.45643 (17)0.2581 (4)0.0202 (9)
H110.63450.48220.34080.024*
C120.63542 (19)0.47465 (17)0.0906 (5)0.0201 (10)
C130.6725 (2)0.52231 (18)0.0488 (5)0.0242 (10)
H130.68780.54790.12790.029*
C140.6874 (2)0.53252 (19)0.1114 (5)0.0261 (10)
H140.71280.56530.14140.031*
C150.6651 (2)0.49475 (19)0.2276 (5)0.0260 (10)
H150.67560.50190.33610.031*
C160.62765 (19)0.44687 (18)0.1848 (5)0.0232 (10)
H160.61260.42110.26380.028*
C170.61225 (19)0.43680 (17)0.0259 (5)0.0197 (9)
C180.56851 (19)0.38839 (16)0.0393 (5)0.0204 (9)
H180.55330.36180.04570.025*
C190.61386 (19)0.36044 (17)0.1681 (5)0.0191 (9)
C200.6265 (2)0.30408 (19)0.1811 (5)0.0263 (10)
H200.60750.27920.10420.032*
C210.6679 (2)0.28419 (19)0.3092 (5)0.0285 (11)
H210.67630.24550.32060.034*
C220.6965 (2)0.3209 (2)0.4191 (5)0.0296 (11)
H220.72580.30710.50360.035*
C230.6831 (2)0.37753 (19)0.4080 (5)0.0248 (10)
H230.70250.40240.48470.030*
C240.6409 (2)0.39716 (17)0.2824 (4)0.0196 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0317 (15)0.0235 (17)0.0197 (18)0.0050 (13)0.0021 (12)0.0011 (13)
O20.0215 (14)0.0264 (18)0.0232 (17)0.0027 (13)0.0010 (12)0.0015 (13)
N10.0233 (17)0.018 (2)0.0145 (19)0.0006 (15)0.0011 (13)0.0009 (14)
F10.0241 (12)0.0303 (15)0.0235 (14)0.0048 (11)0.0008 (9)0.0035 (11)
F20.0211 (13)0.0378 (17)0.0309 (15)0.0019 (11)0.0042 (10)0.0011 (12)
F30.0325 (13)0.0352 (16)0.0204 (14)0.0063 (11)0.0052 (10)0.0076 (11)
F40.0313 (13)0.0277 (15)0.0245 (14)0.0030 (11)0.0051 (10)0.0062 (11)
F50.0209 (12)0.0303 (15)0.0277 (14)0.0021 (11)0.0014 (9)0.0045 (11)
C10.020 (2)0.026 (3)0.014 (2)0.0036 (18)0.0030 (15)0.0013 (18)
C20.020 (2)0.024 (3)0.020 (2)0.0010 (18)0.0045 (17)0.0034 (19)
C30.029 (2)0.023 (3)0.014 (2)0.0008 (19)0.0037 (17)0.0011 (18)
C40.028 (2)0.019 (2)0.018 (2)0.0000 (18)0.0036 (17)0.0039 (18)
C50.018 (2)0.020 (3)0.026 (3)0.0001 (18)0.0047 (17)0.0010 (18)
C60.026 (2)0.018 (2)0.018 (2)0.0006 (19)0.0003 (16)0.0018 (18)
C70.023 (2)0.021 (2)0.016 (2)0.0054 (18)0.0008 (16)0.0047 (18)
C80.025 (2)0.017 (2)0.017 (2)0.0023 (17)0.0011 (16)0.0001 (17)
C90.0185 (19)0.019 (2)0.014 (2)0.0025 (17)0.0024 (15)0.0020 (16)
C100.0170 (19)0.023 (3)0.016 (2)0.0086 (18)0.0002 (15)0.0006 (18)
C110.022 (2)0.021 (2)0.017 (2)0.0012 (18)0.0018 (16)0.0025 (18)
C120.0134 (19)0.027 (3)0.020 (2)0.0019 (17)0.0026 (16)0.0045 (19)
C130.018 (2)0.030 (3)0.025 (3)0.0008 (19)0.0033 (17)0.001 (2)
C140.020 (2)0.027 (3)0.031 (3)0.0020 (19)0.0008 (18)0.012 (2)
C150.023 (2)0.040 (3)0.015 (2)0.001 (2)0.0002 (17)0.006 (2)
C160.017 (2)0.032 (3)0.020 (2)0.0014 (19)0.0015 (16)0.001 (2)
C170.0153 (18)0.025 (2)0.019 (2)0.0023 (17)0.0003 (15)0.0003 (18)
C180.019 (2)0.023 (3)0.019 (2)0.0004 (18)0.0021 (16)0.0040 (17)
C190.0149 (19)0.025 (3)0.017 (2)0.0001 (17)0.0040 (15)0.0007 (18)
C200.020 (2)0.029 (3)0.030 (3)0.0028 (19)0.0060 (17)0.001 (2)
C210.025 (2)0.024 (3)0.037 (3)0.003 (2)0.0083 (19)0.009 (2)
C220.020 (2)0.044 (3)0.025 (3)0.008 (2)0.0013 (17)0.012 (2)
C230.019 (2)0.034 (3)0.022 (2)0.0008 (19)0.0003 (16)0.001 (2)
C240.0188 (19)0.022 (2)0.018 (2)0.0000 (17)0.0032 (16)0.0007 (18)
Geometric parameters (Å, º) top
O1—C71.218 (4)C11—H111.0000
O2—C101.204 (5)C12—C131.379 (6)
N1—C71.402 (5)C12—C171.406 (6)
N1—C101.408 (5)C13—C141.400 (6)
N1—C61.422 (5)C13—H130.9500
F1—C11.348 (4)C14—C151.398 (6)
F2—C21.352 (4)C14—H140.9500
F3—C31.343 (4)C15—C161.389 (6)
F4—C41.356 (4)C15—H150.9500
F5—C51.345 (4)C16—C171.390 (5)
C1—C21.380 (6)C16—H160.9500
C1—C61.383 (5)C17—C181.517 (5)
C2—C31.372 (6)C18—C191.523 (5)
C3—C41.382 (5)C18—H181.0000
C4—C51.368 (5)C19—C201.382 (6)
C5—C61.393 (6)C19—C241.398 (5)
C7—C81.505 (6)C20—C211.403 (6)
C8—C91.541 (5)C20—H200.9500
C8—C111.568 (5)C21—C221.383 (6)
C8—H81.0000C21—H210.9500
C9—C101.527 (5)C22—C231.390 (6)
C9—C181.567 (5)C22—H220.9500
C9—H91.0000C23—C241.393 (5)
C11—C241.519 (6)C23—H230.9500
C11—C121.525 (5)
C7—N1—C10113.3 (3)C8—C11—H11112.3
C7—N1—C6120.7 (3)C13—C12—C17120.7 (4)
C10—N1—C6125.9 (3)C13—C12—C11126.6 (4)
F1—C1—C2119.3 (3)C17—C12—C11112.7 (3)
F1—C1—C6119.6 (4)C12—C13—C14119.2 (4)
C2—C1—C6121.1 (4)C12—C13—H13120.4
F2—C2—C3120.3 (4)C14—C13—H13120.4
F2—C2—C1119.3 (3)C15—C14—C13120.4 (4)
C3—C2—C1120.4 (4)C15—C14—H14119.8
F3—C3—C2120.1 (3)C13—C14—H14119.8
F3—C3—C4120.4 (4)C16—C15—C14120.1 (4)
C2—C3—C4119.5 (4)C16—C15—H15119.9
F4—C4—C5120.3 (3)C14—C15—H15119.9
F4—C4—C3119.8 (4)C15—C16—C17119.7 (4)
C5—C4—C3119.8 (4)C15—C16—H16120.2
F5—C5—C4119.0 (3)C17—C16—H16120.2
F5—C5—C6119.2 (3)C16—C17—C12119.9 (4)
C4—C5—C6121.7 (4)C16—C17—C18126.2 (4)
C1—C6—C5117.4 (4)C12—C17—C18113.9 (3)
C1—C6—N1121.7 (4)C17—C18—C19108.2 (3)
C5—C6—N1120.8 (3)C17—C18—C9105.6 (3)
O1—C7—N1122.7 (4)C19—C18—C9105.8 (3)
O1—C7—C8128.8 (4)C17—C18—H18112.3
N1—C7—C8108.5 (3)C19—C18—H18112.3
C7—C8—C9105.3 (3)C9—C18—H18112.3
C7—C8—C11110.9 (3)C20—C19—C24120.6 (4)
C9—C8—C11110.6 (3)C20—C19—C18125.6 (4)
C7—C8—H8110.0C24—C19—C18113.8 (4)
C9—C8—H8110.0C19—C20—C21119.1 (4)
C11—C8—H8110.0C19—C20—H20120.4
C10—C9—C8105.4 (3)C21—C20—H20120.4
C10—C9—C18111.8 (3)C22—C21—C20120.0 (4)
C8—C9—C18109.2 (3)C22—C21—H21120.0
C10—C9—H9110.1C20—C21—H21120.0
C8—C9—H9110.1C21—C22—C23121.1 (4)
C18—C9—H9110.1C21—C22—H22119.5
O2—C10—N1125.1 (4)C23—C22—H22119.5
O2—C10—C9127.7 (4)C22—C23—C24118.8 (4)
N1—C10—C9107.3 (3)C22—C23—H23120.6
C24—C11—C12108.7 (3)C24—C23—H23120.6
C24—C11—C8105.6 (3)C23—C24—C19120.3 (4)
C12—C11—C8105.2 (3)C23—C24—C11126.5 (4)
C24—C11—H11112.3C19—C24—C11113.1 (3)
C12—C11—H11112.3
F1—C1—C2—F23.3 (6)C18—C9—C10—N1116.7 (3)
C6—C1—C2—F2178.6 (4)C7—C8—C11—C2457.3 (4)
F1—C1—C2—C3176.5 (4)C9—C8—C11—C2459.2 (4)
C6—C1—C2—C31.6 (6)C7—C8—C11—C12172.2 (3)
F2—C2—C3—F31.0 (6)C9—C8—C11—C1255.7 (4)
C1—C2—C3—F3178.8 (4)C24—C11—C12—C13128.6 (4)
F2—C2—C3—C4179.2 (4)C8—C11—C12—C13118.7 (4)
C1—C2—C3—C41.0 (6)C24—C11—C12—C1751.4 (4)
F3—C3—C4—F40.4 (6)C8—C11—C12—C1761.3 (4)
C2—C3—C4—F4179.8 (4)C17—C12—C13—C140.4 (6)
F3—C3—C4—C5179.0 (4)C11—C12—C13—C14179.5 (4)
C2—C3—C4—C51.2 (6)C12—C13—C14—C150.2 (6)
F4—C4—C5—F50.5 (6)C13—C14—C15—C160.3 (6)
C3—C4—C5—F5179.1 (3)C14—C15—C16—C170.2 (6)
F4—C4—C5—C6178.5 (4)C15—C16—C17—C120.8 (5)
C3—C4—C5—C62.9 (6)C15—C16—C17—C18176.4 (4)
F1—C1—C6—C5178.1 (3)C13—C12—C17—C160.9 (6)
C2—C1—C6—C50.1 (6)C11—C12—C17—C16179.0 (3)
F1—C1—C6—N10.5 (6)C13—C12—C17—C18176.7 (3)
C2—C1—C6—N1177.6 (4)C11—C12—C17—C183.4 (4)
F5—C5—C6—C1179.7 (4)C16—C17—C18—C19127.8 (4)
C4—C5—C6—C12.3 (6)C12—C17—C18—C1954.8 (4)
F5—C5—C6—N12.7 (6)C16—C17—C18—C9119.3 (4)
C4—C5—C6—N1175.3 (4)C12—C17—C18—C958.1 (4)
C7—N1—C6—C1114.3 (4)C10—C9—C18—C17175.6 (3)
C10—N1—C6—C169.5 (5)C8—C9—C18—C1759.4 (4)
C7—N1—C6—C563.2 (5)C10—C9—C18—C1961.1 (4)
C10—N1—C6—C5113.0 (4)C8—C9—C18—C1955.2 (4)
C10—N1—C7—O1175.7 (3)C17—C18—C19—C20131.7 (4)
C6—N1—C7—O10.9 (6)C9—C18—C19—C20115.5 (4)
C10—N1—C7—C83.1 (4)C17—C18—C19—C2450.9 (4)
C6—N1—C7—C8179.8 (3)C9—C18—C19—C2461.9 (4)
O1—C7—C8—C9174.8 (4)C24—C19—C20—C211.0 (6)
N1—C7—C8—C94.0 (4)C18—C19—C20—C21178.2 (3)
O1—C7—C8—C1155.0 (5)C19—C20—C21—C221.1 (6)
N1—C7—C8—C11123.8 (3)C20—C21—C22—C232.0 (6)
C7—C8—C9—C103.4 (4)C21—C22—C23—C240.7 (6)
C11—C8—C9—C10123.4 (3)C22—C23—C24—C191.4 (6)
C7—C8—C9—C18116.8 (3)C22—C23—C24—C11174.3 (4)
C11—C8—C9—C183.1 (4)C20—C19—C24—C232.3 (6)
C7—N1—C10—O2178.9 (4)C18—C19—C24—C23179.8 (3)
C6—N1—C10—O22.5 (6)C20—C19—C24—C11174.0 (3)
C7—N1—C10—C90.8 (4)C18—C19—C24—C113.5 (5)
C6—N1—C10—C9177.3 (3)C12—C11—C24—C23128.6 (4)
C8—C9—C10—O2178.5 (4)C8—C11—C24—C23118.9 (4)
C18—C9—C10—O263.0 (5)C12—C11—C24—C1955.4 (4)
C8—C9—C10—N11.7 (4)C8—C11—C24—C1957.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.952.463.070 (5)122
C8—H8···O1ii1.002.403.091 (5)126
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1.

Experimental details

(IIa)(IIb)(IIc)
Crystal data
Chemical formulaC24H15F2NO2C24H14F3NO2C24H12F5NO2
Mr387.37405.36441.35
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cOrthorhombic, Pccn
Temperature (K)939093
a, b, c (Å)18.229 (2), 11.7659 (13), 8.1599 (10)17.687 (2), 12.3369 (14), 8.1066 (9)18.259 (4), 24.104 (6), 8.4301 (18)
α, β, γ (°)90, 94.852 (4), 9090, 95.716 (7), 9090, 90, 90
V3)1743.9 (4)1760.1 (3)3710.1 (14)
Z448
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.110.120.14
Crystal size (mm)0.40 × 0.23 × 0.230.46 × 0.45 × 0.230.49 × 0.07 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16554, 3043, 2714 26961, 5138, 4058 20727, 3652, 1997
Rint0.0320.0360.152
(sin θ/λ)max1)0.5950.7030.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.112, 1.18 0.039, 0.106, 1.02 0.064, 0.174, 1.00
No. of reflections304351383652
No. of parameters262271290
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.210.46, 0.240.45, 0.45

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (IIa) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O2i0.952.653.552 (3)159.8
C5—H5···F2ii0.952.563.458 (3)156.8
C9—H9···O1iii1.002.603.084 (3)109.8
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (IIb) top
D—H···AD—HH···AD···AD—H···A
C4—H4···F3i0.952.513.2030 (15)129.5
C21—H21···F2ii0.952.623.3051 (14)129.0
C14—H14···O1iii0.952.703.5544 (15)150.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (IIc) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.952.463.070 (5)121.8
C8—H8···O1ii1.002.403.091 (5)125.7
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds