Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of a pair of diastereomeric 1:2 salts of (R)- and (S)-2-methyl­piperazine with (2S,3S)-tartaric acid, namely (R)-2-methyl­piperazinediium bis­[hydrogen (2S,3S)-tartrate] monohydrate, (I), and (S)-2-methyl­piperazinediium bis­[hydrogen (2S,3S)-tartrate] monohydrate, (II), both C5H14N22+·2C4H5O6-·H2O, each reveal the formation of well-defined head-to-tail-connected hydrogen tartrate chains; these chains are linked into a two-dimensional sheet via inter­molecular hydrogen bonds involving hydr­oxy groups and water mol­ecules, resulting in a layer structure. The (R)-2-methyl­piperazinediium ions lie between the hydrogen tartrate layers in the most stable equatorial conformation in (I), whereas in (II), these ions are in an unstable axial position inside the more inter­connected layers and form a larger number of inter­molecular hydrogen bonds than are observed in (I).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109046460/eg3031sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109046460/eg3031Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109046460/eg3031IIsup3.hkl
Contains datablock II

CCDC references: 765469; 765470

Comment top

Tartaric acid is one of the most readily available enantiomerically pure compounds, and is potentially useful as achiral resolving reagent for racemic amines (Gawronski & Gawronska, 1999). In the diastereomeric salts consisting of chiral amines and tartaric acids, hydrogen tartrates are often connected by an intermolecular hydrogen bond to the carboxylate group from another carboxylic acid to afford a one-dimensional chain structure, which leads to the construction of a two-dimensional sheet formed via intermolecular hydrogen bonds between hydroxy groups (Ryttersgaard & Larsen, 1998). Moreover, the chiral environment created by the layer of hydrogen tartrate ions is assumed to discriminate between the two ammonium enantiomers inside the layer, along with water molecules organizing the layer structure for the target amines (Bruun & Larsen, 1999; Sakurai et al., 2006). To evaluate their potential for use in this way, we report here the crystal structures of a pair of diastereomeric 1:2 salts, (I) and (II), of (2S,3S)- tartaric acid with (R)- and (S)-2-methylpiperazine, respectively.

In the crystal structures of both compounds, the N atoms of the 2-methylpiperazine molecule each have two H atoms, showing that these amines are completely converted to quaternary ammonium cations (Figs. 1 and 2). The C1—N2—C4—C5 and N1—C3—C4—C5 torsion angles are 179.89 (13) and 179.76 (12)° in (I), and 73.8 (2) and 72.4 (3)° in (II), respectively, indicating that the methyl groups are in the most stable equatorial position in the chair conformation of the piperazine ring in (I), whereas in (II), the methyl groups are in unstable axial position (Tables 1 and 3). Although all the tartaric acid was present as tartrate in the 1:1 salts (Katagiri et al., 2009), it was found that the two symmetrically independent tartaric acid units are present as hydrogen tartrate ions in (I) and (II) owing to the loss of a single H atom. The conformations of the hydrogen tartrate ions have roughly the same geometry around the C7—C8 and C11—C12 axes; the relevent torsion angles are given in Tables 1 and 3. The present structures of both (I) and (II) conform to the general structure for hydrogen tartrate salts, namely, these hydrogen tartrate ions form a one-dimensional chain structure (Figs. 3 and 4) connected by strong intermolecular hydrogen bonds [O5—H7···O7ii and O9—H10···O12iii in (I), and O5—H7···O8v and O9—H10···O11viii in (II); geometric details and symmetry codes are given in Tables 2 and 4). These two symmetrically independent chains are, however, skew lines that are orthogonal to each other, unlike in the case of most frequently reported types (Bruun & Larsen,1999).

Strong intermolecular O—H···O and N—H···O hydrogen bonds are observed in the packing structures, and, particularly, the piperadinium ions are tightly hydrogen bonded to water molecules and hydrogen tartrate ions in both (I) and (II) (Figs. 5 and 6, and Tables 2 and 4). The solubility of 12.7 g/100 g H2O for (I) is less than that of 33.0 g/100 g H2O for (II) at 303 K, and the crystal density of 1.582 Mg m-3 for (I) is slightly greater than that of 1.573 Mg m-3 for (II). The high packing efficiency of (I) is also evident in its higher `packing coefficient' (Spek, 2009) (75.7%), which differs by just 0.7% from the value found for (II) (75.2%), indicating that the less soluble salt (I) has a slight advantage in close packing. In contrast, there are more hydrogen bonds in the more soluble salt (II) than in the less soluble salt (I), indicating the same behavior as has been observed for 1:1 salts (Katagiri et al., 2009). The large number of hydrogen bonds in (II) is attributed to the contribution of the hydrogen bonds around the N atoms in the piperazinium ions (Figs. 7 and 8). Furthermore, the melting point of 460–461 K for (II) is higher than that of 455–456 K for (I), also suggesting that the more soluble salt (II) is stabilized to a greater extent by intermolecular hydrogen bonds.

In the less soluble salt (I), the hydrogen tartrate chains construct a two-dimensional sheet via intermolecular hydrogen bonds with the hydroxy groups, leading to the formation of a layer structure. No interaction is observed between the hydrogen tartrate layers (Fig. 5). The piperazinium ions lie between the hydrogen tartrate layers in the most stable equatorial conformation, anchored by five intermolecular hydrogen bonds formed by two tartrate ions and two water molecules (Fig. 7). The water molecules fill the structural void between the hydrogen tartrate layers. In contrast to the structure of (I), there are two independent forms of assembly of the hydrogen tartrate ions in the more soluble salt (II), and the layers are more interconnected (Fig. 6). One type of hydrogen tartrate chain is assembled by hydrogen bonds with the hydroxy groups to create a double-chain unit; no hydrogen bonds are formed between these double chains. The other type forms a sheet structure by hydrogen bonding via water molecules. Moreover, there are obvious hydrogen bonds between the hydrogen tartrate sheets, indicating that the layer-to-layer spacing is narrower than that in (I). The piperazinium ions lie between the hydrogen tartrate layers in an unstable axial conformation, which is stabilized by eight intermolecular hydrogen bonds constructed of five tartrates and a water molecule (Fig. 8). These hydrogen bonds are bifurcated and are thus estimated to be weaker than those of ordinary hydrogen bonds constituted geometrically with a single donor and acceptor. The water molecules behave as a hinge for the sheet structure of the hydrogen tartrate. The more soluble salt (II) is structurally disadvantaged in close packing, and adopts a less dense structure supported by intermolecular hydrogen bonds. These structural properties were similar to those of 1:1 salts.

The large contribution of the hydrogen bonds in the salt (II) showed a slight advantage of enthalpies. On the other hand, it has been reported that a comparison of vibrational movements observed as the equivalent isotropic parameters Ueq for all non-H atoms can be used in the calculation of solid state entropies (Madsen & Larsen, 2007). The Ueq values of the salt (II) are almost double those in (I) (Fig. 9). These results explain that the higher melting point of the less dense (II) is correlated not only with a difference in their enthalpies but also with that in their entropies.

Related literature top

For related literature, see: Bruun & Larsen (1999); Gawronski & Gawronska (1999); Katagiri et al. (2009); Madsen & Larsen (2007); Ryttersgaard & Larsen (1998); Sakurai et al. (2006); Spek (2009).

Experimental top

Enantiomeric pure (2S,3S)-tartaric acid, (R)- and (S)-2-methylpiperazine were manufactured by Toray Fine Chemicals Co. Ltd (Japan). Both salts were prepared by heating 2 mmol quantities of (2S,3S)-tartaric acid and 1 mmol (R)-2-methylpiperazine [for (I)] or (S)-2-methylpiperazine [for (II)] under reflux in the smallest possible amount of water. Subsequent cooling to room temperature yielded a crop of colorless prisms [m.p. 455–456 K for (I) and 460–461 K for (II)]. Their melting points were measured using a melting point apparatus. The solubility of these salts in water was established by the equilibration method, i.e. by preparing a saturated solution at 303 K and determining its concentration.

Refinement top

In the refinement of both (I) and (II), H atoms attached to O and N atoms were located by difference Fourier analysis and refined with Uiso(H) values of 1.5Ueq(N,O). The positions of other H atoms were calculated geometrically and refined as riding, with C—H bond lengths of 0.98–1.00 Å, and with Uiso(H) values of 1.2Ueq(C) or 1.5Ueq(methyl C). In both (I) and (II), in the absence of significant anomalous scattering effects, Friedel pairs were merged, and the absolute configurations was assigned from the known configuration of (2S,3S)- tartaric acid.

Computing details top

For both compounds, data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids. H atoms are shown as spheres.
[Figure 2] Fig. 2. The asymmetric unit of (II), showing 50% probability displacement ellipsoids. H atoms are shown as spheres.
[Figure 3] Fig. 3. Head-to-tail-connected hydrogen tartrate chains in (I), showing the adoption of mutually orthogonal skew lines. (Symmetry codes as in Table 2.)
[Figure 4] Fig. 4. Head-to-tail-connected hydrogen tartrate chains in (II), showing the adoption of mutually orthogonal skew lines. (Symmetry codes as in Table 4.)
[Figure 5] Fig. 5. The packing of (I) along the a axis, showing the regular layers of hydrogen tartrate and piperazinium ions interconnected in the equatorial position by hydrogen bonds. (Symmetry codes as in Table 2.)
[Figure 6] Fig. 6. The packing of (II) along the a axis, showing the greater number of interconnected layers of hydrogen tartrate and piperazinium ions interconnected in the axial position by hydrogen bonds. (Symmetry codes as in Table 4.)
[Figure 7] Fig. 7. A perspective view of the partial packing of (I), showing the piperazinium ions lying in the most stable equatorial conformation, stabilized by five intermolecular hydrogen bonds formed of two tartrate ions and two water molecules. (Symmetry codes as in Table 2.)
[Figure 8] Fig. 8. A perspective view of the partial packing of (II), showing how the piperazinium ions lie between the hydrogen tartrate layers in the unstable axial conformation, stabilized by eight intermolecular hydrogen bonds formed by five tartrate ions and a water molecule. (Symmetry codes as in Table 4.)
[Figure 9] Fig. 9. Ratio between Ueq of (II) and (I), showing the comparison of differences in the Ueq values of non-H atoms.
(I) (R)-2-methylpiperazinediium bis[hydrogen (2S,3S)-tartrate] monohydrate top
Crystal data top
C5H14N22+·2C4H5O6·H2OF(000) = 888
Mr = 418.36Dx = 1.582 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 25752 reflections
a = 7.5571 (2) Åθ = 3.5–27.5°
b = 7.7903 (3) ŵ = 0.14 mm1
c = 29.8324 (8) ÅT = 108 K
V = 1756.30 (9) Å3Prism, colourless
Z = 40.60 × 0.60 × 0.60 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2331 independent reflections
Radiation source: rotating anode2271 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.919, Tmax = 0.919k = 1010
26023 measured reflectionsl = 3738
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.6376P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.33 e Å3
2331 reflectionsΔρmin = 0.19 e Å3
291 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.099 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: see text
Secondary atom site location: difference Fourier map
Crystal data top
C5H14N22+·2C4H5O6·H2OV = 1756.30 (9) Å3
Mr = 418.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5571 (2) ŵ = 0.14 mm1
b = 7.7903 (3) ÅT = 108 K
c = 29.8324 (8) Å0.60 × 0.60 × 0.60 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2331 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2271 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.919Rint = 0.024
26023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.33 e Å3
2331 reflectionsΔρmin = 0.19 e Å3
291 parametersAbsolute structure: see text
Special details top

Experimental. Higashi, T. (1995). Program for Absorption Correction. Rigaku Corporation, Tokyo, Japan.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0917 (2)0.02318 (18)0.11013 (5)0.0126 (3)
H1A0.081 (3)0.042 (3)0.0804 (7)0.019*
H1B0.102 (3)0.093 (3)0.1142 (7)0.019*
N20.08325 (18)0.36636 (19)0.14444 (5)0.0094 (3)
H2A0.093 (3)0.354 (3)0.1737 (7)0.014*
H2B0.076 (3)0.473 (3)0.1385 (7)0.014*
O10.37535 (15)0.58168 (16)0.03444 (4)0.0106 (2)
H1C0.374 (3)0.613 (3)0.0081 (7)0.016*
O20.67895 (15)0.56716 (16)0.02386 (4)0.0105 (2)
H2C0.786 (3)0.598 (3)0.0301 (7)0.016*
O30.37191 (16)0.23774 (16)0.22492 (4)0.0116 (2)
H3A0.377 (3)0.346 (3)0.2214 (7)0.017*
O40.37805 (17)0.46728 (15)0.30267 (4)0.0133 (3)
H4A0.469 (3)0.502 (3)0.2954 (8)0.020*
O50.01431 (14)0.22908 (16)0.30431 (4)0.0118 (2)
H5A0.117 (3)0.263 (3)0.3010 (7)0.018*
O90.61255 (17)0.21613 (15)0.05092 (4)0.0129 (2)
H9A0.585 (3)0.104 (3)0.0454 (7)0.019*
O60.02777 (16)0.32806 (19)0.23426 (4)0.0178 (3)
O100.55030 (16)0.24894 (16)0.02226 (4)0.0149 (3)
O70.70272 (15)0.32862 (16)0.30073 (4)0.0144 (2)
O110.78684 (15)0.79983 (16)0.05636 (4)0.0134 (2)
O80.60285 (17)0.06174 (16)0.31247 (4)0.0140 (2)
O120.51470 (16)0.89873 (16)0.04456 (4)0.0139 (3)
C10.2426 (2)0.3002 (2)0.12048 (5)0.0114 (3)
H1D0.35010.35630.13260.014*
H1E0.23380.32830.08820.014*
C20.2571 (2)0.1083 (2)0.12630 (5)0.0125 (3)
H2D0.35980.06480.10910.015*
H2E0.27610.08070.15830.015*
C30.0669 (2)0.0886 (2)0.13440 (5)0.0119 (3)
H3B0.05640.06160.16670.014*
H3C0.17450.03130.12280.014*
C40.0833 (2)0.2816 (2)0.12816 (5)0.0101 (3)
H4B0.09730.30640.09550.012*
C50.2433 (2)0.3506 (2)0.15276 (5)0.0141 (3)
H5B0.23530.31980.18460.021*
H5C0.35100.30070.13990.021*
H5D0.24730.47580.14980.021*
C60.6054 (2)0.3044 (2)0.01313 (5)0.0093 (3)
C70.6750 (2)0.4865 (2)0.01857 (5)0.0084 (3)
H7A0.79700.48330.03150.010*
C80.5540 (2)0.5927 (2)0.04898 (5)0.0087 (3)
H8A0.56130.54450.08000.010*
C90.6245 (2)0.7788 (2)0.05014 (5)0.0092 (3)
C100.0967 (2)0.2597 (2)0.26679 (5)0.0102 (3)
C110.2898 (2)0.2035 (2)0.26652 (5)0.0093 (3)
H11A0.29230.07640.27120.011*
C120.3910 (2)0.2864 (2)0.30557 (5)0.0096 (3)
H12A0.33250.24980.33410.011*
C130.5816 (2)0.2182 (2)0.30619 (5)0.0095 (3)
O1W0.08688 (17)0.66356 (16)0.09223 (4)0.0123 (2)
H1W0.006 (3)0.692 (3)0.0789 (7)0.018*
H2W0.165 (3)0.639 (3)0.0718 (7)0.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0155 (7)0.0093 (6)0.0130 (6)0.0006 (6)0.0024 (6)0.0014 (5)
N20.0112 (6)0.0074 (6)0.0096 (6)0.0003 (6)0.0005 (5)0.0004 (5)
O10.0077 (5)0.0119 (6)0.0124 (5)0.0006 (5)0.0003 (4)0.0002 (5)
O20.0101 (5)0.0115 (6)0.0100 (5)0.0008 (5)0.0012 (4)0.0031 (4)
O30.0133 (5)0.0109 (6)0.0107 (5)0.0001 (5)0.0040 (4)0.0006 (4)
O40.0088 (5)0.0081 (6)0.0229 (6)0.0001 (5)0.0031 (5)0.0011 (5)
O50.0080 (5)0.0160 (6)0.0114 (5)0.0001 (5)0.0009 (4)0.0019 (5)
O90.0186 (6)0.0073 (5)0.0127 (5)0.0025 (5)0.0024 (5)0.0009 (4)
O60.0130 (5)0.0279 (7)0.0125 (5)0.0050 (6)0.0011 (4)0.0048 (5)
O100.0183 (6)0.0139 (6)0.0124 (5)0.0031 (5)0.0021 (4)0.0029 (5)
O70.0082 (5)0.0121 (6)0.0228 (6)0.0005 (5)0.0014 (4)0.0010 (5)
O110.0097 (5)0.0113 (6)0.0193 (5)0.0008 (5)0.0022 (4)0.0009 (5)
O80.0143 (5)0.0103 (5)0.0174 (5)0.0019 (5)0.0004 (5)0.0004 (5)
O120.0119 (6)0.0072 (6)0.0226 (6)0.0008 (5)0.0023 (5)0.0005 (5)
C10.0103 (7)0.0125 (7)0.0115 (6)0.0008 (6)0.0010 (5)0.0005 (6)
C20.0113 (7)0.0140 (8)0.0120 (7)0.0026 (7)0.0011 (6)0.0007 (6)
C30.0123 (7)0.0082 (7)0.0151 (7)0.0009 (6)0.0034 (6)0.0021 (6)
C40.0093 (7)0.0107 (7)0.0104 (6)0.0005 (6)0.0010 (5)0.0007 (6)
C50.0117 (7)0.0158 (8)0.0148 (7)0.0037 (7)0.0009 (6)0.0037 (6)
C60.0075 (6)0.0086 (7)0.0117 (7)0.0014 (6)0.0007 (6)0.0011 (6)
C70.0100 (7)0.0064 (7)0.0087 (6)0.0002 (6)0.0002 (5)0.0008 (6)
C80.0085 (7)0.0073 (7)0.0104 (6)0.0004 (6)0.0005 (6)0.0003 (6)
C90.0119 (7)0.0082 (7)0.0077 (6)0.0003 (6)0.0007 (6)0.0008 (6)
C100.0100 (7)0.0094 (7)0.0113 (6)0.0018 (7)0.0004 (5)0.0015 (6)
C110.0094 (7)0.0090 (7)0.0094 (6)0.0003 (6)0.0011 (5)0.0009 (6)
C120.0090 (7)0.0080 (7)0.0118 (6)0.0001 (6)0.0004 (6)0.0005 (6)
C130.0096 (7)0.0112 (7)0.0076 (6)0.0006 (6)0.0002 (5)0.0016 (6)
O1W0.0118 (5)0.0120 (6)0.0132 (5)0.0024 (5)0.0010 (5)0.0015 (4)
Geometric parameters (Å, º) top
N1—C31.490 (2)C1—C21.509 (2)
N1—C21.495 (2)C1—H1D0.9900
N1—H1A0.90 (2)C1—H1E0.9900
N1—H1B0.91 (3)C2—H2D0.9900
N2—C11.492 (2)C2—H2E0.9900
N2—C41.502 (2)C3—C41.520 (2)
N2—H2A0.88 (2)C3—H3B0.9900
N2—H2B0.85 (2)C3—H3C0.9900
O1—C81.4203 (19)C4—C51.514 (2)
O1—H1C0.82 (2)C4—H4B1.0000
O2—C71.4134 (17)C5—H5B0.9800
O2—H2C0.86 (2)C5—H5C0.9800
O3—C111.4127 (17)C5—H5D0.9800
O3—H3A0.85 (3)C6—C71.522 (2)
O4—C121.4149 (19)C7—C81.531 (2)
O4—H4A0.77 (3)C7—H7A1.0000
O5—C101.3028 (19)C8—C91.545 (2)
O5—H5A1.03 (2)C8—H8A1.0000
O9—C61.3216 (19)C10—C111.524 (2)
O9—H9A0.91 (2)C11—C121.536 (2)
O6—C101.223 (2)C11—H11A1.0000
O10—C61.2143 (18)C12—C131.536 (2)
O7—C131.266 (2)C12—H12A1.0000
O11—C91.252 (2)O1W—H1W0.84 (2)
O8—C131.243 (2)O1W—H2W0.87 (2)
O12—C91.261 (2)
C3—N1—C2111.33 (12)C4—C5—H5C109.5
C3—N1—H1A110.4 (15)H5B—C5—H5C109.5
C2—N1—H1A108.6 (15)C4—C5—H5D109.5
C3—N1—H1B110.1 (15)H5B—C5—H5D109.5
C2—N1—H1B108.7 (15)H5C—C5—H5D109.5
H1A—N1—H1B108 (2)O10—C6—O9124.81 (15)
C1—N2—C4111.69 (12)O10—C6—C7122.87 (14)
C1—N2—H2A111.8 (14)O9—C6—C7112.33 (12)
C4—N2—H2A109.8 (14)O2—C7—C6109.05 (12)
C1—N2—H2B106.9 (15)O2—C7—C8107.65 (12)
C4—N2—H2B107.8 (15)C6—C7—C8111.14 (12)
H2A—N2—H2B109 (2)O2—C7—H7A109.7
C8—O1—H1C106.8 (16)C6—C7—H7A109.7
C7—O2—H2C109.6 (14)C8—C7—H7A109.7
C11—O3—H3A108.4 (15)O1—C8—C7110.74 (12)
C12—O4—H4A108 (2)O1—C8—C9113.04 (13)
C10—O5—H5A109.2 (12)C7—C8—C9108.33 (12)
C6—O9—H9A109.4 (14)O1—C8—H8A108.2
N2—C1—C2110.21 (14)C7—C8—H8A108.2
N2—C1—H1D109.6C9—C8—H8A108.2
C2—C1—H1D109.6O11—C9—O12124.59 (16)
N2—C1—H1E109.6O11—C9—C8117.66 (14)
C2—C1—H1E109.6O12—C9—C8117.74 (13)
H1D—C1—H1E108.1O6—C10—O5123.92 (15)
N1—C2—C1109.98 (14)O6—C10—C11121.91 (14)
N1—C2—H2D109.7O5—C10—C11114.17 (13)
C1—C2—H2D109.7O3—C11—C10111.77 (12)
N1—C2—H2E109.7O3—C11—C12111.61 (13)
C1—C2—H2E109.7C10—C11—C12110.59 (12)
H2D—C2—H2E108.2O3—C11—H11A107.5
N1—C3—C4110.13 (14)C10—C11—H11A107.5
N1—C3—H3B109.6C12—C11—H11A107.5
C4—C3—H3B109.6O4—C12—C11109.77 (13)
N1—C3—H3C109.6O4—C12—C13114.21 (13)
C4—C3—H3C109.6C11—C12—C13109.29 (12)
H3B—C3—H3C108.1O4—C12—H12A107.8
N2—C4—C5110.90 (13)C11—C12—H12A107.8
N2—C4—C3109.09 (14)C13—C12—H12A107.8
C5—C4—C3110.89 (14)O8—C13—O7126.30 (16)
N2—C4—H4B108.6O8—C13—C12117.51 (15)
C5—C4—H4B108.6O7—C13—C12116.18 (14)
C3—C4—H4B108.6H1W—O1W—H2W107 (2)
C4—C5—H5B109.5
C4—N2—C1—C257.75 (17)O1—C8—C9—O11170.15 (13)
C3—N1—C2—C157.87 (17)C7—C8—C9—O1147.05 (18)
N2—C1—C2—N156.63 (16)O1—C8—C9—O129.52 (19)
C2—N1—C3—C458.55 (17)C7—C8—C9—O12132.63 (14)
C1—N2—C4—C5179.89 (13)O6—C10—C11—O31.0 (2)
C1—N2—C4—C357.69 (17)O5—C10—C11—O3179.26 (14)
N1—C3—C4—N257.33 (17)O6—C10—C11—C12124.02 (17)
N1—C3—C4—C5179.76 (12)O5—C10—C11—C1255.72 (18)
O10—C6—C7—O25.5 (2)O3—C11—C12—O467.41 (17)
O9—C6—C7—O2174.48 (13)C10—C11—C12—O457.70 (17)
O10—C6—C7—C8113.06 (17)O3—C11—C12—C1358.57 (17)
O9—C6—C7—C867.00 (16)C10—C11—C12—C13176.33 (12)
O2—C7—C8—O168.02 (16)O4—C12—C13—O8174.12 (14)
C6—C7—C8—O151.34 (16)C11—C12—C13—O862.50 (18)
O2—C7—C8—C956.47 (15)O4—C12—C13—O75.04 (19)
C6—C7—C8—C9175.83 (12)C11—C12—C13—O7118.34 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.90 (2)2.03 (2)2.7484 (19)136 (2)
N1—H1A···O10i0.90 (2)2.39 (2)3.1814 (19)146 (2)
O1W—H1W···O11ii0.84 (2)1.90 (2)2.7227 (17)168 (2)
N1—H1B···O1Wiii0.92 (2)2.01 (2)2.8522 (19)152.1 (19)
O1W—H2W···O10.87 (2)1.99 (2)2.8516 (17)169 (2)
N2—H2A···O60.88 (2)1.88 (2)2.7285 (19)160 (2)
N2—H2B···O1W0.85 (2)2.03 (2)2.7906 (19)149 (2)
O3—H3A···O8iv0.85 (2)1.97 (2)2.7661 (18)156 (2)
O4—H4A···O70.77 (2)2.23 (2)2.6815 (17)118 (2)
O4—H4A···O3iv0.77 (2)2.28 (2)2.9474 (17)146 (2)
O5—H5A···O7ii1.03 (2)1.46 (2)2.4814 (16)172.3 (19)
O1—H1C···O20.82 (2)2.52 (2)2.8813 (16)107.9 (18)
O1—H1C···O11v0.82 (2)2.14 (2)2.9389 (17)163 (2)
O2—H2C···O1vi0.86 (2)2.59 (2)3.1283 (17)121.5 (18)
O2—H2C···O12vi0.86 (2)1.78 (2)2.6249 (17)165 (2)
O9—H9A···O12iii0.91 (2)1.69 (2)2.5878 (17)169 (2)
C1—H1D···O8iv0.992.323.085 (2)133
C1—H1E···O10i0.992.483.2930 (19)139
C2—H2D···O12iii0.992.603.5216 (19)155
C2—H2E···O30.992.443.2288 (19)136
C2—H2E···O7vii0.992.323.095 (2)135
C4—H4B···O10i1.002.493.3252 (19)141
C5—H5B···O60.982.483.1841 (19)128
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x+1, y+1/2, z+1/2; (v) x1/2, y+3/2, z; (vi) x+1/2, y+3/2, z; (vii) x+1, y1/2, z+1/2.
(II) (S)-2-methylpiperazinediium bis[hydrogen (2S,3S)-tartrate] monohydrate top
Crystal data top
C5H14N22+·2C4H5O6·H2OF(000) = 888
Mr = 418.36Dx = 1.573 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 26172 reflections
a = 7.6062 (3) Åθ = 3.0–27.6°
b = 7.6426 (3) ŵ = 0.14 mm1
c = 30.3987 (11) ÅT = 103 K
V = 1767.11 (12) Å3Prism, colourless
Z = 40.60 × 0.50 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2342 independent reflections
Radiation source: rotating anode2193 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.920, Tmax = 0.959k = 99
27022 measured reflectionsl = 3939
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.7169P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.28 e Å3
2342 reflectionsΔρmin = 0.19 e Å3
291 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0134 (17)
Primary atom site location: structure-invariant direct methodsAbsolute structure: see text
Secondary atom site location: difference Fourier map
Crystal data top
C5H14N22+·2C4H5O6·H2OV = 1767.11 (12) Å3
Mr = 418.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6062 (3) ŵ = 0.14 mm1
b = 7.6426 (3) ÅT = 103 K
c = 30.3987 (11) Å0.60 × 0.50 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2342 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2193 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.959Rint = 0.063
27022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.28 e Å3
2342 reflectionsΔρmin = 0.19 e Å3
291 parametersAbsolute structure: see text
Special details top

Experimental. Higashi, T. (1995). Program for Absorption Correction. Rigaku Corporation, Tokyo, Japan.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8714 (3)0.4953 (3)0.09996 (7)0.0219 (4)
H1A0.935 (5)0.450 (4)0.0782 (10)0.033*
H1B0.894 (4)0.436 (4)0.1250 (10)0.033*
N20.6229 (3)0.7550 (3)0.12585 (7)0.0213 (4)
H2A0.601 (4)0.806 (4)0.0997 (9)0.032*
H2B0.545 (5)0.803 (4)0.1485 (9)0.032*
O30.0952 (2)0.1001 (2)0.16180 (6)0.0225 (4)
H3A0.127 (4)0.145 (4)0.1381 (10)0.034*
O20.3118 (2)1.2459 (2)0.05752 (6)0.0247 (4)
H2C0.268 (5)1.342 (5)0.0511 (10)0.037*
O40.4632 (2)0.0755 (2)0.15900 (5)0.0218 (3)
H4A0.569 (5)0.125 (4)0.1621 (10)0.033*
O10.3273 (2)0.8915 (2)0.07987 (5)0.0225 (4)
H1C0.353 (5)0.971 (4)0.0938 (10)0.034*
O50.3245 (2)0.4512 (2)0.21533 (5)0.0236 (4)
H5A0.341 (5)0.571 (4)0.2091 (9)0.035*
O90.0416 (3)0.9843 (2)0.01529 (5)0.0232 (4)
H9A0.144 (5)0.968 (4)0.0246 (10)0.035*
O60.1732 (2)0.4390 (2)0.15176 (5)0.0252 (4)
O100.0263 (2)1.1501 (2)0.07587 (5)0.0242 (4)
O70.2317 (2)0.1186 (2)0.24897 (5)0.0260 (4)
O110.6483 (2)0.9240 (2)0.04364 (5)0.0253 (4)
O80.4003 (2)0.2358 (2)0.19634 (5)0.0236 (4)
O120.5442 (2)1.0270 (2)0.01993 (5)0.0234 (4)
C10.5714 (3)0.5675 (3)0.12247 (8)0.0230 (5)
H1D0.44570.55910.11430.028*
H1E0.58720.51000.15140.028*
C20.6810 (3)0.4757 (3)0.08857 (8)0.0234 (5)
H2D0.64950.35000.08760.028*
H2E0.65830.52660.05920.028*
C30.9251 (3)0.6837 (3)0.10287 (7)0.0217 (5)
H3B0.91220.73920.07360.026*
H3C1.05040.69090.11150.026*
C40.8140 (3)0.7826 (3)0.13628 (7)0.0220 (5)
H4B0.83910.91000.13220.026*
C50.8526 (4)0.7390 (3)0.18414 (7)0.0254 (5)
H5B0.77490.80740.20320.038*
H5C0.97540.76760.19080.038*
H5D0.83260.61390.18920.038*
C60.0401 (3)1.0875 (3)0.04296 (7)0.0199 (4)
C70.2319 (3)1.1199 (3)0.03011 (7)0.0199 (4)
H7A0.23811.15930.00120.024*
C80.3355 (3)0.9491 (3)0.03560 (7)0.0201 (5)
H8A0.27650.85830.01710.024*
C90.5247 (3)0.9702 (3)0.01824 (7)0.0199 (5)
C130.3311 (3)0.1080 (3)0.21661 (7)0.0206 (5)
C120.3726 (3)0.0777 (3)0.20004 (7)0.0199 (5)
H12A0.44750.13840.22230.024*
C110.2002 (3)0.1783 (3)0.19506 (7)0.0201 (4)
H11A0.13480.17020.22350.024*
C100.2313 (3)0.3712 (3)0.18505 (7)0.0208 (5)
O1W0.7681 (2)0.2438 (2)0.17149 (6)0.0244 (4)
H2W0.867 (5)0.187 (4)0.1682 (10)0.037*
H1W0.760 (4)0.268 (4)0.1985 (10)0.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0176 (11)0.0227 (9)0.0253 (10)0.0014 (8)0.0007 (8)0.0019 (8)
N20.0193 (10)0.0215 (9)0.0232 (9)0.0021 (8)0.0012 (8)0.0010 (8)
O30.0202 (9)0.0230 (8)0.0242 (8)0.0014 (7)0.0025 (7)0.0001 (7)
O20.0218 (9)0.0206 (8)0.0318 (8)0.0015 (7)0.0048 (7)0.0024 (7)
O40.0173 (8)0.0237 (8)0.0246 (8)0.0025 (7)0.0036 (6)0.0001 (6)
O10.0197 (8)0.0242 (8)0.0235 (8)0.0003 (7)0.0000 (7)0.0019 (6)
O50.0264 (10)0.0190 (8)0.0255 (8)0.0022 (7)0.0040 (7)0.0002 (6)
O90.0140 (8)0.0293 (9)0.0262 (8)0.0026 (7)0.0001 (7)0.0022 (7)
O60.0234 (9)0.0246 (8)0.0276 (8)0.0008 (7)0.0040 (7)0.0025 (7)
O100.0218 (9)0.0249 (8)0.0259 (8)0.0003 (7)0.0030 (7)0.0003 (7)
O70.0291 (10)0.0241 (8)0.0247 (8)0.0034 (8)0.0065 (7)0.0026 (6)
O110.0155 (8)0.0337 (9)0.0266 (8)0.0011 (8)0.0007 (6)0.0050 (7)
O80.0237 (9)0.0187 (8)0.0285 (8)0.0015 (7)0.0041 (7)0.0001 (7)
O120.0198 (9)0.0282 (8)0.0222 (8)0.0014 (7)0.0007 (6)0.0018 (6)
C10.0167 (11)0.0237 (11)0.0286 (11)0.0013 (10)0.0009 (9)0.0014 (9)
C20.0194 (12)0.0259 (12)0.0250 (11)0.0010 (10)0.0006 (9)0.0027 (9)
C30.0180 (12)0.0215 (11)0.0256 (11)0.0001 (9)0.0009 (9)0.0004 (9)
C40.0190 (12)0.0212 (11)0.0258 (11)0.0008 (9)0.0002 (9)0.0006 (9)
C50.0248 (13)0.0267 (12)0.0248 (11)0.0018 (11)0.0027 (9)0.0008 (9)
C60.0186 (11)0.0201 (10)0.0210 (10)0.0015 (9)0.0012 (9)0.0024 (8)
C70.0162 (11)0.0213 (10)0.0221 (10)0.0013 (9)0.0011 (8)0.0005 (8)
C80.0166 (11)0.0231 (11)0.0208 (10)0.0008 (9)0.0001 (8)0.0005 (8)
C90.0156 (11)0.0198 (10)0.0242 (10)0.0004 (9)0.0003 (8)0.0017 (8)
C130.0180 (11)0.0203 (10)0.0236 (10)0.0003 (9)0.0021 (9)0.0004 (8)
C120.0182 (12)0.0209 (10)0.0207 (10)0.0003 (9)0.0001 (9)0.0003 (8)
C110.0189 (11)0.0197 (10)0.0216 (10)0.0016 (9)0.0012 (8)0.0010 (8)
C100.0162 (11)0.0220 (10)0.0241 (10)0.0006 (9)0.0021 (9)0.0017 (8)
O1W0.0190 (9)0.0280 (9)0.0263 (8)0.0007 (8)0.0008 (7)0.0023 (7)
Geometric parameters (Å, º) top
N1—C21.496 (3)C1—C21.500 (3)
N1—C31.500 (3)C1—H1D0.9900
N1—H1A0.89 (3)C1—H1E0.9900
N1—H1B0.90 (3)C2—H2D0.9900
N2—C11.489 (3)C2—H2E0.9900
N2—C41.502 (3)C3—C41.522 (3)
N2—H2A0.90 (3)C3—H3B0.9900
N2—H2B0.98 (3)C3—H3C0.9900
O3—C111.420 (3)C4—C51.521 (3)
O3—H3A0.83 (3)C4—H4B1.0000
O2—C71.411 (3)C5—H5B0.9800
O2—H2C0.83 (4)C5—H5C0.9800
O4—C121.425 (3)C5—H5D0.9800
O4—H4A0.89 (4)C6—C71.530 (3)
O1—C81.417 (3)C7—C81.533 (3)
O1—H1C0.76 (3)C7—H7A1.0000
O5—C101.312 (3)C8—C91.542 (3)
O5—H5A0.94 (3)C8—H8A1.0000
O9—C61.310 (3)C13—C121.539 (3)
O9—H9A0.84 (4)C12—C111.528 (3)
O6—C101.220 (3)C12—H12A1.0000
O10—C61.218 (3)C11—C101.524 (3)
O7—C131.244 (3)C11—H11A1.0000
O11—C91.267 (3)O1W—H2W0.88 (4)
O8—C131.269 (3)O1W—H1W0.84 (3)
O12—C91.248 (3)
C2—N1—C3111.94 (19)C4—C5—H5C109.5
C2—N1—H1A108 (2)H5B—C5—H5C109.5
C3—N1—H1A106 (2)C4—C5—H5D109.5
C2—N1—H1B109 (2)H5B—C5—H5D109.5
C3—N1—H1B112 (2)H5C—C5—H5D109.5
H1A—N1—H1B109 (3)O10—C6—O9124.5 (2)
C1—N2—C4113.82 (19)O10—C6—C7122.8 (2)
C1—N2—H2A108 (2)O9—C6—C7112.67 (19)
C4—N2—H2A108 (2)O2—C7—C6111.71 (19)
C1—N2—H2B104.6 (19)O2—C7—C8107.17 (18)
C4—N2—H2B112.4 (19)C6—C7—C8108.94 (19)
H2A—N2—H2B110 (3)O2—C7—H7A109.7
C11—O3—H3A106 (2)C6—C7—H7A109.7
C7—O2—H2C107 (2)C8—C7—H7A109.7
C12—O4—H4A110 (2)O1—C8—C7110.21 (18)
C8—O1—H1C106 (2)O1—C8—C9113.50 (19)
C10—O5—H5A112.5 (19)C7—C8—C9110.70 (19)
C6—O9—H9A108 (2)O1—C8—H8A107.4
N2—C1—C2110.6 (2)C7—C8—H8A107.4
N2—C1—H1D109.5C9—C8—H8A107.4
C2—C1—H1D109.5O12—C9—O11125.2 (2)
N2—C1—H1E109.5O12—C9—C8117.8 (2)
C2—C1—H1E109.5O11—C9—C8117.05 (19)
H1D—C1—H1E108.1O7—C13—O8125.9 (2)
N1—C2—C1109.39 (19)O7—C13—C12116.3 (2)
N1—C2—H2D109.8O8—C13—C12117.8 (2)
C1—C2—H2D109.8O4—C12—C11109.52 (18)
N1—C2—H2E109.8O4—C12—C13112.02 (19)
C1—C2—H2E109.8C11—C12—C13108.73 (19)
H2D—C2—H2E108.2O4—C12—H12A108.8
N1—C3—C4111.4 (2)C11—C12—H12A108.8
N1—C3—H3B109.3C13—C12—H12A108.8
C4—C3—H3B109.3O3—C11—C10110.63 (19)
N1—C3—H3C109.3O3—C11—C12109.95 (18)
C4—C3—H3C109.3C10—C11—C12111.9 (2)
H3B—C3—H3C108.0O3—C11—H11A108.1
N2—C4—C5111.0 (2)C10—C11—H11A108.1
N2—C4—C3109.08 (18)C12—C11—H11A108.1
C5—C4—C3115.0 (2)O6—C10—O5125.4 (2)
N2—C4—H4B107.1O6—C10—C11121.4 (2)
C5—C4—H4B107.1O5—C10—C11113.21 (19)
C3—C4—H4B107.1H2W—O1W—H1W106 (3)
C4—C5—H5B109.5
C4—N2—C1—C256.8 (2)O1—C8—C9—O12177.3 (2)
C3—N1—C2—C158.1 (3)C7—C8—C9—O1252.8 (3)
N2—C1—C2—N156.8 (2)O1—C8—C9—O114.5 (3)
C2—N1—C3—C457.1 (3)C7—C8—C9—O11129.0 (2)
C1—N2—C4—C573.8 (2)O7—C13—C12—O4170.5 (2)
C1—N2—C4—C353.9 (2)O8—C13—C12—O49.5 (3)
N1—C3—C4—N253.0 (2)O7—C13—C12—C1149.3 (3)
N1—C3—C4—C572.4 (3)O8—C13—C12—C11130.7 (2)
O10—C6—C7—O27.4 (3)O4—C12—C11—O358.0 (2)
O9—C6—C7—O2173.59 (19)C13—C12—C11—O364.7 (2)
O10—C6—C7—C8110.8 (2)O4—C12—C11—C1065.4 (2)
O9—C6—C7—C868.2 (2)C13—C12—C11—C10171.88 (18)
O2—C7—C8—O161.2 (2)O3—C11—C10—O61.6 (3)
C6—C7—C8—O159.8 (2)C12—C11—C10—O6121.4 (2)
O2—C7—C8—C965.1 (2)O3—C11—C10—O5178.51 (19)
C6—C7—C8—C9173.83 (18)C12—C11—C10—O558.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10i0.89 (3)2.31 (3)2.846 (3)119 (3)
N1—H1A···O12ii0.89 (3)1.96 (3)2.770 (3)150 (3)
N1—H1B···O1W0.90 (3)2.25 (3)3.007 (3)141 (3)
N1—H1B···O6iii0.90 (3)2.27 (3)2.817 (3)118 (2)
O1—H1C···O20.77 (3)2.39 (3)2.795 (2)114 (3)
O1—H1C···O4iv0.77 (3)2.30 (3)2.972 (2)148 (3)
O1W—H1W···O7v0.84 (3)1.82 (3)2.637 (2)163 (3)
N2—H2A···O10.90 (3)2.26 (3)2.846 (3)122 (2)
N2—H2A···O110.90 (3)1.96 (3)2.820 (3)159 (3)
N2—H2B···O4iv0.98 (3)2.20 (3)2.914 (3)129 (2)
N2—H2B···O8iv0.98 (3)1.85 (3)2.732 (3)149 (3)
O2—H2C···O12vi0.83 (4)2.19 (4)2.909 (2)145 (3)
O1W—H2W···O3iii0.87 (4)1.87 (4)2.736 (2)171 (3)
O3—H3A···O60.83 (3)2.31 (3)2.675 (2)107 (2)
O3—H3A···O10vii0.83 (3)2.22 (3)2.797 (2)126 (3)
O4—H4A···O1W0.89 (4)1.79 (4)2.679 (2)174 (3)
O5—H5A···O8iv0.94 (3)1.59 (3)2.527 (2)171 (4)
O9—H9A···O11viii0.84 (4)1.72 (4)2.553 (3)177 (3)
C1—H1D···O60.992.543.306 (3)134
C1—H1E···O1W0.992.533.253 (3)130
C3—H3C···O6iii0.992.473.044 (3)117
C4—H4B···O3ix1.002.593.326 (3)130
C11—H11A···O71.002.452.809 (3)100
C12—H12A···O51.002.582.915 (3)100
Symmetry codes: (i) x+1, y1, z; (ii) x+1/2, y+3/2, z; (iii) x+1, y, z; (iv) x, y+1, z; (v) x+1, y+1/2, z+1/2; (vi) x1/2, y+5/2, z; (vii) x, y1, z; (viii) x1, y, z; (ix) x+1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC5H14N22+·2C4H5O6·H2OC5H14N22+·2C4H5O6·H2O
Mr418.36418.36
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)108103
a, b, c (Å)7.5571 (2), 7.7903 (3), 29.8324 (8)7.6062 (3), 7.6426 (3), 30.3987 (11)
V3)1756.30 (9)1767.11 (12)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.140.14
Crystal size (mm)0.60 × 0.60 × 0.600.60 × 0.50 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Rigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Multi-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.919, 0.9190.920, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
26023, 2331, 2271 27022, 2342, 2193
Rint0.0240.063
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.11 0.035, 0.088, 1.07
No. of reflections23312342
No. of parameters291291
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.190.28, 0.19
Absolute structureSee textSee text

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009).

Selected torsion angles (º) for (I) top
C1—N2—C4—C5179.89 (13)C6—C7—C8—C9175.83 (12)
N1—C3—C4—C5179.76 (12)O3—C11—C12—O467.41 (17)
O2—C7—C8—O168.02 (16)C10—C11—C12—C13176.33 (12)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.90 (2)2.03 (2)2.7484 (19)136 (2)
N1—H1A···O10i0.90 (2)2.39 (2)3.1814 (19)146 (2)
O1W—H1W···O11ii0.84 (2)1.90 (2)2.7227 (17)168 (2)
N1—H1B···O1Wiii0.92 (2)2.01 (2)2.8522 (19)152.1 (19)
O1W—H2W···O10.87 (2)1.99 (2)2.8516 (17)169 (2)
N2—H2A···O60.88 (2)1.88 (2)2.7285 (19)160 (2)
N2—H2B···O1W0.85 (2)2.03 (2)2.7906 (19)149 (2)
O3—H3A···O8iv0.85 (2)1.97 (2)2.7661 (18)156 (2)
O4—H4A···O3iv0.77 (2)2.28 (2)2.9474 (17)146 (2)
O5—H5A···O7ii1.03 (2)1.46 (2)2.4814 (16)172.3 (19)
O1—H1C···O11v0.82 (2)2.14 (2)2.9389 (17)163 (2)
O2—H2C···O12vi0.86 (2)1.78 (2)2.6249 (17)165 (2)
O9—H9A···O12iii0.91 (2)1.69 (2)2.5878 (17)169 (2)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x+1, y+1/2, z+1/2; (v) x1/2, y+3/2, z; (vi) x+1/2, y+3/2, z.
Selected torsion angles (º) for (II) top
C1—N2—C4—C573.8 (2)C6—C7—C8—C9173.83 (18)
N1—C3—C4—C572.4 (3)O4—C12—C11—O358.0 (2)
O2—C7—C8—O161.2 (2)C13—C12—C11—C10171.88 (18)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10i0.89 (3)2.31 (3)2.846 (3)119 (3)
N1—H1A···O12ii0.89 (3)1.96 (3)2.770 (3)150 (3)
N1—H1B···O1W0.90 (3)2.25 (3)3.007 (3)141 (3)
N1—H1B···O6iii0.90 (3)2.27 (3)2.817 (3)118 (2)
O1—H1C···O4iv0.77 (3)2.30 (3)2.972 (2)148 (3)
O1W—H1W···O7v0.84 (3)1.82 (3)2.637 (2)163 (3)
N2—H2A···O10.90 (3)2.26 (3)2.846 (3)122 (2)
N2—H2A···O110.90 (3)1.96 (3)2.820 (3)159 (3)
N2—H2B···O4iv0.98 (3)2.20 (3)2.914 (3)129 (2)
N2—H2B···O8iv0.98 (3)1.85 (3)2.732 (3)149 (3)
O2—H2C···O12vi0.83 (4)2.19 (4)2.909 (2)145 (3)
O1W—H2W···O3iii0.87 (4)1.87 (4)2.736 (2)171 (3)
O3—H3A···O10vii0.83 (3)2.22 (3)2.797 (2)126 (3)
O4—H4A···O1W0.89 (4)1.79 (4)2.679 (2)174 (3)
O5—H5A···O8iv0.94 (3)1.59 (3)2.527 (2)171 (4)
O9—H9A···O11viii0.84 (4)1.72 (4)2.553 (3)177 (3)
Symmetry codes: (i) x+1, y1, z; (ii) x+1/2, y+3/2, z; (iii) x+1, y, z; (iv) x, y+1, z; (v) x+1, y+1/2, z+1/2; (vi) x1/2, y+5/2, z; (vii) x, y1, z; (viii) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds